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NETWORK MODELING OF FLUID TRANSPORT THROUGH SEA
ICE WITH ENTRAINED EXOPOLYMERIC SUBSTANCES∗

KYLE R. STEFFEN† , YEKATERINA EPSHTEYN† , JINGYI ZHU† , MEGAN J. BOWLER† ,
JODY W. DEMING‡ , AND KENNETH M. GOLDEN†

Abstract. Sea ice hosts a rich ecosystem of flora and fauna, from microscale to macroscale.
Algae living in its porous brine microstructure, such as the diatom Melosira arctica, secrete gelatinous
exopolymeric substances (EPS) which are thought to protect these communities from their cold and
highly saline environment. Recent experimental work has shown significant changes in the structure
and properties of young sea ice with entrained Melosira EPS, such as increased brine volume fraction,
salt retention, pore tortuosity, and decreased fluid permeability. In particular, we find that the cross-
sectional areas of the brine inclusions are described by a bimodal–lognormal distribution, which
generalizes the classic lognormal distribution of Perovich and Gow. We propose a model for the
effective fluid permeability of young, EPS-laden sea ice, consisting of a random network of pipes
with cross-sectional areas chosen from this bimodal distribution. We consider an equilibrium model
posed on a square lattice, incorporating only the most basic features of the geometry and connectivity
of the brine microstructure, and find good agreement between our model and the observed drop in
fluid permeability. Our model formulation suggests future directions for experimental work, focused
on measuring the inclusion size distribution and fluid permeability of sea ice with entrained EPS as
functions of brine volume fraction. The drop in fluid permeability observed in experimental work
and predicted by the model is significant, and should be taken into account, for example, in physical
or ecological process models involving fluid or nutrient transport.
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1. Introduction. Sea ice that forms on the surface of high latitude oceans hosts
a rich ecosystem, from autotrophs (algae) and other microorganisms that dwell within
the ice, to small crustaceans that feed below it (e.g., krill), and the macrofauna that
forage from it (e.g., penguins or polar bears in the Southern or Northern hemispheres,
respectively). Indeed, the higher trophic levels of current polar ecosystems largely de-
pend on sea ice as a platform on which to live, forage, and reproduce [40]. The areal
extent and physical properties of sea ice also figure significantly in global climate
models [17]. The growth, structure, and properties of ice formed from seawater con-
taining the major ions (Na+, K+, Ca2+, Cl−, SO4

2−, CO3
2−) have been studied for

decades [30, 40, 43, 44]. On the macroscale, much of what is known comes from re-
mote sensing of sea ice via airborne platforms such as satellites, planes, and helicopters
[4, 5, 12, 15, 24], as well as expeditions into Earth’s sea ice packs [25, 26, 28, 29, 34]. On
the microscale, much has been learned from analysis of both natural sea ice [27, 30, 40]
as well as artificially grown sea ice, which is generally devoid of life and its organic
products [13, 18, 30, 40]. In broad strokes, we can say that sea ice is a porous medium
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exhibiting structure over many length scales, principally composed of a solid matrix
of pure ice, with inclusions of brine (including microorganisms and their exudates),
salt, air, and other impurities. Moreover, the microstructure of sea ice evolves with
time, as fluid flowing through the porous microstructure tends to modify inclusion
connectivity and channel structure.

The effect of algae or their cell-free organic matter on the growth, structure, and
properties of sea ice is not as well understood. Recent work of Krembs, Eicken, and
Deming [23] compared artificial sea ice grown from seawater containing exopolymeric
substances (EPS) with several controls, and observed that the artificial EPS-laden
ice had a more tortuous microstructure, larger brine volume fraction, greater salt
retention, and a net drop in fluid permeability. In sea ice, larger volume fractions and
larger salinities typically lead to larger fluid permeabilities. On the other hand, scaling
considerations for general porous media indicate that fluid permeability decreases
with the square of tortuosity [7]. As proposed in [23], one possible explanation for
the observed net drop in fluid permeability is that the observed increases in brine
volume fraction and salt retention were not enough to overcome the observed increase
in tortuosity.

Models of fluid flow through porous media, and fluid flow through sea ice, vary
widely in complexity. General studies (unrelated to sea ice) include Koplik [21], who
posed a network (pipe) model for linear Stokes flow in a regular periodic network; Ko-
plik, Lin, and Vermette [22], who applied the network model of [21] to porous media, in
particular Massillon sandstone; Torquato and Pham [42], who derived “void bounds”
on the fluid permeability of hierarchical porous media, including coated parallel, cir-
cular pipe geometries; and Hyman, Smolarkiewicz, and Winter [19], who numerically
integrated the Navier–Stokes equations in the pore space of a stochastically generated
porous medium, and studied the heterogeneities of flow. Studies specific to sea ice
include [11, 13, 14, 45] (the latter two to be described below).

Zhu et al. [45] posed and analyzed a model for fluid flow through sea ice consisting
of a random network of pipes, followed by small but important modifications in [13].
While the model is a two-dimensional pipe network based on a square lattice, and
assumes a given equilibrium state, the effective fluid permeability of the pipe network
agreed well with the data of Freitag [9] for the fluid permeability of artificially grown,
young sea ice.

In this work, we extend the two-dimensional model of [13, 45], based on the
findings in [23], to consider the effects of microscale biochemistry in young sea ice, in
particular the presence of algal exudates, on the larger scale fluid transport properties
of the ice. In the remainder of this introductory section, we summarize the original
random network (pipe) model of [13, 45], and recall the void bounds of [14, 42] for
fluid transport in sea ice; in section 2, we conclude the discussion of the original model,
including all the details such as parameter selection; in section 3, we develop our new
model and state the main results; and we conclude in section 4.

1.1. Random network model for fluid transport through sea ice. In this
section, we recall the random pipe network model of [45], including a synopsis of the
derivations of the linear system and the effective parameter k.

