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Abstract. We consider wave propagation in random cell materials when the wavelength is finite, so that
scattering effects must be taken into account. An effective dielectric coefficient is introduced, which in general
is a spatially dependent function, yet reduces, under the infinite wavelength assumptions, to the constant
effective parameter in the quasistatic limit. We present an upper bound on the effective permittivity and
a bound on its spatial variations that depends on the maximum volume of the inhomogeneities and the contrast
of the medium. Numerical experiments illustrate the rigorous results.
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1. Background. Usually, when one considers the propagation of an electromag-
netic wave in a randommedium, two parameters are of importance. The first, δ ∕ λ, is the
ratio of the length scales of the typical inhomogeneities in the medium to the wavelength
of the electromagnetic wave probing the medium. The second is the contrast of the
medium. Considerable effort over many decades has been applied to building effective
medium theories that are applicable to wave propagation when the wavelengths asso-
ciated with the fields are much larger than the microstructural scale. This limit where
the ratio δ ∕ λ goes to zero is called the quasistatic or infinite wavelength limit. In this
case the heterogeneous material is replaced by a homogeneous, fictitious medium whose
macroscopic characteristics are good approximations of the initial ones. The solutions of
a boundary value partial differential equation describing the propagation of waves con-
verge to the solution of a limit boundary value problem, which is explicitly described
when the size of the heterogeneities goes to zero. Similarly, in the limit when the contrast
goes to zero, convergence of the solution to the solution of a constant coefficient partial
differential equation is obtained.

The problem of finding bounds on the effective properties of materials in the quasi-
static limit has been investigated vigorously, and there have been significant advances
not only in deriving optimal bounds, but also in describing the materials that attain
these bounds. See [13] and the references within. Wellander and Kristensson [19] and
Conca and Vanninathan [4] have both recently analyzed the homogenization of
time-harmonic wave problems in periodic media, using entirely different methods. Their
results are each applicable to problems in which the wavelength of the incident field is
much larger than the microstructure.
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For waves in random media, Keller and Karal [11] and Papanicolaou [16] use aver-
aging of random realizations of materials in order to describe the effective properties of
the composites when interacting with electromagnetic waves. Both analyses assume that
the random materials deviate slightly from a homogeneous material; i.e., the contrast
of the random inclusions is small. Keller and Karal assume a priori that the effective
dielectric coefficient is a constant. Using perturbation methods, they approximate
the dielectric constant with a complex number, whose imaginary part accounts for
the wave attenuation.

A comprehensive overview of the subject of wave propagation in random media is
given in a book by Ishimaru [10]. Also, recent results in this field can be found in the
AMS-IMS-SIAM proceedings edited by Kuchment [12].

The above methods that provide bounds and describe the behavior of the dielectric
coefficients do not account for scattering effects that occur when the wavelength is no
longer much larger than the inhomogeneities of the composite and when the contrast is
large. Results for this problem are sparse. The problem is difficult and the techniques
that come from the quasistatic regime cannot be applied directly to the scattering pro-
blem since the quasistatic methods utilize the condition that the size of the heterogene-
ities goes to zero.

Even the correct definition of “effective medium” is somewhat unclear outside the
quasistatic regime. In this work, we assume that the purpose of the effective medium is to
reproduce the average or expected wave field as the actual medium varies over a given
set of random realizations.

For simplicity in this work we consider waves in two- or three-dimensional random
cell materials (discussed in section 2.2) governed by the Helmholtz equation

Δuþ ω2εu ¼ f ;

where realizations of the random permittivity function εðxÞ belong to some probability
space. We average over all the possible material realizations to obtain the equation

Δhui þ ω2hεui ¼ f ;

where h·i denotes expected value, i.e., averaging over the set of realizations, and not a
spatial average. The source f is assumed to be independent of the material. Problems like
this arise, for example, in measurements of the properties of sea ice samples (usually
through interrogation by electromagnetic fields), or of earth samples (by either acoustic
or electromagnetic waves). We seek to find the dielectric coefficient ε� that will solve the
problem

Δhui þ ω2ε�hui ¼ f ;ð1:1Þ

where hui is the expected value of the solution u. From the above two equations, it is
easy to see that the appropriate definition for ε� is

ε� ¼ hεui
hui :ð1:2Þ

Note that the definition of ε� does not preclude spatial variations, ε� ¼ ε�ðxÞ.
The definition in (1.2) is similar to the definition of the effective dielectric coefficient

of an isotropic medium in the quasistatic case. In this case, the effective permittivity ε� is
defined by
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ε�hEi ¼ hDi ¼ hεEi;

where the averaged electric field hEi ¼ Ē is a given constant, and the averaged dielectric
displacement hDi is independent of x, which ensures that ε� in the quasistatic case is a
constant.

We can calculate the quasistatic effective dielectric constant by letting the wave-
length λ go to infinity, or equivalently, by letting the frequency ω approach zero. Let
ε ¼ ε0χþ ε1ð1− χÞ, where χ is a characteristic function of the material ε0, and the
expected value of χ when we sum over all possible material realizations is p;
i.e., hχi ¼ p. Let Gω;ε1 be the free-space Green’s function for the operator Lv ¼ Δvþ
ω2ε1v (with the outgoing wave condition). Our problem can be rewritten to yield the
Lippmann–Schwinger equation

uðxÞ ¼ ω2ðε1 − ε0Þ
Z
Ω
Gω;ε1ðjx− yjÞχðyÞuðyÞdyþ qðxÞ;ð1:3Þ

where q ¼ Gω;ε1⋆f . Define the operator Aω∶L2ðΩÞ → L2ðΩÞ by

ðAω;ε1vÞðxÞ ¼
Z
Ω
Gω;ε1ðjx− yjÞvðyÞdy; x ∈ Ω:ð1:4Þ

In the case when ω2jε1 − ε0jkAω;ε1k < 1,

u ¼ ðI − ω2ðε1 − ε0ÞAω;ε1χÞ−1q;ð1:5Þ

and the Neumann series

u ¼ qþ ω2ðε1 − ε0ÞAω;ε1χqþ · · ·ð1:6Þ

converges absolutely. Take the average over all realizations to obtain

hui ¼ qþ ω2ðε1 − ε0ÞAω;ε1hχiqþ · · ·

¼ qþ ω2ðε1 − ε0ÞpAω;ε1qþ · · ·

and

hεui ¼ hεiqþ ω2ðε1 − ε0ÞhεAω;ε1χiqþ · · · .

Thus, the quasistatic effective dielectric coefficient is

lim
ω→0

ε� ¼ limω→0hεui
limω→0hui

¼ hεiq
q

¼ ε0pþ ε1ð1− pÞ:

Note that only the arithmetic mean, and not the harmonic mean, appears since the ma-
terial coefficients only appear in the lowest-order term in the equation. This is different
from classical homogenization for the equation ∇ · ϵE ¼ 0.

Wave localization and cancellation must be accounted for when the wavelength is
on the same order as the size of the heterogeneities, which means that the effective coef-
ficients are no longer necessarily constants as in the quasistatic case, but functions of the
spatial variable. We have illustrated in section 4 that as ω increases (which will decrease
the wavelength), we begin to see spatial variations in the effective dielectric coefficient
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due to the presence of scattering effects. Nevertheless ε� as defined in (1.2) is a “correct”
definition of the effective dielectric coefficient, in that it reproduces the average field
response through (1.1).

Since ε� cannot be calculated explicitly in general, to be useful in applications it is
important that we can bound both ε� itself and some measure of the spatial variations in
ε�. The main result of this paper, presented in Theorem 3.1, is a bound on the magnitude
of ε� and a local bound on the total variation, kε�kBV . The estimates hold for any fixed
frequency ω > 0 and show an explicit dependence on the feature size and contrast of the
random medium.

The paper is organized as follows. We pose the model problem of electromagnetic
wave propagation in a composite material in subsection 2.1. The two-component com-
posite material is random, and its structure is defined in subsection 2.2 using random
variables that describe its geometry and component dependence. In subsection 2.3 we
obtain existence and uniqueness of solutions and uniform bounds on the solutions, as
well as Lipschitz bounds with respect to the dielectric coefficients of the materials.

Both the uniform and Lipschitz bounds are instrumental in obtaining the results of
the paper. Spatial variations due to scattering effects are allowed. Bounds on the effec-
tive dielectric coefficient and its spatial variations are obtained when certain conditions
are satisfied. These results are stated in the theorem in section 3, which is proved using
methods that incorporate both PDE analysis and probability arguments. In section 4
the effective dielectric coeffient is calculated numerically in one- and two-dimensional
media, and the presence of spatial variations and their dependence on the size of the
heterogeneities and the contrast in the material is confirmed.

We note that while the paper is focused on results in two- and three-dimensional
spaces, simple modifications also provide one-dimensional results.

2. Model problem.

2.1. Electromagnetic wave propagation. Consider time-harmonic electromag-
netic wave propagation through nonmagnetic (μ ¼ 1) heterogeneous media. Assuming
that the electric field vector E ¼ ð0; 0; uÞ and ε is independent of x3, Maxwell’s equations
reduce to the Helmholtz equation

Δuþ ω2εu ¼ 0;ð2:1Þ

where ω represents the frequency, and ε ∈ L∞ðRnÞ is the dielectric coefficient. In media
with heterogeneities in all three dimensions, (2.1) models time-harmonic acoustic wave
propagation, where ϵðxÞ is the squared slowness of an isotropic medium.

