Quiz #4 Solutions

(1) Compute $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$. (3 points)

Possible solution:

\[
\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{vmatrix} = 0
\]

Possible solution:

\[
\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
\]

\[
= (45 - 48) - 2(36 - 42) + 3(32 - 35)
\]

\[
= -3 + 12 - 9 = 0
\]

Possible solution: The columns of the matrix are dependent since

\[
\begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} + \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix},
\]

so the matrix is not invertible and hence its determinant is 0.

(2) Let A and B be 5×5 matrices, with $\det A = -2$ and $\det B = 3$. Use properties of determinants to compute each of the following: (2 points)

Solution:

(a) $\det BA = (\det B)(\det A) = 3(-2) = -6$

(b) $\det 2A = 2^5 \det A = -2^6 = -64$
(3) Compute the area of the parallelogram whose vertices are \(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \end{bmatrix} \). (2 points)

Solution: Let \(S \) be the unit square with vertices \(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) and let \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear transformation defined by \(T(\bar{x}) = A\bar{x} \), where \(A = \begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix} \). Then \(T(S) \) is the parallelogram we are interested in and its area is given by

\[
\text{area of } T(S) = (\text{area of } S) |\det A| = 1 \cdot \left| \begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix} \right| = |8 - (-3)| = 11.
\]

(4) Bonus problem: Let \(a \) and \(b \) be positive numbers. Compute the area of the region in \(\mathbb{R}^2 \) bounded by the ellipse whose equation is

\[
\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1.
\]

(1 bonus point)

Solution: Let \(S \) be the region in \(\mathbb{R}^2 \) bounded by the unit circle, which has equation \(u_1^2 + u_2^2 = 1 \). Let \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear transformation defined by \(T(\bar{u}) = A\bar{u} \), where \(A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \). Then \(T(S) \) is the ellipse we are interested in. (To see this, note that the image of a vector \(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \) on the unit circle is the vector \(T\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right) = \begin{bmatrix} au_1 \\ bu_2 \end{bmatrix} \), which satisfies the equation for the ellipse:

\[
\frac{(au_1)^2}{a^2} + \frac{(bu_2)^2}{b^2} = u_1^2 + u_2^2 = 1.
\]

Thus \(T \) maps the unit circle to the ellipse. Since \(T \) is linear, \(T \) must map the interior of the unit circle to the interior of the ellipse.) Now by the area formula,

\[
\text{area of } T(S) = (\text{area of } S) |\det A| = \pi \cdot 1^2 \cdot \left| \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \right| = \pi ab.
\]