Consider a vertical slab of sea ice, with a given brine volume fraction φ ∈ [0, 1),
and given dimensions L×D × h m3, where D is the vertical depth, L the horizontal
span, and h the horizontal thickness. Note that h � D,L can be viewed as the
dimension of a cell in which a typical brine inclusion is contained. Moreover, note
that h is assumed to be related to D and L, which will be clarified in the following
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Fig. 1. From [45] (reprinted from the Annals of Glaciology with permission of the International
Glaciological Society): (a) a depiction of a random pipe network on a square lattice; and (b) a close-
up view of the (i, j)th node, and the adjoining circular pipes with randomly distributed radii.

paragraph. The random pipe network model is formulated as follows.
Consider a square lattice

(1) L = {(hi, hj) ∈ R2 : 0 ≤ i ≤ m, 0 ≤ j ≤ n},

where h = L/m = D/n for some given m,n ∈ Z. The parameter h can be viewed
as the size of a typical brine inclusion. We form a random pipe network from L by
connecting a given node (i, j) (shorthand for the node located at the point (hi, hj))
to its four nearest neighbors {(i ± 1, j), (i, j ± 1)} with fluid filled pipes, and choose
the cross-sectional area of each pipe from a random distribution A comparable to the
brine inclusions found in young sea ice. Next, induce an upward flow through the
network by a pressure drop pb − pt, where pb > pt are the pressures at the bottom
and top of the network, respectively; see Figure 1.

Denote Rvi,j and Rhi,j as the radii of the pipes connecting the nodes with indices
(i, j), (i, j+1) and (i, j), (i+1, j), respectively. (Similarly, denote Avi,j and Ahi,j as the
cross-sectional area of these pipes.) For each pipe of radius R, the fluid flow within
is assumed to be a classic Poiseuille flow, with flux Q given by

(2) Q = −πR
4

8µ
∇P,

where ∇P is the constant pressure gradient in the pipe, and µ is the fluid viscosity.
Let pi,j denote the pressure in the fluid at the (i, j)th node of the network; since the
pipe length h is small, in [45] the pressure gradient ∇P is approximated by a standard
finite difference:

(3) ∇P ≈ pi+1,j − pi,j
h

or ∇P ≈ pi,j+1 − pi,j
h

,

depending on whether the pipe is oriented horizontally or vertically. Assuming that
the fluid is incompressible, the fluxes Q converging on the (i, j)th node must sum
to zero; combining (2) and the approximation (3) leads to a linear equation for each
unknown pi,j :

(Rvi,j)
4(pi,j+1 − pi,j)− (Rvi,j−1)4(pi,j − pi,j−1)

+ (Rhi,j)
4(pi+1,j − pi,j)− (Rhi−1,j)

4(pi,j − pi−1,j) = 0.(4)
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We impose Dirichlet boundary conditions on the top and bottom: pi,n = pt and
pi,0 = pb, with pb, pt defining the pressure drop pb−pt > 0, as discussed previously in
this subsection, and periodic boundary conditions on the sides. To be more precise,
the (0, j)th and (m, j)th nodes are connected, with the consequence that the linear
equations for p0,j and pm,j (with j = 1, . . . , n − 1) vary from (4). For example, the
linear equation for p0,j instead becomes

(Rv0,j)
4(p0,j+1 − p0,j)− (Rv0,j−1)4(p0,j − p0,j−1)

+ (Rh0,j)
4(p1,j − p0,j)− (Rhm,j)

4(p0,j − pm,j) = 0.(5)

Let Qi,j be the flux through the vertical pipe between the (i, j)th and (i, j+ 1)th
nodes. In view of the upward flow through the random pipe network, Zhu et al. [45]
define the total flux Q as the sum of the fluxes through the topmost row of vertical
pipes in the network:

(6) Q =
m∑
i=0

Qi,n−1 = − π

8µ

m∑
i=0

(Rvi,n−1)4 pt − pi,n−1

h
.

On the other hand, when the network is viewed instead as a model of a porous medium,
the average velocity U depends linearly on the pressure drop (pt − pb)/D,

(7) U = −k
µ

pt − pb
D

,

where k is the effective fluid permeability in the vertical direction and µ is the fluid
viscosity. The usual definition of flux means that U and Q are linearly related by the
cross-sectional area through which the flow occurs,

(8) U =
Q

Lh
.

Substituting (6) and (7) into (8), and solving for k, leads to an equation for k de-
pending on the model parameters and the solution of the linear system of equations
(4):

(9) k =
πD

8Lh2

m∑
i=0

(Rvi,n−1)4 pt − pi,n−1

pt − pb
.

Indeed, (9) is the effective permeability of the network, and is the key quantity of
interest in the model of [45] for the effective fluid permeability of young sea ice.

1.2. Void bounds for fluid transport in sea ice. In this section, we discuss
rigorous bounds for the fluid permeability of sea ice, derived in [14, 42], as the basis
for our new bounds in the case of a bimodal inclusion size distribution. In order to do
so, we first consider the formulation and definition of the effective fluid permeability
tensor k of a random porous medium. Then we will define the trapping constant γ,
since there is a rigorous bound on the effective permeability in terms of this related,
homogenized parameter which also characterizes the random porous medium. We will
also compute exactly the trapping constant for a parallel, circular cylinder geometry,
which is relevant to our bounds. In our formulation we will emphasize the multiscale
nature of the homogenization problem that one faces in this geophysical context of
fluid transport through sea ice.
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We are interested in sea ice as a porous medium for a given temperature T and
salinity S, which determine the brine volume fraction φ [30, 40, 43, 44]. Within a given
vertical depth range in a sea ice sheet, perhaps up to tens of centimeters or so, the
microstructural characteristics can be quite uniform over many meters horizontally.
In such layers the porous brine microstructure is statistically homogeneous. However,
we are also interested in how the bulk properties of the ice vary with depth, where
variations in temperature and salinity, as well as possibly ice type and age, affect brine
microstructural features and transport properties. We think of the submillimeter scale
set by the porous microstructure of the ice as the “fast” scale, and the much larger
scale variations in the temperature and salinity, and thus in the bulk properties, on
the order of tens of centimeters to meters, as the “slow” scale.