Let our bounded spatial domain be Ω ⊆ Rn, where n ¼ 2, 3. The region outside Ω is
filled with a homogeneous material. In particular, assume for x ∈= Ω, we have εðxÞ ¼ 1.
Let S0 be the sphere of radius R0, i.e., S0 ¼ fr ¼ R0g, and let Ω0 ¼ fjxj < R0g, where R0

is chosen such that Ω ⊂ Ω0 (see Figure 2.1).
Outside the ball Ω0, we separate the solution u to (2.1) into the incident and scat-

tered field: u ¼ ui þ us. The scattered field us can also be separated. Wellposedness of
the problem requires imposing Sommerfeld’s radiation condition as a boundary condi-
tion at infinity; i.e.,

lim
r→∞

r
n−1
2

�
∂
∂r

− iω

�
us ¼ 0;
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uniformly in all directions, where n ¼ 2, 3 is the spatial dimension. Here, it is assumed
that the time-harmonic field is e−iωtu.

The linear operator T∶H 1
2ðS0Þ → H−1

2ðS0Þ (Dirichlet-to-Neumann map) defines
the relationship between the traces usjfr¼R0g and ∂rusjfr¼R0g; i.e., Tðusjfr¼R0gÞ ¼ð∂rusÞjfr¼R0g. The Dirichlet-to-Neumann operator defines an exact nonreflecting bound-
ary condition on the artificial boundary S0; i.e., there are no spurious reflections of the
scattered solution introduced at S0. We write T explicitly for the two- and three-
dimensional cases in the appendix. On the boundary S0 ¼ fr ¼ R0g, the solution u ¼
ui þ us should then satisfy

∂ru− Tu ¼ ∂rui − Tui þ ∂rus − Tus ¼ ∂rui − Tui ≡ c:

In this way the problem on Rn is equivalently replaced by

Δuþ ω2εu ¼ 0 in Ω0 ⊃ Ω;

ð∂ru− TuÞ ¼ c on S0:

2.2. Random structure. We are interested in computing expected values of wave
fields as the underlying medium ranges over some class of random materials. In this
section, we define the probability space characterizing these materials.

We fill our bounded domain Ω by random cell materials (see, e.g., Milton [13]). Our
two-phase random materials are constructed as follows. The first step is to divide Ω into
a finite number of cells. The cells may vary in size and shape, but their volume is
bounded by a parameter.

The second step is to randomly assign to each cell a material of permittivity ϵ0 with
probability p or ϵ1 with probability 1− p in a way that is uncorrelated both with the
shape of the cell and with the phases assigned to the surrounding cells. We then have a
probability space ðΨδ;J δ; PδÞ, whereΨδ is a set of material realizations with a σ-algebra
J δ of subsets of Ψδ, and a probability measure Pδ on J δ with PδðΨδÞ ¼ 1. The para-
meter δ bounds the volume of each cell, and its precise definition is given later in the
section.

ε(x)=1

S0 0= {r=R  }

Ω

Ω0 0= {r<R  }

FIG. 2.1. Bounded random medium (Ω), enclosed in a sphere S0 to form the domain Ω0 ¼ fjxj < R0g.
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Elements ψ ∈ Ψδ are characterized by two random variables, ψ ¼ ðm; gÞ, where the
variable m depends on the random variable g. The variable g describes the geometry of
the material by partitioning the domain Ω into Ng parts, each of which is filled either
with material ε0 or material ε1, which is done by the random variable m. Thus, g de-
scribes the subdivision of our domain into subdomains; once the geometry g is fixed, the
random variable m distributes the material in the subdomains. Denoting some set of
partitions of Ω by Γδ, the variable g ∈ Γδ, partitions the spatial domain Ω into Ng

disjoint subdomains fΩjgNg

j¼1 such that ∪ Ωj ¼ Ω. The variable mg ¼ fm1; : : : ;mNg
g

assigns zero for material ε0 with probability p or one for material ε1 with probability
1− p in each spatial subdomain. The real part of the dielectric constant in the composite
material is defined by

εm;gðxÞ ¼
�
ε0 if mj ¼ 0 and x ∈ Ωj;
ε1 if mj ¼ 1 and x ∈ Ωj:

We assume without loss of generality that ε1 > ε0.
Fix a geometry g. Denote the set of realizations for geometry g by Rg:

Rg ¼ fmg ¼ ðm1; : : : ;mNg
Þ∶mj ¼ 0 or mj ¼ 1; j ¼ 1; : : : ; Ngg.

The set Rg has 2Ng elements. Thus the set of material realizations, Ψδ is described as
follows:

Ψδ ¼ fðg;mgÞ∶g ∈ Γδ;mg ∈ Rgg:

The probability measure is

P ¼
X

mg∈Rg

YNg

j¼1

p1−mjð1− pÞmjGδ;ð2:2Þ

where Gδ is the probability measure on the space of all geometries, Γδ. The product
describes the multiplication of the probabilities of the materials in each subdomain
Ωj, which is summed over the set of all realizations for a particular geometry g.

ðΨδ;J δ; PδÞ depends on a parameter δ > 0. Let k be a whole number, independent
of δ. We make the following assumptions on the subdomain partitions in Γδ (see
Figure 2.2):

A1: The volume of each subdomain fΩjgNg

j¼1 is bounded by δ; i.e., jΩjj ≤ δ. Note
that since the volume of Ω is fixed, as δ decreases, the set of realizations Ψδ

must change.
A2: Let k be a fixed number. For each δ > 0, there exists η > 0 such that any ball

with volume η, BrðxÞ intersects at most k subdomains Ωj for all x ∈ Ω. This con-
dition excludes from consideration materials with infinitely many subdomains
interfacing at any x ∈ Ω. Here BrðxÞ denotes the ball of radius r ¼ ffiffiffiffiffiffiffiffiffiffi

η ∕ π
p

in
two dimensions and radius r ¼ ð3η4πÞ1∕ 3 in three dimensions, centered at x.

A3: Using BrðxÞ from A2, define the set

Sx;r ¼
�[

∂Ωj

�
⋂ BrðxÞ:
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There exists a constant Cp (independent of δ) such that the Lebesgue measure
of the set Sx;r satisfies

Ln−1ðSx;rÞ ≤ C
pr

n−1 for all x ∈ Ω:

This condition excludes from consideration materials containing subdomains
with boundaries with infinite perimeter in BrðxÞ.

One can readily check, for example, that a simple subdivision of Ω by a uniform grid
of rectangles when n ¼ 2, or rectangular solids when n ¼ 3, satisfies A1–A3, where δ is
the maximum volume of each subregion.

2.3. Existence and uniqueness of solutions and Lipschitz bounds. For a
fixed dissipation constant ϵi > 0, define a set

A ≔ fε ¼ εr þ iεi∶εr ¼ εm;g for some ðm; gÞ ∈ Ψδg:

Given an incident field ui, we must solve the following problem:

Δuþ ω2εruþ iω2εiu ¼ 0 in Ω0;ð2:3Þ �
∂u
∂r

− Tu

�
¼ c on S0:ð2:4Þ

Existence and uniqueness of weak solutions, with a uniform bound, may be obtained for
materials with a little bit of absorption; i.e., εi > 0.

Throughout the remainder of the paper, in order to simplify estimates within proofs,
C will denote a constant that is independent of ðε; uÞ, whose value may change from line
to line.

LEMMA 2.1. For each ε ∈ A, problem (2.3)–(2.4) admits a unique weak solution
u ∈ H 2ðΩ0Þ. Furthermore, there exists a constant C depending on A such that
kukH 2ðΩ0Þ ≤ C , independent of ε ∈ A. Note that the constant C depends in particular
on the fixed parameter ϵi > 0.

Proof. The ideas for the proof of the lemma come from the proof of a similar lemma
in [5]. Define for u, v ∈ H 1ðΩ0Þ

Ωj

x

Sx,r

rB (x)

FIG. 2.2. Example of a particular subdomain partition Ω ¼ S
j Ωj in Γδ, illustrating assumptions A1–A3.

