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Diffusion in a Periodic Potential with a 
Local Perturbation 

K. Golden, 1,2 S. Goldstein, 1 and J. L. Lebowitz 1'3 

Received June 15, 1987 

We consider the diffusion of a particle at X, in a drift field derived from a 
smooth potential of the form V+ B, where V is periodic and B is a bump of 
compact support. With no bump, B = 0, the mean squared displacement E(t) 
E]Xt--Xol2=D(V)t+C+O(e ~'), 2>0 ,  in any dimension. When B:~0, we 
establish in one dimension the asymptotic expansion E(t)= D(V)t + ~ x/7+ 
C+(1/~/7) E~_octn/t ~, ct#O, as t ~ o 0 .  Our analysis relies on the Nash 
estimates developed in previous work for the transition density of the process 
and their consequences for the analytic structure of the Laplace transform s 
of E(t). 

KEY WORDS:  Diffusion; periodic potential; local perturbation; Nash 
estimates; mean squared displacement; velocity autocorrelation function. 

1. I N T R O D U C T I O N  

In order to analyze the structure of the mean squared displacement (MSD) 
E( t )=E  IX,-Xol  2 (where E denotes expectation) of a particle at X, at 
time t diffusing in the gradient of a smooth, bounded potential, we 
developed in Ref. 1 upper and lower Gaussian bounds on the transition 
density u(x, t), i.e., Nash-type a priori estimates on u. Here we use these 
estimates to study diffusion in V + B for d = 1, where V is periodic and B, 
the "bump," is a local potential with compact support. 

For stationary random ergodic potentials (a class which includes 
periodic and quasiperiodic potentials) the diffusion on a macroscopic scale 
behaves like Brownian motion with some effective diffusion tensor 
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D(V). (2m) Then E(t) behaves like Dt, D=t r (D) ,  for large t. In Ref. 1 we 
proved, using the Nash estimates, that adding a bump B to a stationary 
random ergodic V leaves this limiting behavior unchanged. This general 
result, however, gives no information on the effect of the bump on the 
correction C(t) to the dominant behavior of E ( t ) = D ( V ) t +  C(t). The 
correction C(t) is of physical interest due to its relation to the "velocity" 
autocorrelation function ~5 87 of the system, which, through Fourier trans- 
form, is related to the frequency (v)-dependent properties of the system, 
such as diffusivity D(v). 

Using spectral theory, we easily show here for any d that for V 
periodic, E ( t ) = D ( V ) t + C + O ( e - ~ ' t ) ,  2 > 0 .  However, when a bump is 
added, we prove for d =  1 that 

which is an asymptotic series as t ~ ~ ,  with c~ typically unequal to zero. 
The latter result is based on a Floquet analysis of the periodic Schr6dinger 
operator associated with the generator of the unperturbed process. When 
this analysis is combined with the Nash estimates for large t, we show that 
the Laplace transform E(s) of E(t) is holomorphic and single-valued in a 
punctured neighborood of the origin of a two-sheeted Riemann surface 
with parameter x~ss, and has a fourth-order pole at x/~ = 0. Then, using the 
general fact that E(s) ~ 0 as s -~ ~ away from the negative real axis, which 
we proved in Ref. 1 using the Nash estimates, we invert the transform to 
give the above asymptotic series in t. 

The present paper is one of several (1'9 1~) containing results on the 
structure of the MSD. We remark that the locally perturbed potentials con- 
sidered here and in Ref. 1 give the same power law decay of the second 
derivative of the MSD as one expects for "truly" random mediaJ 7,8) 
In particular, in Ref. 1 we prove that for a rapidly decaying potential, 
E(t) = t + O(w/-t ) for d =  1, E(t) --- 2t + O(log t) for d = 2, and E(t) = 
dt + O(1/t d/2 - ~) for d ~> 3. However, in Ref. 11 we find simple quasiperiodic 
potentials for which there is no law of decay, i.e., correlations fall off more 
slowly than any function decreasing to zero that can be explicitly written 
down. 