Consider a random porous medium occupying a region V ⊂ Rd of volume V = |V|,
partitioned into two subdomains: the void phase V1 ⊂ V, and solid phase V2 ⊂ V.
We will be interested in the infinite volume limit. Let (Ω, P ) be a probability space
characterizing the pore microstructure, where Ω is the set of realizations ω of the
random medium and P is a probability measure on Ω. For any realization ω ∈ Ω, let
χ(x, ω) be the characteristic or indicator function of the void or brine phase V1,

(10) χ(x, ω) =
{

1, x ∈ V1 ,
0, x ∈ V2 .

We first assume that χ(x, ω) is a stationary random field such that P has transla-
tion invariant statistics, corresponding to the infinite medium in all of Rd. Then
the medium is statistically homogeneous, and satisfies an ergodic hypothesis, where
ensemble averaging over realizations ω ∈ Ω is equivalent to an infinite volume limit
V → ∞ of an integral average over V ⊂ R3, denoted by 〈·〉 [41]. This and related
limits have been shown to exist and to be equal to the ensemble average in some
situations, thus establishing the ergodic hypothesis [10, 16].

For many porous media [14, 41], there is typically a characteristic, microscopic
length scale ` associated with the medium, such as the “typical” size of the brine
inclusions in sea ice. For example, the scale over which the two point correlation
function for the void phase varies is a good measure of this length. It is small compared
to a typical macroscopic length scale L, where by L here we mean sample size or
thickness of a statistically homogeneous layer, on the order of 3

√
V in three dimensions.

Then the parameter ε = `/L is small, and one is interested in obtaining the effective
fluid transport behavior in the limit as ε→ 0. To obtain such information, the method
of two-scale homogenization or two-scale convergence [1, 2, 16, 20, 36, 37, 39, 41] has
been developed in various forms, based on the identification of two scales: a slow scale
x and a fast scale y = x/ε.

The velocity and pressure fields in the pore space, uε(x) and pε(x), for x ∈ V1, are
assumed to depend on these two scales x and y. The idea is to average, or homogenize
over the fast microstructural scale y, leading to a simpler equation in the slow variable
x describing the overall behavior of the flow, namely, Darcy’s law. Variations of
average microstructural properties on the slower x scale can then be incorporated
through dependence of the effective permeability tensor on x. For example, the bulk
properties of sea ice in situ typically vary with depth, particularly when there is a
large temperature gradient between the top and bottom of the sea ice layer.

The slow (creeping) flow of a viscous fluid with velocity field uε(x) and pressure
field pε(x) in the void phase V1 is governed by the Stokes equations,

(11) ∇pε = µ∆uε, x ∈ V1, ∇ · uε = 0, x ∈ V1, uε(x) = 0, x ∈ ∂V1.
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A force acting on the medium such as gravity can be incorporated into pε. From
left to right in (11), we have the steady state fluid momentum equation in the zero
Reynolds number limit, the incompressibility condition, and the no-slip boundary
condition on the pore surface. The macroscopic equations can be derived through a
two-scale expansion [1, 2, 16, 20, 36, 37, 39, 41]

(12) uε(x) = ε2u0(x,y) + ε3u1(x,y) + · · · ,

(13) pε(x) = p0(x,y) + εp1(x,y) + · · · .

Note that the leading term in the velocity expansion is O(ε2), while the leading
term in the pressure expansion is O(1). This physical effect was handled in [1, 2]
analytically by scaling the viscosity of the fluid by O(ε2), which balances the friction
of the fluid from the no-slip boundary condition on the solid boundaries of the pores.
Substitution of the two-scale expansion into the Stokes equations yields systems of
equations involving both x and y derivatives.

The leading order system is analyzed by considering a second order tensor velocity
field w(y) and a vector pressure field π(y) [41], both varying on the fast scale, which
satisfy

(14) ∆w = ∇π − I, y ∈ V1, ∇ · w = 0, y ∈ V1, w = 0, y ∈ ∂V1,

where I is the identity matrix, and both w and π are extended to all of V by taking their
values in the solid phase V2 (ice) to be 0. In these equations, the (i, j)th component
of w is the jth component of the velocity due to a unit pressure gradient in the ith
direction, and πj is the jth component of the associated scaled pressure. By averaging
the leading order term of the velocity u0 over y, we obtain the macroscopic equations
governing the flow through the porous medium,

(15) u(x) = − 1
µ

k · ∇p(x), x ∈ V,

(16) ∇ · u = 0, x ∈ V,

where p(x) = p0(x) and

(17) k = 〈w〉

is the effective fluid permeability tensor. Equation (15) is known as Darcy’s law, and
(16) is the macroscopic incompressibility condition. These macroscopic equations
were obtained in [1, 2] for periodic media through an appropriate limit as ε→ 0. We
shall be interested in the permeability in the vertical direction k := kzz, in units of
m2.