For each such partition, all subdomains Ωj must satisfy jΩjj ≤ δ, there can be only a finite number k of
subdomain boundaries intersecting near any given point, and the local measure (arclength in the figure) of
the subdomain boundaries Sx;r must remain bounded for all δ.
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aðu; vÞ ¼
Z
Ω0

∇u · ∇v− ω2

Z
Ω0

εuv̄−
Z
S0

ðTuÞv̄;

and

bðvÞ ¼ c

Z
S0

v̄:

Using bounds (6.3) and (6.6) in the appendix for the two- and three-dimensional pro-
blems, respectively, it is straightforward to show that aðu; vÞ defines a bounded sesqui-
linear form over H 1ðΩ0Þ× H 1ðΩ0Þ, and that bðvÞ is a bounded linear functional on
H 1ðΩ0Þ. Weak solutions u ∈ H 1ðΩ0Þ of (2.3) solve the variational problem

aðu; vÞ ¼ bðvÞ for all v ∈ H 1ðΩ0Þ:ð2:5Þ

The sesquilinear form a uniquely defines a linear operator A∶H 1ðΩ0Þ → H 1ðΩ0Þ such
that aðu; vÞ ¼ hAu; viH 1ðΩ0Þ, and the functional bðvÞ is uniquely identified with an
element b ∈ H 1ðΩ0Þ such that bðvÞ ¼ hb; vi. By reflexivity, problem (2.5) is then equiva-
lently stated as

Au ¼ b:ð2:6Þ

We intend to show that a is coercive by establishing a bound jaðu; uÞj ≥ c > 0 for all
u ∈ H 1ðΩ0Þ with kukH 1ðΩ0Þ ¼ 1. We have

aðu; uÞ ¼
Z
Ω0

j∇uj2 − ω2

Z
Ω0

εrjuj2 −ℜ
�Z

S0

ðTuÞū
�

− iℑ
�Z

S0

ðTuÞū
�
− iω2εi

Z
Ω0

juj2:ð2:7Þ

For the two-dimensional problem, we have

Z
S0

ðTuÞū ¼
Z
S0

X∞
m¼1

γmûme
imθū ¼

X∞
m¼1

γmjûmj2;

where ûm are the Fourier coefficients of the trace ujS0
(see appendix). ℜðγmÞ < 0 and

ℑðγmÞ > 0 for every m. Thus,

ℜ
�Z

S0

ðTuÞū
�

< 0 and ℑ
�Z

S0

ðTuÞū
�

> 0:

Similarly, for the three-dimensional case

Z
S0

ðTuÞū ¼
Z
S0

X∞
l¼0

γl

Xl

m¼−l

ûlmY lmū ¼
X∞
l¼0

γl

Xl

m¼−l

jûlmj2;

where ûlm are the coefficients in the spherical harmonics expansion of the trace ujS0
(see

appendix). ℜðγlÞ < 0 and ℑðγlÞ > 0 for every l. Thus,

ℜ
�Z

S0

ðTuÞū
�

< 0 and ℑ
�Z

S0

ðTuÞū
�

> 0:
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Assuming kuk2
H 1ðΩ0Þ ¼ ∫ Ω0

j∇uj2 þ ∫ Ω0
juj2 ¼ 1, and noticing that the first three terms on

the right-hand side of (2.7) are purely real and the last two terms are purely imaginary,
we find

2jaðu; uÞj ≥
����1−

Z
Ω0

ð1þ ω2εrjuj2Þ−ℜ
�Z

S0

ðTuÞū
�����

þ
����− ω2εi

Z
Ω0

juj2 −ℑ
�Z

S0

ðTuÞū
�����:

For convenience, write r ¼ ∫ Ω0
ð1þ ω2εrÞjuj2, s ¼ ∫ Ω0

juj2, and

t ¼
�
−
P∞

m¼1 ℜðγmÞjûmj2 in two dimensions;
−
P∞

l¼0 ℜðγlÞ
P

l
m¼−l jûlmj2 in three dimensions:

Obviously t, r, and s are nonnegative real numbers that depend on u (and ε in the case
of r). Although t and s are essentially independent, r must satisfy

ð1þ ω2ε0Þs ≤ r ≤ ð1þ ω2ε1Þs:ð2:8Þ

With this notation,

2jaðu; uÞj ≥ j1þ t− rj þ ω2εis:

Note that in the case s ≥ 1
2ð1þω2ε1Þ, we have jaðu; uÞj ≥

1
2ω

2εis ≥
ω2εi

4ð1þω2ε1Þ. Otherwise, s <
1

2ð1þω2ε1Þ so that r < 1
2, and jaðu; uÞj ≥ 1

2 j1þ t− rj > 1
4. Hence, for all s, t ≥ 0, and all r

satisfying (2.8),

jaðu; uÞj ≥ c ¼ min

�
ω2εi

4ð1þ ω2ε1Þ
;
1

4

�
:

The bound thus holds for every u with kukH 1ðΩ0Þ ¼ 1 and for every ε ∈ A with εi > 0.
Given this coercivity bound, direct application of the Lax–Milgram theorem (see, e.g.,
Lemma 2.21, p. 20 in Monk [14]) yields existence of a bounded solution operator A−1 for
problem (2.6). Since b is fixed and bounded, it follows that kukH 1ðΩ0Þ ≤ C .

Given the bound on kukH 1ðΩ0Þ, a uniform H 2ðΩ0Þ bound follows easily, since Δu ¼
−ω2εu is uniformly bounded in L2ðΩ0Þ. ▯

LEMMA 2.2. There exists a constant K such that for every εs, εt ∈ A, if usðεsÞ, utðεtÞ
are the corresponding solutions of the Helmholtz equation (2.3)–(2.4), then us and ut

satisfy the Lipschitz condition

kut − uskH 2 ≤ Kkεt − εskL2 :ð2:9Þ

Moreover, there exists a constant C such that

kut − uskW 1;∞ ≤ CKkεt − εskL2 .ð2:10Þ

Proof. We subtract one of the Helmholtz equations from the other to obtain

Δut − Δus þ ω2εtut − ω2εsus ¼ 0:

Subtract ω2εtus on both sides:
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Δðut − usÞ þ ω2εtðut − usÞ ¼ −ω2ðεt − εsÞus:

Let w ¼ ut − us. Thus the above equation is written as

Δwþ ω2εtw ¼ −ω2ðεt − εsÞus.ð2:11Þ

The function −ω2ðεt − εsÞus ∈ L2ðΩÞ and thus Lemma 2.1 applies andw is a solution to
(2.11). Let us rewrite (2.11) using the operator Lεt

:

Lεt
w ≔ Δwþ ω2εtw ¼ −ω2ðεt − εsÞus:

Lemma 2.1 ensures that the inverse operator L−1
εt
∶L2ðΩÞ → H 2ðΩÞ exists and is

uniformly bounded with respect to εt ∈ A. Thus,

w ¼ −ω2L−1
εt
ðεt − εsÞus:

For both two- and three- dimensional materials, the Sobolev imbedding theorem implies
that H 2ðΩÞ ⊂ C 0

BðΩÞ [1] and hence kuskL∞ is bounded, so

kwkH 2 ≤ kL−1
εt
kL2ðΩÞ;H 2ðΩÞkεt − εskL2kuskL∞ ≤ Kkεt − εskL2 :

To prove the second part of the lemma, we use the Sobolev imbedding theorem and
interpolation inequalities. We prove that w ∈ W 2;q for any q such that 3 < q < ∞.
Using the interpolation inequalities in [1] we see that for any solution u of (2.3)–(2.4)

kΔukLq ≤ kΔuk2∕ q
L2 kΔuk1−2 ∕ q

L∞ ≤ ω2kuk2 ∕ q
H 2 kεuk1−2 ∕ q

L∞ ≤ ω2ε
1−2 ∕ q
1 kukH 2 :

Thus u ∈ W 2;q. However, the Sobolev imbedding theorem [1] implies that W 2;qðΩÞ ⊂
C 1

BðΩÞ; i.e., there exists a constant C such that

kut − usk1;∞ ≤ Ckut − uskW 2;q ≤ CKkεt − εskL2 ;ð2:12Þ

where

kuk1;∞ ≔ max
0≤jαj≤1

sup
x∈Ω

jDαuðxÞj:

We deduce the Lipschitz condition (2.10) from (2.12). ▯
We also obtain a Lipshitz-type bound that estimates the proximity of solutions u

of the Helmholtz equation (2.3)–(2.4) and the solution ~u of the constant coefficient
Helmholtz equation, where the constant coefficient is the expected value of ε; i.e.,
~ε≡ hεi ¼ ε0pþ ε1ð1− pÞ þ iεi. The bound is in terms of the local proximity of the ran-
dom medium ε and the homogeneous medium ~ε. For any subdomain ~Ω ⊂ Ω, we define
the diameter

dð ~ΩÞ ¼ sup
x;y∈ ~Ω

jx− yj:

LEMMA 2.3. Let ~u be the solution to the Helmholtz equation with constant coefficient
~ε ¼ ε0pþ ε1ð1− pÞ þ iεi, still satisfying the boundary condition (2.4)

Δ ~uþ ω2 ~ε ~u ¼ 0:ð2:13Þ
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Let ν > 0 and 3 < q < ∞ be given. Then there exist constantsK � andK�
∞, and γ > 0

such that if Ω is divided into N  0 nonoverlapping subdomains Oi such that dðOiÞ ≤ γ for
all i ¼ 1; : : : ; N  0, then

ku− ~ukL2 ≤ K�
�XN  0

i¼1

����
Z
Oi

ð ~ε− εÞdx
����
�
þ νð2:14Þ

and

ku− ~ukL∞ ≤ K�
∞ðqÞ

�
K�

�XN  0

i¼1

����
Z
Oi

ð ~ε− εÞdx
����
�
þ Cν

�1
q

ð2:15Þ

for all realizations ðu; εÞ with ε ∈ A, and u satisfying (2.3), (2.4).
For any given tolerance ν > 0, the lemma gives the existence of a number γ > 0

(depending on ν) such that bounds (2.14), (2.15) hold for all realizations of the material
ε ∈ A, provided only that the diameter dðOiÞ of the covering subdomains Oi is less than
γ. This lemma will be a key component in the proof of the main Theorem 3.1, allowing
global control of the solutions u in terms of local averages of the coefficient ε over
subdomains.

