MA TH /1/1/7/0

MATHEMATICS FOR LIFE SCIENTISTS

Computer Assignment IV
Due September 23, 2003

We will use Maple to study a nonlinear updating function. The `iread(iter);` command loads a `cobweb` command into Maple, in addition to `iterplot` and `iterplot2`. If you have entered an updating function \(f \) as a Maple function, you can cobweb with

\[
> \text{cobweb}(f, 20, .02, .01);
\]

The first three arguments are like those of `iterplot`: the updating function \(f \), the number of steps (20) and the initial condition (0.02). The last is the domain of the graph (from 0 to 1).

PROBLEM

Exercise 1. We will study the dynamics of selection with mutation, (exercise 1.12.5 in the book), which has updating function

\[
pt_{t+1} = \frac{s(1-\nu)pt + r \mu(1-\nu)}{sp + r(1-\nu)}.
\]

Recall that \(p \) represents the fraction of type \(a \) bacteria in a population, \(s \) is the per capita reproduction of type \(a \), \(r \) is the per capita reproduction of type \(b \), \(\nu \) is the fraction of type \(a \) that mutate into type \(b \), and \(\mu \) is the fraction of type \(b \) that mutate into type \(a \).

Input the updating function as a Maple function (leaving the parameters \(\mu \) and \(\nu \) unspecified). By setting \(\mu \) and \(\nu \) to particular values, we will study the following 4 cases:

- \(s = 2.0, r = 1.0, \mu = 0.0, \nu = 0.0 \) (no mutation).
- \(s = 2.0, r = 1.0, \mu = 0.0, \nu = 0.1 \).
- \(s = 2.0, r = 1.0, \mu = 0.1, \nu = 0.0 \).
- \(s = 2.0, r = 1.0, \mu = 0.1, \nu = 0.1 \).

For each case, do the following:

a. Use Maple to solve for the equilibrium or equilibria (use the `solve` command).

b. Use `cobweb` to cobweb. Choose an initial condition that gives a nice looking graph. Mark the equilibrium or equilibria on your graph.

c. On your last three graphs, write a sentence describing, in biological terms, the ways in which the equilibria and the dynamics differ from the first case without mutation.