We now consider the steady-state trapping problem with perfectly absorbing traps
[14, 41, 42], where diffusion of a passive tracer occurs in V1 and trapping occurs on
the surface of the solid phase V2 (or the boundary of the pore space ∂V1). The tracer
concentration field c(x) is governed by

(18) D∆c(x) = −G, x ∈ V1, c = 0, x ∈ ∂V1,

with diffusion coefficient D and generation rate per unit trap-free volume G. For
an ergodic medium, two-scale homogenization [1, 41] shows that γ obeys the first
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order rate equation G = γDC, with average concentration C = 〈c(x)〉, and trapping
constant defined via

(19) γ−1 = 〈u〉 = lim
V→∞

(
1
V

∫
V
u(x)dx

)
,

with volume V = |V|, and scaled concentration field c(x) = D−1Gu(x) solving

(20) ∆u(x) = −1, x ∈ V1, u(x) = 0, x ∈ ∂V1.

For dimensions d = 2, 3, γ−1 has units of length squared. A key result that we use is
a bound on the permeability in terms of the trapping constant, as in Theorem 23.5
of [41],

(21) k ≤ γ−1I,

in the sense that γ−1I − k is always a positive semidefinite matrix, with equality in
the case of transport through parallel channels of constant cross-section.

Consider now the case of parallel circular cylinders, with radii given by a random
distribution RI , and define the nth moment as

(22) 〈RnI 〉 =
1
ρ

∞∑
k=1

ρkR
n
Ik
,

where ρk is the number density of the kth size RIk , and ρ the characteristic density.
Recall now that γ is defined in terms of (19) and (20). For a given cylinder with
radius ri, the solution of (20) is

(23) u(r) =
1
4

(r2
i − r2).

Given the symmetry in the direction along the axis of each cylinder, we reduce to a
two-dimensional model by restricting our focus to a “slice” (plane), perpendicular to
each axis. Then (19) becomes a two-dimensional integral, where V has units of length
squared. Substituting (23) into (19) yields

γ−1 = lim
V→∞

(
1
V

∞∑
i=1

∫ 2π

0

∫ ri

0

1
4

(r2
i − r2)rdrdθ

)

= lim
V→∞

(
1
V

∞∑
i=1

πr4
i

8

)
,(24)

where the sum is over all the cylindrical inclusions in the void space V1, indexed by
i ∈ N. In the infinite volume limit, (24) can be expressed in a form similar to (22) as
a sum over k, involving the number density ρk:

(25) γ−1 =
π

8

∞∑
k=1

ρkR
4
Ik
.

The volume fraction of the inclusions we are considering can be defined as φ =
ρ πd/2

Γ(1+d/2) 〈R
d
I 〉 [32], where Γ(z) =

∫∞
0 tz−1e−tdt is the gamma function. Here we

consider d = 2, in which case the volume fraction is given by

(26) φ = ρπ〈R2
I〉.

D
ow

nl
oa

de
d 

01
/2

1/
18

 to
 1

55
.1

01
.9

6.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FLUID FLOW IN SEA ICE WITH EXOPOLYMERIC SUBSTANCES 113

Solving for π in (26), and substituting into (25) yields

(27) γ−1 =
φ

8〈R2
I〉

1
ρ

∞∑
k=1

ρkR
4
Ik

=
φ〈R4

I〉
8〈R2

I〉
.

Equation (27) defines the effective trapping constant γ for the special case of
diffusion occurring in parallel, circular cylinders. Recalling the discussion surrounding
(21), in this special case we have

(28) k =
φ〈R4

I〉
8〈R2

I〉
I.

Moreover, because k ≤ γ−1I in general geometries, the upper bound

(29) k ≤ φ〈R4
I〉

8〈R2
I〉

I

applies for general random porous media, from which it is straightforward to recover
the void upper bound stated in [14, 42].

2. Previous results. In this section we recall the previous results of [13, 45].

2.1. Choice of random distribution. A random distribution which governs
the choices of the radii Rhi,j , R

v
i,j of each pipe in the network is still required (al-

ternatively, the cross-sectional areas Ahi,j , A
v
i,j of each pipe). In [27], the observed

distribution for the cross-sectional area of brine inclusions in young sea ice (among
other ice types) was best fit by a lognormal distribution, i.e.,

(30) A = eX , fX(x;µ, σ2) =
1√

2σ2π
e−

(x−µ)2

2σ2 .

Recall that, for a lognormal random variable A, we have

(31) E[A] = eµ+σ2
2 and Var[A] = (eσ

2
− 1)e2µ+σ2

.

In [14] it was found that the function

(32) a(φ) = π(7× 10−5 + 1.6× 10−4φ)2 m2

approximated the dependence of the mean cross-sectional areas on φ observed by [27].
Indeed, in [45], the cross-sectional areas of each pipe are lognormally distributed,

with expectation given by (32),

(33) E[A] = a(φ).

A short calculation, after substituting (31) and (32) into (33), yields

(34) µ+
σ2

2
= ln a(φ).

The parameter model considered in [45] for the lognormal random variable A is then
as follows: let σ be a free parameter, and let µ = ln a(φ)− σ2

2 .
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2.2. Upper bound on the fluid permeability. As discussed in subsection 1.1
for random porous media, the upper bound on the effective permeability tensor k is
given by the inverse of the trapping constant γ−1, in the case of parallel cylinders of
random radii.

In the random pipe network model, we are interested in the effective permeability
in the vertical direction, denoted as in subsection 1.2 by k := kzz. As a discrete model
for the general random medium considered in (29), we will use the general bound

(35) k ≤ γ−1 =
φ〈R4

I〉
8〈R2

I〉

for the network model vertical permeability. Recall that (35) was derived in the
context of circular, parallel cylinders, in which case we can reformulate (35) as

(36) k ≤ φ〈A2
I〉

8π〈AI〉
.

For the random pipe network model of [45], we have a specific random distribution
in mind—the lognormal distribution. Recalling (30), the nth moment of a lognormal
random variable A with parameters (µ, σ2) is given by

〈An〉 = E[An] = E[exp(nX)]

=
∫ ∞
−∞

enx(2πσ2)−1/2 exp[−(x− µ)2/(2σ2)]dx

=
∫ ∞
−∞

(2πσ2)−1/2 exp[nx− (x− µ)2/(2σ2)]dx.(37)

Some algebra yields

(38) nx− (x− µ)2

2σ2 = −
(
x− (µ+ nσ2)

)2
2σ2 +

n(2µ+ nσ2)
2

.