Proof. In the following proof, the difference between the solutions of (2.3) and
(2.13) is written in terms of the solution operator L−1

~ε . This compact solution operator
is approximated by a sequence of finite-rank operators L−1

n , written in their canonical
form in terms of orthonormal basis functions. These measurable functions are approxi-
mated outside of a set of small measure by continuous functions. The domain Ω is di-
vided into N  0 nonoverlapping subdomains Oi of diameter at most γ such that the
uniformly continuous functions are approximated by a sequence of step functions with
characteristic functions of Oi. Hölder continuity of u is proven, and the difference be-
tween the solution u for every x in Oi and the maximum of u over the set Oi is bounded
in terms of the diameter γ. All of these are combined to give the desired inequalities. The
details of the proof follow.

Subtract the two equations (2.3) and (2.13) and manipulate them to get the
equation

Δðu− ~uÞ þ ω2 ~εðu− ~uÞ ¼ ω2ð ~ε− εÞu

for any realization ðε; uÞ. Thus, we can apply the solution operator L−1
~ε to obtain

u− ~u ¼ ω2L−1
~ε ðð ~ε− εÞuÞ:

Now, L−1
~ε is a bounded operator L−1

~ε ∶L2 → H 2 and a compact operator L−1
~ε ∶L2 → L2.

Since L−1
~ε ∶L2 → L2 is compact, it can be approximated by a sequence of finite-rank

operators L−1
n , and for every given error ν1 > 0, there exists M 1 such that

kL−1
~ε − L−1

n kL2ðΩÞ;L2ðΩÞ ≤ ν1 for n ≥ M 1 [6]. We apply the triangle inequality to obtain

ku− ~ukL2 ¼ ω2kL−1
~ε ð ~ε− εÞukL2

≤ ω2kL−1
~ε − L−1

n kL2ðΩÞ;L2ðΩÞk ~ε− εkL∞kukL2 þ ω2kL−1
n ð ~ε− εÞukL2

≤ Cν1 þ ω2kL−1
n ð ~ε− εÞukL2 ;

where C is independent of the material ε. Finite-rank operators can be decomposed
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L−1
n ð ~ε− εÞu ¼

XN
i¼1

wn
i hð ~ε− εÞu; gni iL2 ;

where gni ∈ L2ðΩÞ and wn
i ∈ RangeðL−1

n Þ. Thus,

kL−1
n ð ~ε− εÞukL2 ¼

����
XN
i¼1

wn
i

Z
Ω
ð ~ε− εÞugni dx

����
L2

≤
XN
i¼1

kwn
i kL2

����
Z
Ω
ð ~ε− εÞugni dx

����:

Fix n ≥ M 1; gni is a measurable function on Ω. Given ν2 ≥ 0, there exist continuous
functions vni on Ω such that jSν2

j ¼ mfx∶gni ðxÞ ≠ vni ðxÞg ≤ ν2 for each i ¼ 1; : : : ; N
[17]. Decompose the integralZ

Ω
ð ~ε− εÞugni dx ¼

Z
Ω\Sν2

ð ~ε− εÞugni dxþ
Z
Sν2

ð ~ε− εÞugni dx:

Using this we obtain the following bound for each i ¼ 1; : : : ; N :����
Z
Ω
ð ~ε− εÞugni dx

���� ≤
����
Z
Ω\Sν2

ð ~ε− εÞugni dx
����þ

����
Z
Sν2

ð ~ε− εÞugni dx
����

≤
����
Z
Ω\Sν2

ð ~ε− εÞugni dx
����þ k ~ε− εkL∞ jSν2

j12kukL∞kgni kL2 ≤
����
Z
Ω\Sν2

ð ~ε− εÞugni dx
����þ C2ν

1
2
2:

The function vni is continuous on the compact domain Ω and thus it is uniformly con-
tinuous and can be approximated by a sequence of step functions ψN  0 . Divide Ω into N  0

nonoverlapping subdomains Oi such that dðOiÞ ≤ γ. Define ψN  0 ¼ P
N  0
i¼1 a

N  0
i χOi

, where
χOi

is a characteristic function of the subdomain Oi. For every given error ν3 > 0, there
exists γ > 0 such that kvni − ψN  0 kL∞ ≤ ν3. Thus,����
Z
Ω\Sν2

ð ~ε− εÞugni dx
���� ¼

����
Z
Ω\Sν2

ð ~ε− εÞuvni dx
���� ¼

����
Z
Ω
ð ~ε− εÞuvni dx−

Z
Sν2

ð ~ε− εÞuvni dx
����

≤
����
Z
Ω
ð ~ε− εÞuvni dx

����þ k ~ε− εkL∞ jSν2
jkukL∞kvni kL∞

≤
����
Z
Ω
ð ~ε− εÞuðvni − ψn 0 Þdx

����þ
����
Z
Ω
ð ~ε− εÞuψN  0dx

����þ C 2ν
1
2
2

≤
����
Z
Ω
ð ~ε− εÞuψN  0dx

����þ kvni − ψN  0 kL∞k ~ε− εkL1kukL∞ þ C 2ν
1
2
2

≤
����
Z
Ω
ð ~ε−εÞu

XN  0

i¼1

aN
 0

i χOi
dx

����þC3ν3 þ C 2ν
1
2
2 ≤

XN  0

i¼1

jaN  0
i j

����
Z
Oi

ð ~ε−εÞudx

����þC3ν3 þ C 2ν
1
2
2:

Lemma 2.2 implies there exists a constant K such that kukH 2 ≤ K for every realization
u. Since H 2 imbeds in C 0;1 ∕ 2, there exists a constant KL such that

juðxÞ− uðyÞj ≤ KLjx− yj1∕ 2

for all u and for all x, y ∈ Ω. Let

ui
γ ¼ max

x∈Oi

uðxÞ
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and we have

juðxÞ− ui
γj ≤ KLγ

1 ∕ 2

for all x ∈ Oi. Thus,

����
Z
Ω\Sν2

ð ~ε− εÞugni dx
����

≤
XN  0

i¼1

jaN  0
i j

����
Z
Oi

ð ~ε− εÞðu− ui
γÞdx

����þ
XN  0

i¼1

jaN  0
i j

����
Z
Oi

ð ~ε− εÞðui
γÞdx

����þ C 3ν3 þ C 2ν
1
2
2

≤ KLγ
1∕ 2

XN  0

i¼1

jaN  0
i j

����
Z
Oi

ð ~ε− εÞdx
����þ

XN  0

i¼1

jaN  0
i j

����
Z
Oi

ð ~ε− εÞðui
γÞdx

����þ C 3ν3 þ C2ν
1
2
2

≤ Cγ1∕ 2 þ
XN  0

i¼1

jaN  0
i jjui

γj
����
Z
Oi

ð ~ε− εÞdx
����þ C3ν3 þ C 2ν

1
2
2:

We obtain the desired bound by taking γ, ν2, and ν3 sufficiently small. Let Cγ1 ∕ 2þ
C 2ν

1
2
2 þ C3ν3 < ν; hence

ku− ~ukL2 ≤ K�
�XN  0

i¼1

����
Z
Oi

ð ~ε− εÞdx
����
�
þ ν:ð2:16Þ

The interpolation inequality [1] states that there exists a constant KI such that

kukW 1;q ≤ KIkuk
1
2

W 2;qkuk
1
2

Lq :

Since W 1;q imbeds in L∞ for 3 < q < ∞ [1], there exists a constant C such that

ku− ~ukL∞ ≤ Cku− ~ukW 1;q :

Also, the interpolation inequality for Lp-spaces [8] states that when 3 < q < ∞,

kukLq ≤ kuk
2
q

L2kuk
q−2
q

L∞ :

Combining the above inequalities and the bound (2.16), we prove the second bound in
the statement of the lemma

ku− ~ukL∞ ≤ CKIku− ~uk1
2

W 2;qku− ~uk1
2

Lq ≤ CKIku− ~uk1
2

W 2;qku− ~uk
1
q

L2ku− ~uk
q−2
2q

L∞

≤ K�
∞ðqÞ

�
K�

�XN  0

i¼1

����
Z
Oi

ð ~ε− εÞdx
����
�
þ ν

�1
q

. ▯

3. Effective dielectric coefficient. The expected value hui of the solution u of
the Helmholtz equation (2.3)–(2.4), which depends on the random variables through its
dependence on the composite material, is defined, recalling (2.2), as follows:
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hui ¼
Z
Ψδ

udP ¼
Z
Γδ

X
mg∈Rg

YNg

j¼1

p1−mjð1− pÞmjuðεm;g; xÞdGδ:ð3:1Þ

Note that hi is an expectation over material realizations, not the spatial variables, so
that hui is in general still a function of x. Thus, the effective dielectric coefficient, defined
in (1.2) as

ε� ¼ hεui
hui ;

is a function of the spatial variable x.
Our main theorem gives a bound on the effective dielectric coefficient and its spatial

variations provided we have a lower bound on the expected value of u. Such a bound is
proven to exist for sufficiently small δ. The theorem shows that as the maximum volume
δ of the subdomains decreases, so does the magnitude of the spatial variations, and as
δ → 0, the effective coefficient equals the constant predicted by the quasistatic case.

