Partial Differential Equations 3150
Sample Midterm Exam 1
Exam Date: Tuesday, 27 October 2009

Instructions: This exam is timed for 50 minutes. You will be given double time to complete the exam. No calculators, notes, tables or books. Problems use only chapters 1 and 2 of the textbook. No answer check is expected. Details count 3/4, answers count 1/4.

1. (Vibration of a Finite String)
 Some normal modes for the string equation \(u_{tt} = c^2 u_{xx} \) are given by the equation
 \[
 u(x, t) = \sin \left(\frac{n\pi x}{L} \right) \cos \left(\frac{n\pi ct}{L} \right).
 \]
 (a) [25\%] Give an example of a finite linear combination of normal modes.
 (b) [25\%] Write a mathematical argument, using the superposition principle, showing that the example given in (a) is a solution of \(u_{tt} = c^2 u_{xx} \).
 (c) [50\%] Solve the finite string vibration problem on \(0 \leq x \leq 1, \ t > 0 \),

 \[
 \begin{align*}
 u_{tt} & = c^2 u_{xx}, \\
 u(0, t) & = 0, \\
 u(1, t) & = 0, \\
 u(x, 0) & = 2 \sin(\pi x) - 3 \sin(5\pi x), \\
 u_t(x, 0) & = 0.
 \end{align*}
 \]

Use this page to start your solution. Attach extra pages as needed, then staple.
2. (Periodic Functions)

(a) [25%] Find the period of \(f(x) = \sin 2x \cos 2x \).

(b) [25%] Give an example of a piecewise continuous function on \(0 \leq x \leq 2 \) that has a discontinuity at \(x = 1 \).

(c) [25%] Is \(f(x) = \cos(2x + 3) \) an even periodic function?

(d) [25%] Is \(f(x) = \sin(\pi x/5) \) an odd periodic function?
3. (Fourier Series)
Let \(f(x) = 1 \) on the interval \(0 < x < 2\pi \), \(f(x) = -1 \) on \(-2\pi < x < 0 \), \(f(x) = 0 \) for \(x = 0, 2\pi, -2\pi \). Let \(g(x) \) be the \(4\pi \)-periodic extension of \(f \) to the whole real line.

(a) [25\%] Is \(g(x) \) even or odd?
(b) [25\%] Display the formulas for the Fourier coefficients of \(f \).
(c) [25\%] Compute the Fourier coefficient for the term \(\sin(5x) \).
(d) [25\%] Are there any values of \(x \) such that \(g(x) \) does not equal the Fourier series of \(f \)?
4. (Cosine and Sine Series)
Find the first three terms in the cosine series expansion of the cosine wave $g(x)$, formed as the even periodic extension of the base function $\cos x + 2 \cos 4x$ on $0 < x < \pi$.
5. (Convergence of Fourier Series)

(a) [25%] Display Dirichlet’s kernel formula.
(b) [25%] State the Fourier Convergence Theorem for piecewise smooth functions.
(c) [25%] Fourier convergence may not be uniform, and the commonly referenced term to describe this problem is Gibbs’s phenomenon. Explain what it is, by example.
(d) [25%] State Parseval’s identity for complex Fourier series.