Let µ′ = µ+ nσ2; then combining (37) and (38) yields

〈An〉 =
∫ ∞
−∞

(2πσ2)−1/2 exp

[
− (x− µ′)2

2σ2

]
exp

[
n(2µ+ nσ2)

2

]
dx

= exp
[
n(2µ+ nσ2)

2

] ∫ ∞
−∞

(2πσ2)−1/2 exp

[
− (x− µ′)2

2σ2

]
dx︸ ︷︷ ︸

=1

= exp
[
n(2µ+ nσ2)

2

]
.(39)

Based on (36), we need to compute 〈An〉 for n = 1, 2. For n = 1, 〈A〉 = E[A] is given
in (33),

(40) 〈A〉 = a(φ),

while for n = 2,

〈A2〉 = exp
[
2µ+ 2σ2] = exp

[
2µ+ σ2] eσ2

=
(

exp
[
µ+

σ2

2

])2

eσ
2

= (a(φ))2eσ
2
.(41)

D
ow

nl
oa

de
d 

01
/2

1/
18

 to
 1

55
.1

01
.9

6.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FLUID FLOW IN SEA ICE WITH EXOPOLYMERIC SUBSTANCES 115

Thus, combining (40) and (41) with (36) yields

(42) k(φ) ≤ φ

8π
a(φ)eσ

2
,

which is precisely the upper bound stated in [13, 45].

2.3. Numerical results. Two figures of [13, 45], showing the key results of the
original random pipe network model, are reconstructed in Figure 2. Note that the
second of the two figures, Figure 2(b), shows the results of a slight modification of
the model, to be described in this subsection.

Indeed, while the results of the original model, shown in Figure 2(a), agree well
with the laboratory data of [9] for large φ, they disagree with the lab data for small φ
by more than an order of magnitude. Note that the logarithm of the lab data decreases
somewhat linearly for large φ, and drops precipitously as φ→ 0.05+. Physically, this
precipitous drop can be understood in terms of the “Rule of Fives” [11], whereby
columnar sea ice undergoes a temperature-driven transition from an impermeable
porous medium to one where the pores have connected to form channels through
which fluid can flow at around φ = 0.05 (when temperature T = −5oC and bulk
salinity S = 5 ppt). Keeping in mind the Rule of Fives, the random pipe network
formulation, and the discrepancy between the numerical results and the data shown
in Figure 2(a), leads one to the conclusion that a means by which the network can
become largely disconnected as φ→ 0.05+ must be introduced.

In [13], two additional parameters were introduced to allow for the requisite dis-
connection to occur: we will refer to these as “disconnection probabilities,” and denote
them as ph ∈ [0, 1], the probability that a horizontal pipe will be “broken” (removed),
and pv ∈ [0, 1], the probability that a vertical pipe will be broken. Conceptually,
nonzero (ph, pv) will cause the random pipe network to have “gaps” through which
fluid cannot flow. In terms of the model discussed in subsection 1.1, this impedance
of flow is achieved by drawing a sample of random numbers Uhi,j and Uvi,j from a
uniform random variable U = unif(0, 1), with i, j = 0, 1, . . . , N + 1, and then setting
Rαi,j = 0 if Uαi,j < pα for α = h, v. The choice of (ph, pv) in [13] varied with volume
fraction φ, so that the network was largely disconnected as φ→ 0.05+, with the result
reconstructed in Figure 2(b) showing excellent agreement with the laboratory data of
[9].

Although the random pipe network model summarized herein is two-dimensional
and reflects only the basic features of sea ice microstructure, the results [13, 45] of
numerical simulations, reconstructed in Figure 2, lie well within void bounds and
agree with laboratory data, particularly with the disconnection probabilities ph and
pv.

3. Random pipe model for sea ice with entrained EPS. Consider now
a model for the effective permeability k of a vertical slab of sea ice with entrained
EPS (e.g., due to the presence of algae). As in subsections 1.2, 2.1, and 2.3, we
regard our random network as a simplified model of the pore space of a statistically
homogeneous vertical slab of ice (in equilibrium), and are interested in the vertical
effective permeability of the network, as a model for the vertical effective permeability
of the ice.

Recall from section 1, however, that there are key differences between young sea
ice with and without entrained EPS, as observed in [23]: increased tortuosity, in-
creased volume fraction, increased salt retention, and a net drop in fluid permeability.
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(a) Reconstruction of Fig. 2 from [45].
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(b) Reconstruction of Fig. 4(b) from [13].

Fig. 2. Previous results (see subsection 2.3): Plots of k (in m2) versus φ, in (b) with and in
(a) without effects of percolation, respectively. Note that N = 1024, pb = 1, pt = 0, h =

√
2a(φ)/φ,

and L = D = hN (for details, see [45]). As shown in (a), simulations with σ = 0.5 and σ = 1.0 are
both considered, while in (b) σ = 1.0. Note that the laboratory data of [9] and axes in both figures
are identical.

In the context of our random pipe model, some of these key differences are well re-
flected, while others are not. Although increased geometric complexity of individual
pores is not represented (due to the choice of circular pipes), we expect that the
new choice of random distribution (44)—which permits a wider range of pipe sizes—
contributes to the modeling of increased tortuosity. Furthermore, we will consider
similar volume fractions as in [45], in order to compare with the results of the orig-
inal model. Moreover, since we consider an equilibrium model, we do not take into
account salinity or temperature. Lastly, the effective permeability is the variable to
be modeled, and so the observed net drop is not presumed to be known a priori.

