Applied Differential Equations 2250-1
Midterm Exam 1 In-Class
Wednesday, 29 January, 2003

Instructions: This in-class exam is 15 minutes. Hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Calculators are allowed. Books are not allowed.

5. **(Linear Equations)**

 (a) Solve $10v' = -98 - 49v$, $v(0) = 47$.

 (b) Solve $y' = v(t)$, $y(0) = 10$, where $v(t)$ is the answer from (a).

 (c) Determine t when $y(t)$ is a maximum.

 (d) Find the limit of $v(t)$ at $t = \infty$.

Reference: This is a special case of the kinematics problem $my'' = -mg - ky'$, $y(0) = 0$, $y'(0) = v_0$.

5. (Linear Equations)
 (a) Solve \(v' = -32 - 2v \), \(v(0) = 90 \).
 (b) Solve \(y' = v(t) \), \(y(0) = 10 \), where \(v(t) \) is the answer from (a).
 (c) Determine \(t \) when \(y(t) \) is a maximum.
 (d) Find the limit of \(v(t) \) at \(t = \infty \).

Reference: This is a special case of the kinematics problem \(my'' = -mg - ky' \),
\(y(0) = 0 \), \(y'(0) = v_0 \).
Applied Differential Equations 2250-2
Midterm Exam 1 In-Class Version M-Z
Wednesday, 29 January, 2003

Instructions: This in-class exam is 15 minutes. Hand-written or computer-generated notes are allowed, including xerox copies of tables or classroom xerox notes. Calculators are allowed. Books are not allowed.

5. (Linear Equations)
 (a) Solve \(v' = -32 - 4v, \ v(0) = 95. \)
 (b) Solve \(y' = v(t), \ y(0) = 10, \) where \(v(t) \) is the answer from (a).
 (c) Determine \(t \) when \(y(t) \) is a maximum.
 (d) Find the limit of \(v(t) \) at \(t = \infty. \)

Reference: This is a special case of the kinematics problem \(my'' = -mg - ky', \ y(0) = 0, \ y'(0) = v_0. \)