THEOREM 3.1. Let ε�ðxÞ be the effective dielectric coefficient of the medium defined
by (1.2). There exist δ0 > 0 and a constant C � such that for all 0 < δ < δ0 and any
x0 ∈ Ω, the local total variation of ε� satisfies

Z
Brðx0Þ

j∇ε�jdx ≤ C �jε1 − ε0jδ;

where r is determined as in assumption A2. As the size of the inhomogeneities goes to 0,
the spatial variations decrease in magnitude, and ε�ðxÞ → pε0 þ ð1− pÞε1.

Thus, jε�ðxÞj is uniformly bounded above for all x, and the spatial variations of ε�

are bounded in terms of the size of the inhomogeneities δ and the contrast of the med-
ium jε1 − ε0j.

Proof. The proof applies to one-, two-, and three-dimensional random media. In
order to obtain a bound on jε�j ¼ jhεuij

jhuij , we must obtain a lower bound on the denomi-
nator jhuij. We show that a uniform bound exists provided δ is chosen sufficiently small;
i.e., jhuij ≥ c > 0 for all x ∈ Ω. The proof is based on a probability argument that shows
that the probability that the solutions u will be within a certain radius α from the solu-
tion of the constant boundary value problem with dielectric constant ~ε ¼ pε0þ
ð1− pÞε1 goes to one as the maximum volume δ or the contrast jε1 − ε0j goes to zero.
The probability β that a solution u lies outside the circle with radius α depends on the
parameter δ, and β → 0 as δ → 0. This prevents hui from equaling 0 and gives a lower
bound on jhuij ≥ c > 0. The numerical experiment in Figure 3.1 illustrates this argu-
ment, and the proof follows.

We let α and β be arbitrary constants such that β ≤ 1 and α ≤ K1. We want to
prove that for every such α and β, one can find δ > 0 such that

jhuij ≥ ð1− βÞðA− αÞ− βK1;

where k ~ukL∞ ¼ A and kukL∞ ≤ K1.
We use Lemma 2.3. There our domain Ω was divided into N  0 nonoverlapping sub-

domainsOi such that dðOiÞ ≤ γ for all i ¼ 1; : : : ; N  0. Note that the subdomain partition
Oi is independent of the material partitions Ω ¼∪ Ωj, which vary randomly over the set
of all realizations. The partition Oi allows (through Lemma 2.3) the computation of
local ensemble averages of the material coefficients, which tend toward a constant as
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the scale δ of the material partition decreases. Each Oi contains at most ~N subdomains
Ωj and subdomains Ωj ∩ Oi. We are guaranteed that any subdomain Ωj coming from
material realizations has volume less than or equal to δ; hence jΩj ∩ Oij ≤ δ. Denote by
χ the indicator function assigning 1 if we have material ε0 or 0 if we have material ε1 in a
given domain. Given the radius α and using Chebyshev’s inequality [7] and estimate
(2.15), we obtain

Pðku− ~ukL∞ ≤ αÞ ≥ P

�
K�

∞

�
K�

�XN  0

i¼1

����
Z
Oi

ð ~ε− εÞdx
����
�
þ ν

�1
q

≤ α

�

≥ P

0
B@max

i

����
Z
Oi

ð ~ε− εÞdx
���� ≤

�
α

K�
∞

	
q
− ν

K �N  0

1
CA

¼ P

�����ðε1ð1− pÞ þ ε0pÞjOM j−
�
ε0

X~N

j¼1

χjjOM
j j þ ε1

�
jOM j−

X~N

j¼1

χjjOM
j j

������

≤

�
α

K�
∞

	
q
− ν

K�N  0

�
≥ P

0
B@
����
X~N

j¼1

χjjOM
j j− pjOM j

���� ≤
�

α
K�

∞

	
q
− ν

K�N  0ðε1 − ε0Þ

1
CA

¼ 1− P

0
B@
����
X~N

j¼1

χjjOM
j j− pjOM j

���� ≥
�

α
K �

∞

	
q
− ν

K�N  0ðε1 − ε0Þ

1
CA

≥ 1−
�ðK�

∞ÞqK�N  0ðε1 − ε0Þ
αq − νðK�

∞Þq
�

2

Var

�X~N

j¼1

χjjOM
j j

�
≡ 1− β.

ð3:2Þ

Here OM is the set Oi over which the quantity j∫ Oi
ð ~ε− εÞdxj is maximized and the sets

OM
j ≡ Ωj ∩ OM , and χj is the indicator function of the set OM

j . We have also used the

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Re

Im

α
u~

A

K1

Im

Re

FIG. 3.1. Proximity to the constant coefficient solution. Left: from numerical experiments, solutions u for
a medium with 10 layers at x ¼ 0.5 (dots) and the solution to the constant coefficient problem ~uð0.5Þ (square);
right: for an appropriate parameter δ, the probability that solutions u cluster within a circle with center ~u and
radius α is 1− β. The probability β that solutions lie outside this circle depends on δ, and β → 0 as δ → 0. All
solutions are contained in the circle with radius K1, since kukL∞ ≤ K1.
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fact that hP ~N
j¼1 χjjOM

j ji ¼ pjOM j. We notice that the random variables χj are indepen-
dent and calculate the variance

Var

�X~N

j¼1

χjjOM
j j

�
¼

X~N

j¼1

jOM
j j2VarðχjÞ ¼ pð1− pÞ

X~N

j¼1

jOM
j j2 ≤ pð1− pÞ ~Nδ2:

Thus,

β≡
�ðK�

∞ÞqK�N  0ðε1 − ε0Þ
αq − νðK�

∞Þq
�

2

Var

�X~N

j¼1

χjjOM
j j

�

≤
�ðK�

∞ÞqK�N  0ðε1 − ε0Þ
αq − νðK�

∞Þq
�

2

pð1− pÞ ~Nδ2:

We have shown that the probability that solutions u are within a radius α of the
constant coefficient solution ~u goes to one as either δ or the contrast in the medium
jε1 − ε0j goes to 0.

Let us call ku− ~ukL∞ ≤ α condition L and call the complement condition Lc. Define
the conditional expectations

hujLi≡
R
ΨδðLÞ udP

PðLÞ and hujLci≡
R
ΨδðLcÞ udP

PðLcÞ ;

and note that PðLÞ ≥ 1− β and PðLcÞ ≤ β. The expected value hui is given by

hui ¼ PðLÞhujLi þ PðLcÞhujLci;

and using estimate (3.2), we obtain

jhuij ≥ ð1− βÞjhujLij− βjhujLcij:

If u satisfies condition L, then u satisfies the inequality

kukL∞ ≥ k ~ukL∞ − α ≥ A− α:

Now using the uniform upper bound kukL∞ ≤ K 1, we obtain the desired result:

jhuij ≥ ð1− βÞðA− αÞ− βK 1;

where the constant β depends on δ, the maximum volume of the subdomains, and on the
contrast jε1 − ε0j, and β → 0 as δ or jε1 − ε0j → 0. Thus by picking the appropriate
α and β, where β is controlled by the parameter δ, we obtain the lower bound jhuij ≥
c > 0 for all x ∈ Ω. This provides a bound on the effective dielectric coefficient

jε�j ≤ ~εK1

c
:

The uniform lower bound on jhuij is utilized in proving that kε�kBV ≤ C �jε1 − ε0jδ,
as follows. Formally, the gradient ∇ε� is given by
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∇ε� ¼ huihð∇εÞui þ huihε∇ui− h∇uihεui
hui2 ;ð3:3Þ

where ∇ε is understood in the sense of a distribution. Now choose δ such that
jhuij ≥ c > 0. We want to bound the numerator in terms of this δ and the contrast
jε1 − ε0j. First we bound

jhuihε∇ui− h∇uihεuij ≤ C 1δjε1 − ε0jð3:4Þ

pointwise, where C1 is a constant. In the proof we use the Lipschitz bound (2.10) from
Lemma 2.2.

The bound (3.4) is obtained by looking at material realizations that differ only in
one particular subdomain Ωj and realizing that the pointwise difference in solutions
propagating through two such material realizations can be bounded in terms of the
L2-norm of the difference in the two materials, where the two materials differ only
on the subdomain Ωj with jΩjj ≤ δ.

