Introduction to Linear Algebra 2270-1

Sample Midterm Exam 3 Fall 2003

In-class Exam Date: Wednesday, November 19, 2003

Instructions. Calculators are not allowed. Books and notes are not allowed. Time: 15 minutes. You will be given a variety of problems from which to select. The object is to solve two of them in 15 minutes. The longer ones will be identified as worth two problems.

5. (Exam 3 in-class)

(a) Prove \(\mathbf{v}_1, \mathbf{v}_2 \) orthogonal and \(A \) an \(n \times n \) orthogonal matrix implies \(A\mathbf{v}_1, A\mathbf{v}_2 \) orthogonal.

(b) Prove \((\sum_{k=1}^{n} x_k)^2 \leq n \sum_{k=1}^{n} |x_k|^2\).

(c) Prove or disprove: \(A \) orthogonal implies \(A^2 \) orthogonal.

(d) Let \(A \) be \(n \times n \) with eigenpairs \((\lambda_i, \mathbf{v}_i), 1 \leq i \leq n \). Prove that \((A - \lambda_1 I) \cdots (A - \lambda_n I) = 0\).

(e) Let \(V \) be a subspace of \(\mathbb{R}^n \). Prove that \(V \) and \(V^\perp \) meet only in the zero vector.

(f) Let \(A \) be \(m \times n \). Prove that \(\ker(A) = \{\mathbf{0}\} \) implies \(A^T A \) is invertible.

(g) Let \(V \) be an inner product space. Suppose that \(\mathbf{v} = \sum_{k=1}^{n} c_k \mathbf{v}_k \) and \(\{\mathbf{v}_k\} \) is an orthogonal set. Compute \(c_2 \).

(h) Find a \(3 \times 3 \) matrix \(A \) such that \(\det(A - \lambda I) = -\lambda^3 + 15\lambda^2 - 3\lambda + 2 \).