Expanding on this last point (the drop in effective permeability), while specific
data for fluid permeability were not presented in [23], the text made clear that the
decrease in fluid permeability was by at most an order of magnitude.

It will be useful going forward to discuss (1) the data of [23] and (2) our data
processing and assumptions.

1. From [23], the data were collected as follows: (i) the diatom Melosira arctica
var. krembsii was isolated from the bottom of sea ice in the Chukchi Sea
near Barrow, Alaska; (ii) cells were cultured and reached significant biomass
and EPS production; (iii) artifical sea ice was grown in 13–L tanks at −10◦C
from saline solution containing Melosira EPS; and (iv) photomicrographic
measurements of n = 234 brine inclusions from the artificially grown sea
ice were conducted at −10◦C, in particular measurements of pore perimeter
versus maximum inclusion length under high magnification.

2. In order to use the data of [23] in our random pipe network (to be discussed
shortly, following this list), we need to assume that the brine cross-sections
are circular, and calculate the area of the assumed circular cross-sections from
their measured perimeters, via A = P 2/(4π). The validity of this assumption
is unfortunately questionable, but is an artifact of the model used. Indeed, in
[23] it is observed that the pore space in artificial sea ice grown with Melosira
EPS is more geometrically complex than in controls (artificial and natural sea
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–10 5

0

0.05

0.1

0.15

ln A

–5 0

Fig. 3. Bimodal-lognormal distribution for the cross sectional areas of the brine inclusions
in EPS-laden sea ice, using data from [23]. The histogram of log(A) for observed values of cross-
sectional area A of young sea ice with entrained EPS (scaled with the sum of box areas equal to
unity) is shown in gray. Superimposed are the best fit probability density functions (PDF), with the
normal PDF (dashed, in blue) corresponding to the classical lognormal distribution in [27], and the
new bimodal PDF (solid, in red). (Figure is in color online.)

ice grown without Melosira EPS), i.e., not circular. Nonetheless, we proceed
with the calculation as these are the only data available, and acknowledge
as important future work the need to (i) better quantify the geometrical
complexity experimentally, and (ii) better model this complexity.

With these details clarified, let us now discuss our new model. From a modeling
perspective, the components are largely the same as described in subsection 1.1 and
section 2. We consider a vertical slab of young sea ice (with entrained EPS) at
a given equilibrium state, and model the pore space of the ice as a square lattice
(1) with circular pipes (cf. Figure 1) connecting a given node (i, j) to its nearest
neighbors {(i ± 1, j), (i, j ± 1)}. Assuming classic Poiseuille flow, approximation by
finite differences, and incompressibility, we derive the linear system (4). Defining
the total flux, average velocity, and their linear relationship (6)–(8), and solving for
k leads to the definition for the effective permeability (9) of the network. These
components constitute our model for the effective permeability of a vertical slab of
young sea ice with entrained EPS. At this point, however, we must consider the choice
of cross-sectional area distribution and parameters.

It was observed in [27] that a lognormal distribution (30) models well the observed
data on brine inclusion cross-sectional area A in young sea ice. In the case of young sea
ice with entrained EPS, we consider the data of [23], transformed into measurements of
area via A = P 2/(4π); see the histogram in Figure 3. Indeed, based on the histogram,
we hypothesized that a more accurate model for logA might be given by a bimodal
rather than a unimodal distribution.

There are several statistical measures of bimodality. Freeman and Dale [8] investi-
gated three different measures, and found utility in the “Bimodality Coefficient” (BC)
[38]. The BC does not assume a specific underlying distribution, and is based on an
empirical relationship between bimodality and the centered third and fourth moments
(skewness and excess kurtosis, respectively) of a distribution [8]. The computation of
the BC is straightforward [31], requiring only the sample size n, the skewness m3 of
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the observed distribution, and its excess kurtosis m4:

(43) BC =
m2

3 + 1

m4 + 3(n−1)2
(n−2)(n−3)

.

The BC is between 0 and 1; values larger than 5/9 ≈ 0.555 suggest bimodality, while
values smaller than 5/9 suggest unimodality. For the data set in [23], with sample
size n = 234, we find that BC ≈ 0.61, which does indeed suggest bimodality of the
underlying distribution.

With BC ≈ 0.61 in (43) supporting the hypothesis of a bimodal distribution,
we now postulate the precise form for a model of the distribution of the pipe cross-
sectional areas. A natural generalization of the classical lognormal distribution (30),
which can incorporate bimodality given certain parameters, involves a mixture of two
normal distributions:

(44) A = eY , fY (x;µ1, µ2, σ
2
1 , σ

2
2) = pfX(x;µ1, σ

2
1) + (1− p)fX(x;µ2, σ

2
2).

Indeed, computing a maximum-likelihood estimate for the parameters of (44), applied
to the transformed data of [23], yields

(45) (p, µ1, µ2, σ1, σ2) = (0.48,−6.56, 0.02, 1.30, 2.30).

In Figure 3, we have plotted the graph of fY in (44) with the parameters in (45), clearly
showing the bimodality of the probability density function fY . (Quantitatively, we
can also apply the modality theorem of [35] to show bimodality.)

While this new bimodal–lognormal distribution (44) gives a good approximation
between our random pipe model and existing experimental data (discussed shortly,
in subsection 3.2), it might be possible to suggest a more accurate approximation if
additional data will become available.

3.1. Upper bound on fluid permeability in EPS-laden sea ice. In this
subsection, we explicitly calculate the new void bound (36) (cf. (42)), i.e., the upper
bound on fluid permeability k for our new model using the bimodal–lognormal dis-
tribution (44). Indeed, the moments of A = eY can be computed explicitly. The first
step is to observe that

(46) 〈An〉 = E[An] = E[exp(nY )] =
∫ ∞
−∞

eny
2∑
i=1

wif(y;µi, σ2
i )dy,

where w1 = p, w2 = 1 − p, and f(y;µ, σ2) = (2πσ2)−1/2 exp[−(y − µ)2/(2σ2)]. The
remainder of the calculation follows subsection 2.2, (37)–(41):

(47) 〈An〉 = p exp
[
n(2µ1 + nσ2

1)
2

]
+ (1− p) exp

[
n(2µ2 + nσ2

2)
2

]
.