Fix x. Divide the set of material realizations Ψδ into two subsets Ψδ ¼ Ψ0
δ ∪ Ψ1

δ,
where Ψ0

δ is the subset of realizations such that εðxÞ ¼ ε0 and Ψ1
δ is the subset of realiza-

tions such that εðxÞ ¼ ε1. Representative elements of the subsets Ψ0
δ and Ψ1

δ are shown
in Figure 3.2. For each geometry g, let R0

g and R1
g be subsets of the set of material assign-

ments Rg such that

R0
g ¼ fmg ¼ ðm1; : : : ;mNg

Þ∶mj ¼ 0 for x ∈ Ωjg;

and

R1
g ¼ fmg ¼ ðm1; : : : ;mNg

Þ∶mj ¼ 1 for x ∈ Ωjg:

Thus, Rg ¼ R0
g ∪ R1

g. The expected value of u is given by

huiðxÞ ¼
Z
Ψδ

udP ¼
Z
Γδ

X
mg∈Rg

YNg

l¼1

p1−mlð1− pÞmluðεm;g; xÞdGδ

¼ p

Z
Γδ

X
mg∈R0

g

YNg

l¼1
l≠j

p1−mlð1− pÞmludGδ þ ð1− pÞ
Z
Γδ

X
mg∈R1

g

YNg

l¼1
l≠j

p1−mlð1− pÞmludGδ

¼ phuiΨ0
δ
þ ð1− pÞhuiΨ1

δ
;

x. x.

FIG. 3.2. Sample materials in Ψ0
δ and Ψ1

δ for fixed x. Left: material realization ψ0; right: corresponding
material realization ψ1 obtained by switching material ε0 with material ε1 in the domain containing x.
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where huiΨ0
δ
¼ hujεðxÞ ¼ ε0i and huiΨ1

δ
¼ hujεðxÞ ¼ ε1i. Using this notation we can

rewrite

huihε∇ui− h∇uihεui
¼ ε1pð1− pÞðhuiΨ0

δ
h∇uiΨ1

δ
− huiΨ1

δ
h∇uiΨ0

δ
Þ

þ ε0pð1− pÞðhuiΨ1
δ
h∇uiΨ0

δ
− huiΨ0

δ
h∇uiΨ1

δ
Þ:

For every material described byΨ0
δ , there exists a material described byΨ1

δ such that the
two materials differ only in a subdomain Ωj ∋ x. Let us call uψ0

the solution of the
Helmholtz equation when the material realization belongs toΨ0

δ and uψ1
the correspond-

ing solution of the Helmholtz equation when the material realization, differing only in
mj, belongs to Ψ1

δ . We have

����
Z
Ψ1

δ

uψ1
ðxÞdP −

Z
Ψ0

δ

uψ0
ðxÞdP

���� ≤
Z
Γδ

X2Ng−1

i¼1

YNg

l¼1
l≠j

p1−mi
l ð1− pÞmi

l juψ1
− uψ0

jðxÞdGδ

≤ sup
g∈Γδ

m1∈R
1
g

m0∈R
0
g

kuψ1
ðm1; gÞ− uψ0

ðm0; gÞkL∞

≤ CK sup
g∈Γδ

m1∈R
1
g

m0∈R
0
g

kεψ1
ðm1; gÞ− εψ0

ðm0; gÞkL2 ≤ CKδjε1 − ε0j:

The preceding comes from the fact that for any material realization in Ψ1
δ, there exists a

material realization in Ψ0
δ. The application of Lemma 2.2 yields the second-to-last

inequality. Thus, we have that jhuiΨ1
δ
− huiΨ0

δ
j → 0 pointwise as δ → 0. By a similar

argument, jh∇uiΨ1
δ
− h∇uiΨ0

δ
j ≤ CKδjε1 − ε0j; and jh∇uiΨ1

δ
− h∇uiΨ0

δ
j → 0 pointwise

as δ → 0. Now,

jhuiΨ0
δ
h∇uiΨ1

δ
− huiΨ1

δ
h∇uiΨ0

δ
j

≤ jhuiΨ0
δ
jjh∇uiΨ1

δ
− h∇uiΨ0

δ
j þ jh∇uiΨ0

δ
jjhuiΨ1

δ
− huiΨ0

δ
j:ð3:5Þ

Referring to Lemmas 2.2 and 2.1, we know that u ∈ C 1
BðΩÞ, and that there exist con-

stants K1 and K 2 such that kukL∞ ≤ K 1 and k∇ukL∞ ≤ K2 for every u. Then

jhuiΨ0
δ
h∇uiΨ1

δ
− huiΨ1

δ
h∇uiΨ0

δ
j ≤ KC jε1 − ε0jδðK1 þK 2Þ → 0 as δ → 0

and similarly for the second term in (3.5). Thus, we obtain the following bound:

jhuihε∇ui− h∇uihεuij
≤ ε1pð1− pÞjhuiΨ0

δ
h∇uiΨ1

δ
− huiΨ1

δ
h∇uiΨ0

δ
j

þ ε0pð1− pÞjhuiΨ1
δ
h∇uiΨ0

δ
− huiΨ0

δ
h∇uiΨ1

δ
j

≤ KCpð1− pÞðε1 þ ε0Þjε1 − ε0jðK1 þK 2Þδ:ð3:6Þ

Looking back at (3.3) to get an upper bound on j∇ε�j, we now want to prove that
jhð∇εÞuij ≤ C2δjε1 − ε0j in the distributional sense.
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Since εðxÞ equals a constant in every subdomain Ωj, ∇ε ¼ 0 there, and the
only problem occurs at the interface between two or more subdomains with different
materials, where ε is discontinuous and ∇ε is defined only in the distributional
sense.

Fix a realization ψα such that x0 is at the interface between k subdomains Ωj,
j ¼ 1 : : : k with alternating materials ε0 and ε1 in them. This assumption will pose no
loss of generality since the other cases are attained at material realizations satisfying
our assumptions. Call ψβ the realization that has the same geometry as realization
ψα, but with the materials in the k subdomains interfacing at x0 switched, e.g.,
Figure 3.3. Without loss of generality, let realization ψα have material ε0 in Ω1; thus
realization ψβ has material ε1 in the same subdomain Ω1. Let ϕ be a test function
ϕ ∈ C∞

0 ðΩ;RnÞ such that suppϕ ⊂ Brðx0Þ. We can find ∇ðεαÞuα at x0 in the general-
ized sense:

Z
Brðx0Þ

uα∇ðεαÞϕdx

¼ ðε1 − ε0Þ
Z
∂ðΩ1∩Ω2Þ

uαϕν∂ðΩ1∩Ω2Þdxþ ðε1 − ε0Þ
Z
∂ðΩ2∩Ω3Þ

uαϕν∂ðΩ2∩Ω3Þdxþ · · ·

þ ðε1 − ε0Þ
Z
∂ðΩk−1∩ΩkÞ

uαϕν∂ðΩk−1∩ΩkÞdxþ ðε1 − ε0Þ
Z
∂ðΩ1∩ΩkÞ

uαϕν∂ðΩ1∩ΩkÞdx;

where ∂ðΩ1 ∩ Ω2Þ is the interface between subdomains Ω1 and Ω2 and ν∂ðΩ1∩Ω2Þ is the
unit normal vector to Ω1 on the interface with Ω2. Note that ν∂ðΩ1∩Ω2Þ ¼ −ν∂ðΩ2∩Ω1Þ.

Similarly, we find that ∇ðεβÞuβ at x0 in the generalized sense is
Z
Brðx0Þ

uβ∇ðεβÞϕdx

¼ −ðε1 − ε0Þ
Z
∂ðΩ1∩Ω2Þ

uβϕν∂ðΩ1∩Ω2Þdx− ðε1 − ε0Þ
Z
∂ðΩ2∩Ω3Þ

uβϕν∂ðΩ2∩Ω3Þdx− · · ·

− ðε1 − ε0Þ
Z
∂ðΩk−1∩ΩkÞ

uβϕν∂ðΩk−1∩ΩkÞdx− ðε1 − ε0Þ
Z
∂ðΩ1∩ΩkÞ

uβϕν∂ðΩ1∩ΩkÞdx.

Divide again Ψδ into three subsets Ψδ ¼ Ψc
δ ∪ Ψα

δ ∪ Ψβ
δ : Ψ

c
δ is the subset of realiza-

tions such that x0 is inside some subdomain; Ψα
δ is the subset of realizations such that x0

is at the interface between k subdomainsΩj, j ¼ 1 : : : k for any integer kwith alternating

 .x0
x0

FIG. 3.3. Sample materials in Ψα
δ and Ψβ

δ for fixed x on the boundary between several materials. Left:
material realization ψα; right: corresponding material realization ψβ obtained by interchanging the materials
at domains interfacing at x.

BOUNDS ON EFFECTIVE COMPLEX PERMITTIVITY 1131

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



materials ε0 and ε1 in them and material ε0 in Ω1; Ψ
β
δ is the subset of realizations such

that x0 is at the interface between k subdomains Ωj, j ¼ 1 : : : k for any integer k with
alternating materials ε1 and ε0 in them and material ε1 in Ω1. Note that h∇εiΨc

δ
¼ 0.

