3. (Inverse of a matrix) An $n \times n$ matrix A is said to have an inverse B if $AB = BA = I$, where I is the $n \times n$ identity matrix. Prove these facts:

1. If B_1 and B_2 are inverses of A, then $B_1 = B_2$.
2. The inverse of the identity I is I.
3. The zero matrix has no inverse.
4. In checking the inverse relation $AB = BA = I$, only one of $AB = I$ or $BA = I$ needs to be verified.

4. (Elementary Matrices) Let A be a 3×3 matrix and \vec{b} a vector in \mathbb{R}^3. Define $C = \text{aug}(A, \vec{b})$. Let matrix F be obtained from C by the following: (a) Swap rows 2 and 3; (b) Add -1 times row 3 to row 1; (c) Swap rows 1 and 2; (d) Multiply row 2 by -5. Write a matrix multiplication formula for F in terms of C and explicit elementary matrices.

5. (RREF method) Let a and b denote constants and consider the system of equations

$$
\begin{pmatrix}
1 & a+b & a \\
0 & 0 & a \\
1 & a+b & 2a
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
0 \\
a \\
a
\end{pmatrix}
$$

(1) Determine those values of a and b such that the system has a solution.
(2) For each of the values in (1), solve the system.
(3) For each of the solutions in (2), check the answer.