2. F O R M U L A T I O N  

Let V(x), x~ ~d, be uniformly bounded and smooth, i.e., having 
uniformly bounded first, second, and third derivatives. Given V(x), we 
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consider on a probability space (S, G, P) the IRa-valued process X,, t ~ ~, 
governed by the stochastic differential equation 

dXt = -VV(Xt)  dt + dW t (2.l) 

with Xo = Xo, where W, is standard d-dimensional Brownian motion with 
mean 0 and covariance matrix tI, where I is the identity. [In general 
the equation governing the diffusion X, is d X t = - a o V V ( X t ) d t +  
(2Do) ~/2 dW,,  where a o and D O are the "bare" mobility and diffusion con- 
stants. In (2.1) we have chosen units in which a o = 2Do= 1 for simplicity.] 
Associated with (2.1) is the transition probability p [ A , t , y , t ' ] =  
P I N  t ~ A IX c = y],  where t, t ' e  N, t ' <  t, y e Na, and A is a Borel subset of 
Na. Under the above smoothness conditions, p[A, t, y, t ' ]  has a density 
u(x, t, y, t'), which is a fundamental solution of both the backward 
equation 

0u 
- -  + Lu = 0, lim u(x, t, y, t') = 6x(Y) (2.2) 
c~t' ,'T, 

and the forward equation 

c~u 
Ot - L*u = 0, lira u(x, t, y, t') = C~y(X) (2.3) 

t ,L t' 

where L is the backward generator 

L = �89 - V V-V (2.4) 

which acts in the y variable, and L* is the forward generator 

L * = � 8 9  (2.5) 

which acts in the x variable, and is the (formal) adjoint of L. 
We shall be interested in the MSD (mean squared displacement) of 

the diffusing particle, 

E [ t X t -  x~ = fs I X t -  XoJ 2 dP (2.6) 

= fRd IX -- X012 U(X, t, X0, 0) dx (2.7) 

So far we have not assumed that V is macroscopically homogeneous, 
which is important for well-defined, large-scale behavior. When such 
homogeneity is present, i.e., for periodic, quasiperiodic, or stationary 
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random potentials, there is a useful representation of the "equilibrium" 
averaged MSD Ee [X,-x012. For V periodic, the equilibrium averaged 
expectation Ee is defined by following the usual averaging in (2.6) by an 
average of the starting point x 0 over a period cell with weight proportional 
to e x p [ - 2 V ( x o ) ] .  (For a general stationary random potential, Ee involves 
an average over an abstract space of potentials. ~1'3)) It may be shown that 
Ee is invariant under time reversal. Now write (2.1) as 

;o (Xt-xo)  + vv(xa)  ds = W, (2.8) 

The first term on the left is antisymmetric under time reversal (about t/2), 
while the second term is symmetric. Squaring both sides and taking 
equilibrium expectation E e gives the "velocity" autocorrelation 
representation{12'13'2) 

;o E e IXt-xol2  = t d -  2 ( t - S )  Ee[Vg(xo).Vg(Xs)  ] ds (2.9) 

since the cross term in the square of the left-hand side of (2.8) vanishes due 
to antisymmetry and the time-reversal invariance of Ee. 

3. M S D  FOR A P E R I O D I C  P O T E N T I A L  

In this section we give the structure of the MSD for diffusion in a 
smooth, periodic potential V(x) with 

V(x + ej) = V(x), j = 1 ..... d (3.1) 

where the ej are the standard unit vectors in R a. We first study the 
equilibrium averaged MSD given by (2.9), and then the MSD for fixed Xo, 
for which (2.9') does not hold. 

By the periodicity of V, the process X t can be replaced on the right 
side of (2.9) by the torus process X, = X, mod A, where A = {x: 0 ~< xi ~< 1, 
i---1,..., d} is the period cell of V, which can be identified with the unit 
d-torus T a. The (L 2) generator /2 of the torus process is given by /2= 
� 8 9  acting on ~ = L2(T d, dl~), where 

~t-: [ e x p ( - 2 V ) ] / f  e x p [ - Z V ( y ) ]  dy 
/ o  T d 

In terms of I2, (2.9) can be written as 

E [ { X t - x o l Z ] = t d - - 2  ( t - s ) ( V V [ e x p ( s  (3.2) 
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where ( - )  denotes inner product in LZ(T ~, dl~). The time integral in (3.2) 
can be carried out by employing the spectral theorem in L2(T a, d/~), where 
/2 is a negative self-adjoint operator, to obtain 