Utilizing assumptions A2 and A3, we obtain

����

Z

Brðx0Þ
ðu∇εÞϕdx

�����

≤ jε1 − ε0jkϕkL∞

Xk
j¼1

kχΩj
k
BV

Z
Gδ

X2Ng−1

i¼1

p
k
2ð1−pÞk2

YNg

jþk
l≠jþ1 : : :

l¼1

p1−mi
l ð1−pÞmi

lkuα − uβkL∞dGδ

≤ kKCCppð1− pÞkϕkL∞ jε1 − ε0j2δ:
ð3:7Þ

Note that the inequality

kuα − uβkL∞ ≤ kKC jε1 − ε0jδ

comes from Lemma 2.2 and the fact that for any material in Ψα
δ , one can find a material

inΨβ
δ , which differs only on the subdomainsΩj throughΩjþk, each with volume less than

or equal to δ.
Choose δ small enough that jhuij ≥ c > 0. Using the lower bound jhuij ≥ c > 0,

(3.6), and (3.7), we obtain

Z
Brðx0Þ

j∇ε�jdx ≤
C jε1 − ε0jδkϕkL∞

c2
≤ C �jε1 − ε0jδ;ð3:8Þ

where ∇ε� is defined in the generalized sense. This will ensure that ε� ∈ BV ðΩÞ, and
thus, we can bound the spatial variations of ε�

V ðε�;ΩÞ ≔ sup

�Z
Ω
ε�divϕdx∶ϕ ∈ C 1

0ðΩ;RnÞ; kϕkL∞ðΩÞ ≤ 1

�

≤ C

Z
Ω
j∇ε�jdx → 0 as δ or jε1 − ε0j → 0:

The formula that prescribes the appropriate δ takes into account the contrast jε1 − ε0j
in the medium (Theorem 3.1, (3.6), and (3.8)).

Note that

ε� ¼ hεui
hui ¼

pε0huiΨ0
δ
þ ð1− pÞε1huiΨ1

δ

phuiΨ0
δ
þ ð1− pÞhuiΨ1

δ

:

Since jhuiΨ1
δ
− huiΨ0

δ
j → 0 pointwise as δ → 0, we obtain that ε� → pε0 þ ð1− pÞε1 as

δ → 0, which is consistent with the quasistatic case since by letting δ → 0, we are effec-
tively operating in the quasistatic limit. ▯
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We can obtain an estimate of how much ε� differs from the expected value ~ε:

jε� − ~εj ¼ jhεui− ~εhuij
jhuij

≤
jpε0huiΨ0

þ ð1− pÞε1huiΨ1
− ðpε0 þ ð1− pÞε1ÞðphuiΨ0

þ ð1− pÞhuiΨ1
Þj

c

≤
pð1− pÞjε1 − ε0jjhuiΨ1

− huiΨ0
j

c

≤ pð1− pÞC jε1 − ε0jδ:

4. Numerical experiments. Without loss of generality, assume that the dielec-
tric coefficient of the medium is

εðxÞ ¼ 1þ zχðx;ψÞ þ iεi;ð4:1Þ

where the function χðx;ψÞ is a random characteristic function in x, and z is the contrast
in the medium. The main Theorem 3.1 showed that the spatial variations in the effective
coefficient are bounded by the contrast in the medium z (or as appears in the theorem,
z ≡ jε1 − ε0j). Although our analysis in the previous sections required ϵi > 0 to guaran-
tee stability, we found the results of the numerical experiments were insensitive to small
ϵi. All of the results in this section take ϵi ¼ 0.

We observe the spatial dependence of the effective dielectric coefficient by numeri-
cally calculating ε� and graphing it as a function of x. In these numerical experiments, ε�

is calculated by dividing the interval (0,1) into the corresponding number of intervalsm,
each layer of length 1

m, and going through all possible realizations by assigning in each
layer either material of type one or material of type two, both with probability 1

2. The
solution u for each particular layered material is computed by the transfer matrix
method [18]. Sample realizations in the case of a six-layer medium are given in Figure 4.1.
In these numerical experiments ω ¼ 53, corresponding to a free-space wavelength
λ ¼ 2π

ω
≈ 0.118. The graph on the left shows the sample six-layer medium, composed

of material of type one (ε0 ¼ 1) in the first, second, and fifth layers, and material of
type two (ε1 ¼ 2) in the third, fourth, and sixth layers (above), and the real part of
the solution u (below). In the interest of space, in all of the figures that follow, only
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FIG. 4.1. Sample realizations in a six-layer medium: ε (top) and corresponding real part of u (bottom).
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the real part of the solution will be graphed. The imaginary part generally looks
qualitatively similar. The graph on the right shows a six-layer sample medium, com-
posed of material of type one (ε0 ¼ 1) in the first, second, and sixth layers, and material
of type two (ε1 ¼ 2) in the third, fourth, and fifth layers (above), and the real part of the
solution u.

The expected hui is obtained by evaluating the solution u for each realization and
multiplying it by the probability of the particular realization; i.e.,

hui ¼
X

mg∈Rg

uðx;mgÞ
YNg

j¼1

p1−mjð1− pÞmj:

In the case when both materials are assigned according to probability 1
2, each solution u

is multiplied by ð12Þm. The expected hεui is computed similarly. We observe that when
the length of the layers is 1 ∕ 6, the spatial variations of ε� are more pronounced than in
the case when the length of the layer is 1 ∕ 16 (Figure 4.2).
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FIG. 4.2. Spatial variations. Upper left: real and imaginary ε� in a medium of six layers; upper right: real
part of hεui (dashed line) and hui (solid line) in a medium of six layers; lower left: real and imaginary ε� in a
medium of sixteen layers; lower right: real part of hεui (dashed line) and hui (solid line) in a medium of sixteen
layers.
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The numerical experiments also show that the spatial variations decrease in mag-
nitude when the contrast z between the two materials is small (Figure 4.3). In these
experiments we are looking at a ten-layer medium and ω ¼ 53. We vary the contrast.
In the first experiment, we assign material of type one (ε0 ¼ 1) or material of type
two (ε1 ¼ 1.5), both with probability 1

2. In the second experiment, we assign material
of type one (ε0 ¼ 1) or material of type two (ε1 ¼ 13), both with probability 1

2. The
dependence of the magnitude of the spatial variations on the contrast in the medium
is obvious.

An important feature of these results is that even for real material coefficients ϵ0, ϵ1,
the resulting effective ϵ� can contain a substantial imaginary part, which accounts for
damping of the expected hui as it propagates into the medium. As the numerical experi-
ments show, the amplitude of hui generally does in fact decay as it propagates into the
medium, and the effect is accentuated for higher contrast and higher frequencies. This is
due to two phenomena. First, for higher contrast and higher frequencies, scattering in-
creases for each realization u, and less energy propagates into the medium. Second, the
phases of the waves for individual realizations u become less correlated as one moves
deeper into the medium, so that phase cancellation tends to reduce the amplitude of
the averaged wave hui. The imaginary part of ϵ� accounts for these effects, without
directly modeling the scattering and phase cancellation.

A question may arise as to the practical utility of modeling with an effective para-
meter ϵ� with spatial variation as large as the one shown in the lower left of Figure 4.3.
We think in fact that there is probably little use for such a parameter, and the point of
this paper is not to advocate for its practicality. Instead, these results are to quantify the
spatial variation of ϵ� as a function of contrast and length scale, so that as one moves

0 0.2 0.4 0.6 0.8 1

−20

0

20

x

R
e(

ε* )

0 0.2 0.4 0.6 0.8 1

−20

0

20

x

Im
( ε

* )

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

0 0.2 0.4 0.6 0.8 1

−20

0

20

x

R
e(

ε* )

0 0.2 0.4 0.6 0.8 1

−20

0

20

x

Im
(ε

* )

0 0.2 0.4 0.6 0.8 1
−5

0

5

x

FIG. 4.3. Spatial variations. Upper left: real and imaginary ε� in a medium of ten layers and contrast
z ¼ 0.5; upper right: real part of hεui (dashed line) and hui (solid line) in a medium of ten layers and contrast
z ¼ 0.5; lower left: real and imaginary ε� in a medium of ten layers and contrast z ¼ 12; lower right: real part of
hεui (dashed line) and hui (solid line) in a medium of ten layers and contrast z ¼ 12.
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away from the quasistatic parameter regime, one can have some understanding of the
viability of modeling ensemble average wave behavior with an effective material
parameter.

Numerical experiments are performed in a two-dimensional random medium, which
is periodic in the x direction. The medium is obtained by randomly picking points in a
square cell with sides equal to 2π and drawing circles of random radii around the ran-
domly selected points. The coordinates of the points and the values of the radii are
drawn from a normal distribution. After the cell is divided into subdomains, either ma-
terial ε0 or material ε1 is assigned to each subdomain, both with probability 1 ∕ 2. The
variational problem (2.6) was discretized with a first-order finite element method, using
piecewise bilinear elements on a uniform, rectangular grid. The design variable ε was
approximated by a piecewise constant function on the same uniform grid. The nonlocal
boundary operators T defined by (6.1) in the appendix were approximated by explicitly
calculating the Fourier coefficients of the traces of the finite element basis, then
truncating the sum in (6.1). The resulting finite element scheme can be shown to con-
verge and to conserve energy, provided all the propagating terms are included in the
sum [2]. This discretization leads to a large, sparse (except for the boundary terms),
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FIG. 4.4. Sample material I: constitutive materials ε0 ¼ 1 and ε1 ¼ 1.5 (top). Contributions from sample
material I to the real part of solution u (bottom).
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non-Hermitian matrix problem, which for simplicity is solved using the direct sparse
solver in MATLAB.