Then, combining (36) and (47) with n = 1, 2 yields

(48) k ≤
φ
(
p exp

[
2µ1 + 2σ2

1
]

+ (1− p) exp
[
2µ2 + 2σ2

2
])

8π
(
p exp

[
2µ1+σ2

1
2

]
+ (1− p) exp

[
2µ2+σ2

2
2

]) .

Including the parameters discussed in subsection 3.2 simplifies (48) considerably (see
(51)) .
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Table 1
The choice of parameters (ph, pv) used in new simulations (Figure 4), to model the percolation

transition [11] as φ → 0.05+, similar to [13].

φ ph pv φ ph pv

0.05 0.45 0.375 0.15 0 0

0.075 0.35 0.3 0.175 0 0

0.10 0.25 0.2 0.20 0 0

0.125 0.15 0.1 0.225 0 0

3.2. Numerical results. We now discuss parameter selection, the simplified
form of the void upper bound, numerical simulations of the new random pipe network
model, and computational considerations.

Recalling from section 3 (Figure 3 and (44) and (45)), the data of [23] were
measured from photomicrographs of n = 234 brine inclusions at −10◦C. The data
therefore give a quantitative understanding of the brine inclusions in one sample of sea
ice with entrained EPS, at some given brine volume fraction 0 < φ < 1. In order to
compare and contrast with the previous results [13] and data [9], however, we wish to
have a series of samples, with varying brine volume fraction φ, in particular φ→ 0.05+.
In the absence of conclusive data to make mathematical modeling decisions with
regard to the parameters, we proceed as follows.

As before (subsections 2.1 and 2.3), we require E[A] = a(φ), where a(φ) is given
by (32), but A is given by the new bimodal distribution (44). As φ varies, we suppose
that ε = µ2−µ1

2 is fixed. Additionally, we let σ = σ1 = σ2 be a free parameter, let
µ1 = ln a(φ)− σ2

2 − ε, and let µ2 = ln a(φ)− σ2

2 + ε. In summary, we have

(49)
ε = µ2−µ1

2 , σ = σ1 = σ2 is a free parameter,
µ1 = ln a(φ)− σ2

2 − ε, µ2 = ln a(φ)− σ2

2 + ε.

Given the parameters (49), and the requirement that E[A] = a(φ), a straightfor-
ward but tedious calculation begins by substituting (49) into (47) (with n = 1), and
concludes with the realization that p is, in fact, a dependent parameter,

(50) p(ε) =
1

1 + e−ε
.

We also incorporate the disconnection probabilities (ph, pv), which are chosen as in
[13], so that the network is largely disconnected as φ → 0.05+. The specific param-
eters used are given in Table 1. To both reiterate and expand on the discussion of
(ph, pv) from subsection 2.3, our choices for ph and pv (i) act as a model of the per-
colation transition [11] observed in sea ice (the aforementioned Rule of Fives), (ii)
were observed as necessary in [13], and (iii) are similar to (but not the same as) the
parameters used in [13].

With the choice of parameters as in (49) and (50), (48) reduces to

(51) k(φ) ≤ (2 cosh ε− 1)
φ

8π
a(φ)eσ

2
.

Assuming µ2 ≥ µ1, then ε ≥ 0. When ε = 0, the separation µ2 − µ1 = 0, and the
underlying probability distribution is the classical lognormal distribution, as in the
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Fig. 4. Model results for young sea ice with entrained EPS: Plot of k (in m2) versus φ, with
nonzero disconnection probabilities (ph, pv) for φ < 0.15 (Table 1), modeling the percolation transi-
tion [11] as φ → 0.05+. Parameters: m = n = 1024, σ2 = 1. The solid-starred line represents the
numerical results, computed for the volume fractions φ = 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225;
the solid line represents the upper bound (51) with ε = 1.6; while the lab data [9] is for young sea
ice without EPS.

original model [45] (subsections 1.1, 2.1, and 2.3). In this case, (51) reduces to (42),
reinforcing that our model is an extension of the existing model.

As discussed at the start of section 3, the observed drop in fluid permeability [23]
of young sea ice with entrained EPS versus EPS-free ice was by at most an order of
magnitude. When we choose ε = 3.3, as suggested by (45) and (49), we see too severe
a drop in k—by three orders of magnitude instead of one. Choosing instead ε = 1.6,
we see by comparing Figure 2(b) and Figure 4 that the drop in fluid permeability
is in much better agreement, with only a slight overestimate when φ < 0.15. The
severe drop by the natural choice of ε = 3.3 may be due to a lack of precision in the
original data, the lack of geometric information in the data, or the lack of geometric
complexity in the model, while the slight overestimate when ε = 1.6 and φ < 0.15
may be due to the choices for (ph, pv)—which were not quite the same as the original
numerical simulations reconstructed in Figure 2(b) (see Table 1).

Considering now the new, rigorous upper bound (51), when ε > 0 we have
2 cosh ε − 1 > 1, so the upper bound (51) is similar to (42), up to a multiplica-
tive constant C > 1. With the choice of ε = 1.6 as discussed above, C = 2 cosh ε−1 ≈
4.15, which means that our void bound for the new bimodal–lognormal distribution
is approximately four times larger than the void bound for the original lognormal
distribution—opposite the previously observed and now numerically simulated drop
in fluid permeability k. Ideally, we would have a somewhat tight (if not optimal)
upper bound, which suggests the need for additional analysis.