In (3.3) 

EeFIX, -  Xol 2] = D t - 2 ( V V . s 1 6 3  - 1] V V )  (3.3) 

D = d +  2 ( V V . / 2 - 1 V V )  

is the diffusion constant, which is the trace of the diffusion matrix 

/ O V  ~ 1 6 V \  
D i j = 6 i j + 2 ~ x i L -  -~x~)' i , j=l, . . . ,d 

(3.4) 

Ee[IX , -  Xo] 2] = Dt + Co - C(t) (3.5) 

where D is as in (3.4), Co is a positive constant 

C O = 2 ( V V . / 2 - 2  V V )  (3.6) 

and C(t) is positive and exponentially decaying, 

C(t) = 2<V V./2-2[exp(/2t)]  V V) 

In fact, we have the following bound: 

C(t) <~ (7/2 2) e I<f, 

where 

(3.7) 

(3.8) 

7 = f r  e [VVI2 d/~ ~> 0 (3.9) 

Equations (3.2)-(3.4) are valid for a general stationary random poten- 
tial with s the generator of a suitable "environment process. ''(m) However, 
in general there will be no spectral gap, and without additional detailed 
spectral information, the decomposition (3.5)-(3.7) is not possible. 

[We remark that VV is orthogonal to the constants in L2(T a, d#).] 
s has discrete spectrum on Jg', 2, 4 0, n = 0, 1 ..... with 20 = 0 and 

2, ~ - c ~  as n ~ oo. Moreover, 2o = 0  is a simple eigenvalue (i.e., 21 < 0 )  
with a corresponding eigenfunction G0--1. The spectral gap between 21 
and 2 o = 0  allows the second and third terms in (3.3) to be separated, so 
that 
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We summarize these results in the following: 

T h e o r e m  3.1. For the process Xt in Na which obeys (2.1) with 
smooth, periodic V and "starts in equilibrium," 

E~[IX t - X0l 2 ] = Dt + Co + O(e -I;~'lt) (3.10) 

where D and Co are the positive constants in (3.4) and (3.6) and 2t < 0 is 
the first nonzero eigenvalue of/2 acting on ~=L2(T a, d#). 

A lower bound on 12~l can be obtained by unitarily mapping /2 on 
L2(T d, d#) to H on L2(T a, dx) via eYrie-V=~2, where 

H=�89 q=�89 

Then, for d =  1, O4) with q (x) -- min{q(x), 0}, 

12~1>~2n 2 1 + ~  q_(x)dx (3.11) 

We now consider Xt satisfying (2.1) with fixed, periodic V, but with a 
fixed starting point Xo= Xo. Again the MSD has the same structure as 
(3.10), although we cannot readily obtain such detailed information on the 
constants involved, as we see in the following result: 

T h e o r e m  3.2. For X, satisfying (2.1) with fixed Xo=xo and 
periodic V in any dimension, 

Exo[lX _xol2]=Dt+ B(Xo)+O(e b,) (3.12) 

where D is the same as in Theorem 3.1, suPx0 [B(xo)] < o% and b > 0. 

In (3.11) and in the proof of the theorem, we use the notation O(e -~t) 
for a function f(x0, t) satisfying If(x0, t)[ ~< Ce-~' for some C independent 
of Xo. The proof of Theorem 3.2 involves a coupling of the process with 
fixed Xo = xo to one that starts in equilibrium. Since this proof employs 
different techniques than are used in the rest of the paper, we relegate it to 
the Appendix. 

4. N A S H  E S T I M A T E S  A N D  T H E I R  C O N S E Q U E N C E S  

Here we collect results from Ref. 1 necessary in the analysis of the 
MSD E(t) for nonperiodic potentials. We begin with the Nash estimates. 
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Theorem 4.1. Let u(x, t) be the fundamental solution of (2.3) in 
~a with smooth, bounded V, y = x0, and t ' =  0. Then 

c - ~ e x p  - C  C IX-Xol2~ 
t / t - ~  o J 

where C depends only on V . . . .  Vmin, and d. 
We consider the Laplace transform in time of the transition density, 

fi(x, s) = e s, u(x, t) dr, Re s > 0 (4.2) 

which satisfies 

L*~-sK= - 6 ( X - X o )  (4.3) 

As an immediate consequence of Theorem 4.1, we have the following result 
for d =  1. 