In all two-dimensional numerical experiments, the frequency ω ¼ 1.2. In Figure 4.4
a single material realization (top) and the real part of the corresponding solution u

(bottom) for a medium with contrast z ¼ 0.5 (as defined in (4.1) are displayed. In
Figure 4.5 another material realization (top) and the real part of the corresponding
solution u (bottom) for a medium with contrast z ¼ 3 are shown. The average hεui
is obtained by calculating εu for each material realization, summing up over realizations,
and dividing the sum by the number of realizations. In our experiments the number of
material realizations is 75000. The expectation hui is calculated similarly. The effective
coefficient ε� is the quotient of these quantities: ε� ¼ hεui

hui .

In Figure 4.6 the expectations hui, hεui, and the effective dielectric coefficient for
the random medium with contrast z ¼ 0.5 are shown. Let us investigate the effect of
increasing the contrast z in the medium on the magnitude of the spatial variation in
ε�. In Figure 4.7 we have shown the averaged quantities hui and hεui for a random
medium with contrast z ¼ 3. The spatial variations of the effective coefficient
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FIG. 4.5. Sample material II: constitutive materials ε0 ¼ 1 and ε1 ¼ 4 (top). Contributions from sample
material II to the real part of solution u (bottom).

BOUNDS ON EFFECTIVE COMPLEX PERMITTIVITY 1137

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



0

2

4

6

0

2

4

6

−1

−0.5

0

0.5

1

yx

R
e(

<
u>

)

0

2

4

6

0

2

4

6

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

R
e(

<
εu

>
)

0

2

4

6

0

2

4

6

1

2

3

4

5

yx

R
e(

ε* )

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44
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(Figure 4.7) are much larger in magnitude for the medium with the greater
contrast.

5. Conclusions. When we consider wave propagation in a medium for which the
size of the inhomogeneities is of the same order as the wave length, scattering effects
must be accounted for and the effective dielectric coefficient is no longer a constant,
but a spatially dependent function. In this paper we study the spatial variations of
the effective permittivity, obtaining an estimate that shows the dependence on material
contrast and length scale. Numerical experiments confirm the presence of spatial varia-
tions and their dependence on the size of the inhomogeneities and the magnitude of the
contrast. The purpose of this study is to gain some understanding of the viability of
modeling ensemble average wave behavior with an effective material parameter, as
one moves away from the well-studied low-contrast, low-frequency parameter regimes.

Appendix. In two dimensions using polar coordinates ðr; θÞ and assuming no
incoming waves, the exterior scattered solution is

uexðr; θÞ ¼
X∞
m¼1

AmH
1
mðωrÞeimθ;

where H 1
mðωrÞ are Hankel functions of first kind. Suppose that the Dirichlet data uin is

given on the circle. The interior solution uin ∈ L2ðS0Þ, and thus it has a Fourier series
representation

uinðθÞ ¼
X∞
m¼1

ûme
imθ;

where

ûm ¼ 1

2π

Z
2π

0
uðωR0; θ

 0Þe−imθ  0dθ  0:

The constants Am are found from the Dirichlet condition to be

Am ¼ ûm

H 1
mðωR0Þ

:

Thus the radiating solution is given by

usðr; θÞ ¼
X∞
m¼1

H 1
mðωrÞ

H 1
mðωR0Þ

ûme
imθ:

Differentiating in the radial direction and setting r ¼ R0 leads to

∂us

∂r
ðR0; θÞ ¼ ω

X∞
m¼1

∂H 1
m

∂r ðωR0Þ
H 1

mðωR0Þ
ûme

imθ ≡ ðTusÞðθÞ:

Thus, we see that
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ðTvÞðθÞ ¼ ω
X∞
m¼1

�∂H 1
m

∂r ðωR0Þ
H 1

mðωR0Þ
�
v̂me

imθ;ð6:1Þ

where v̂m are the Fourier coefficients of v, where v satisfies the Helmholtz equation (2.1).
Let

γm ≡ ω

∂H 1
m

∂r ðωR0Þ
H 1

mðωR0Þ
:ð6:2Þ

By using the properties and identities of Hankel functions, it can be shown that
ℑðγmÞ > 0 and ℜðγmÞ < 0 for all m.

For m ≥ 0 and r in compact subsets of ð0;∞Þ, we have [3]

jH 1
mðωrÞj ≤ C

2mm!

ðωrÞm :

The derivative of the Hankel function is

∂H 1
m

∂r
ðωrÞ ¼ mH 1

mðωrÞ
r

− ωH 1
mþ1ðωrÞ:

This way we can bound the ratio

����
∂H 1

m

∂r ðωR0Þ
H 1

mðωR0Þ
���� ≤ Cm:

We obtain the bound

kTvk2
H−1

2ðS0Þ
≤

X∞
m¼1

ð1þm2Þ−1
2

����
∂H 1

m

∂r ðωR0Þ
H 1

mðωR0Þ
����
2

jv̂mj2

≤
X∞
m¼1

Cð1þm2Þ−1
2m2jv̂mj2

≤
X∞
m¼1

Cð1þm2Þ12jv̂mj2 ≤ Ckvk2
H

1
2ðΓ0Þ

≤ Ckvk2
H 1ðΩ0Þ;ð6:3Þ

where we have used the trace imbedding theorem [1].
In three dimensions using spherical coordinates ðr; θ;ϕÞ assuming εðxÞ ¼ 1 and no

incoming waves, the scattered solution is

uexðr; θ;ϕÞ ¼
X∞
l¼0

Xl

m¼−l

Blmh
1
l ðωrÞYlmðθ;ϕÞ;

where h1l ðωrÞ are spherical Hankel functions of first kind and Ylmðθ;ϕÞ are the normal-
ized spherical harmonics. The latter form an orthonormal complete set of L2ðS0Þ [15].
Suppose that the Dirichlet data is given on the sphere. Since uin ∈ L2ðS0Þ, it can be
expanded into spherical harmonics as
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uinðθ;ϕÞ ¼
X∞
l¼0

Xl

m¼−l

ûlmY lmðθ;ϕÞ

with

ûlm ¼
Z
S0

uðR0; θ
 0;ϕ 0ÞȲ lmðθ  0;ϕ 0ÞdS  0:

The constants Blm are found from the Dirichlet condition to be

Blm ¼ ûlm

hlðwR0Þ
:

Thus,

usðr; θ;ϕÞ ¼
X∞
l¼0

h1l ðωrÞ
hlðωR0Þ

Xl

m¼−l

ûlmY lmðθ;ϕÞ:

Differentiating in the radial direction and setting r ¼ R0 gives

∂us

∂r
ðR0; θ;ϕÞ ¼

X∞
l¼0

ω

∂h1
l

∂r ðωR0Þ
h1l ðωR0Þ

Xl

m¼−l

ûlmY lmðθ;ϕÞ≡ ðTusÞðθ;ϕÞ:

We see that

ðTvÞðθ;ϕÞ ¼
X∞
l¼0

ω

�∂h1
l

∂r ðωR0Þ
h1l ðωR0Þ

� Xl

m¼−l

v̂lmY lmðθ;ϕÞ;ð6:4Þ

where v̂lm are the coefficients in the spherical harmonics expansion of v, where v satisfies
the Helmholtz equation (2.1).

Let

γl ≡ ω

∂h1
l

∂r ðωR0Þ
h1l ðωR0Þ

:ð6:5Þ

The following is obtained by very slight modification of the analysis of the exterior
scattering problem discussed in [9]: for all l, ℑγl > 0 and ℜγl < 0.

The Sobolev space HsðS0Þ with real parameter s consists of all distributions f such
that

kfk2HsðS0Þ ¼
X∞
l¼0

Xl

m¼−l

ð1þ λlÞsjf̂ lmj2 < ∞;

where f̂ lm are the spherical harmonics Fourier coefficients and λl ¼ lðlþ 1Þ, l ≥ 0 is the
eigenvalue of the Laplace–Beltrami operator on S0. For l ≥ 0 and r in compact subsets
of ð0;∞Þ, we have

jh1l ðωrÞj ≤ C
2ll!

ðωrÞlþ1
:

The derivative of the spherical Hankel function is
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∂h1l
∂r

ðωrÞ ¼ 1

2

�
ωh1l−1ðωrÞ−

h1l ðωrÞ þ ωrh1lþ1ðωrÞ
r

�
:

This way we can bound the ratio

����
∂h1

l

∂r ðωR0Þ
h1l ðωR0Þ

���� ≤ Cl:

We then obtain the bound

kTvk2
H−1

2ðΓ0Þ
≤ ω

X∞
l¼0

Xl

m¼−l

ð1þ lðlþ 1ÞÞ−1
2

����
∂H 1

l

∂r ðωR0Þ
H 1

l ðωR0Þ
����
2

jv̂l;mj2

≤ ω
X∞
l¼0

Xl

m¼−l

Cð1þ lðlþ 1ÞÞ12jv̂l;mj2

≤ Ckvk2
H

1
2ðΓ0Þ

≤ Ckvk2
H 1ðΩ0Þ;ð6:6Þ

where we have used the trace imbedding theorem [1].
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