Recalling the discussion in the text surrounding (21) and (28), (51) becomes
an equality in a parallel-cylinder geometry—in this sense, it is an anisotropic upper
bound. Indeed, in the parallel-cylinder geometry, fluid will easily flow through large
pipes, which are made more readily available by the new bimodal–lognormal distri-
bution (cf. Figure 3). On the other hand, the numerical simulations summarized in
Figure 4 involve a random, isotropic pipe network, in which the fluid does not flow in
a preferred direction. This disagreement—between an anisotropic, parallel-cylinder
geometry, and an isotropic pipe network—explains the apparent disparity between
the rigorous upper bound (51) and numerical simulations.
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While this type of anisotropic upper bound is sensible for fluid flow in classical,
columnar sea ice (as summarized in subsection 2.2) due to the anistropic geometry
of its microstructure, the geometry of ice with entrained EPS that we have seen is
typically more isotropic. We therefore expect that an isotropic bound, as in [3],
may be more relevant, and in particular may reduce the apparent disparity between
numerical simulations and upper bounds. While the analysis of isotropic bounds is
beyond the scope of the present work, this is an exciting future direction that we are
currently pursuing.

When the linear system (4) and (5) is constructed using the original, classical
lognormal distribution for the underlying coefficients (as in subsections 1.1, 2.1, and
2.3), and N = 1024, the solution time for the iterative multigrid solver of [45] (im-
plemented in Fortran) increases rapidly with σ > 1. Increasing σ from 1.0 to 1.5, for
example, increases the required number of iterations and thus the required time by
several orders of magnitude. Similar timing increases arise when the classical lognor-
mal distribution is replaced with the new bimodal–lognormal distribution. The issue
is magnified by the choice of (ph, pv) for φ < 0.15, which causes the underlying matrix
to become indefinite.

These convergence issues and increases in computing times are perhaps not wholly
unexpected, given the corresponding increase in variance, and thus the increasingly
rough (random) coefficients involved. In lieu of augmenting the existing multigrid
solver of [45] to better handle the real, symmetric, possibly indefinite linear system
(4) and (5) with rough coefficients, we have instead designed a MATLAB implemen-
tation using built-in direct solvers—in particular a Cholesky solver when the matrix is
positive definite, and the MA57 routine [6] when the matrix is numerically indefinite—
for which convergence is not an issue.

To illustrate the increase in variance more clearly, we show in Table 2 the means
and variances of the random lognormal or bimodal–lognormal distributions (denoted
Aorig and Anew) used in the original and the new random pipe network models, re-
spectively. Recall that E[Aorig] = E[Anew] = a(φ) (32), by assumption. The variances
Var[Aorig] and Var[Anew], however, are not equal. Indeed, Table 2 shows that for all
four values of φ we have Var[Anew] > Var[Aorig], by around an order of magnitude.
Indeed, in either case (the original or the new model), the effect of increasing the
parameter φ is to increase the value of a(φ) and thus µ (for the original model) or
(µ1, µ2) (for the new model). In the new model, however, the density function fY
(44) has two peaks, each approximately the same width, and separated by a distance
2ε. Thus the increase in variance is expected.

Continuing, we can consider now how the model informs our understanding of
the actual physical systems involved. Indeed, the graph of the bimodal–lognormal
distribution in Figure 3 suggests that this drop in fluid permeability is not unexpected.
Indeed, this drop should be evident from the dominance of the left bump centered
on very small inclusions with cross-sections an order of magnitude smaller than, say,
the mean of the classical lognormal distribution, leading to a higher probability of
these constrictive pathways, and lowering the effective fluid transport properties of
the porous medium.

4. Conclusions. While the effective fluid permeability of sea ice is a critical
parameter affecting the properties of sea ice, and thus affecting polar ecosystems and
global climate models, the effects of biogeochemistry on this parameter are not yet
well understood. The random pipe network model presented herein is a mathematical
model for the effective fluid permeability of young sea ice with entrained EPS, under
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Table 2
The means and variances (Var[Aorig] and Var[Anew]) of the underlying random lognormal and

bimodal–lognormal distributions used in the original and the new model, respectively, given the free
parameter σ = 1.0. Recall that E[Aorig] = E[Anew] = a(φ), by assumption.

φ a(φ) Var[Aorig] Var[Anew]

0.05 0.0191 0.000628 0.00376

0.10 0.0232 0.000928 0.00556

0.15 0.0278 0.00132 0.00793

0.20 0.0327 0.00184 0.0110

the simplifying assumption that the given slab of sea ice is at equilibrium. As far as we
are aware, this paper presents the first work to consider a two-dimensional model of
the effects of microscale biochemistry, and particularly the presence of algal exudates,
on the larger scale physical properties of sea ice. We find good agreement between
observations [23] and our numerical simulations, analyze this result, and discuss room
for improvement in the observational data, modeling, and parameter selection.

Future work is needed to understand the effects of biology and chemistry on the
properties of the sea ice. Indeed, direct improvements to this model could be achieved
by studying data related to (1) observations of the average cross-sectional area of
brine inclusions in young, EPS-laden sea ice, as a function of φ; and (2) observations
of the fluid permeability of this type of ice, as a function of φ. We expect that an
improved (tighter) upper bound might be found by considering an isotropic upper
bound, as in [3], and are investigating this further. Formulating and analyzing a
discrete, nonequilibrium, random pipe network model for fluid permeability of young
sea ice represents an exciting new direction, which would require judicious modeling
of salinity, temperature, phase change, and connectivity. A possible application of
considerable importance to large-scale studies of sea ice would be to mathematically
model percolation blockage in young sea ice, as studied in [33]. This type of modeling
could help to explain why the presence of EPS in sea ice extends the lifetime of the
ice [23].
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