Corollary 4.1. For each x E ~  I, there exist positive constants al 
and a 2 such that for sufficiently small s > 0, 

(4.4) 

It also follows from (4.1) that for d~<3, t~(., s) is a n  L 2 ( ~  d, e2Vdx)- 
valued solution to (4.3). Using the fact that L* =�89 2v) is self- 
adjoint in Lz(~ d, e 2v d x )  with spectrum in the negative real axis, one can 
prove the following result. 

Corollary 4.2. Let d~< 3. For each s r ( -  ~ ,  0], (4.3) has a unique 
L2(~d, e2Vdx) solution ~(.,s). As an L2(~a, e2Vdx)-valued function on 
C - ( - ~ ,  0], ~ is holomorphic. Moreover, for any e>0 ,  there exists a 
C > 0  such that for any s in the region ]arg s[ ~<~-e ,  

C 
IS] 1 - ,:1/4 (4.5) 

It follows from Theorem 4.1 that for Re s > 0, 

E(s) =fed [x -Xo[ 2 fi(x, s) dx (4.6) 

Also, it is easy to see that L ' ( s )~  0 as s ~ ~ in the region ]arg sJ ~< ~ / 2 -  e, 
but extending this information, as well as (4.6), to the left half-plane 
requires work. This result is stated as follows: 
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T h e o r e m  4.2. E(s) can be analytically continued into 
C - ( - ~ ,  0], where it is given by (4.6). Furthermore, for any ~>0,  as 
s ~  ~ in the region largsl ~<rc-e, 

E(s) ~ 0 (4.7) 

Finally, we consider diffusion in a smooth potential of the form V+ B 
in Na, where V is stationary random ergodic and B has compact support, 
satisfying 

dX, = -V(V(X,) + B(X,)) dt+ dW, (4.8) 

A rather involved proof employing Nash estimates at each major step 
implies that the addition of a bump does not affect the asymptotic MSD to 
leading order. 

Theorem 4.3. For X, in ~a obeying (4.8) 

El- IX,-  x0l 2] 
lim = D (4.9) 

t ~ o o  t 

where D = D(V) is defined by (3.4). (If V is not periodic, the convergence 
here is in p-measure, where p is the probability measure on the space of 
potentials. ) 

5. M S D  FOR A PERIODIC POTENTIAL WITH A LOCAL 
PERTURBATION ( d = l )  

We now give the structure of the MSD for the one-dimensional dif- 
fusion (4.8) with smooth V of period 1 and smooth B of compact support. 
Our analysis will focus on the Laplace transform ~(x, s) of the density 
u(x, t), which is the fundamental solution of ~u/&=L*u, u(x, 0 ) =  
6(X-Xo), with L* =�89 + V - [ V ( V + B ) . ] .  Its structure as a function of s 
near s = 0 will help us deduce the structure of the MSD. 

6.1. Floquet Analysis of the Green's Function for the 
Periodic Potent ial  

To facilitate the analysis of fi(x, s), we first consider ~o(X, s) for the 
periodic potential V of period 1, which satisfies 

1 d2fio d 
2 dx 2 § (V'ilo)-Silo = -6(X-Xo) (5.1) 
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where V'=dV/dx. In terms of H=�89 2 + q ( x ) ,  with q ( x ) =  
� 89  (V')2], (5.1) becomes 

,qg- 

where g(x,  s) = e v(x) ~o(X, s) 
Green's function defined by 
homogeneous equation 

sg = - e  v(x~ 6(x  - Xo) (5.2) 

and H is self-adjoint on Lz([R, dx). The 
(5.2) can be obtained from analysis of the 

1 d2y t- q(x)  y = sy (5.3) 
2 d x  2 

where q has period 1. Much is known about (5.3), which is referred to as 
Hill's equation. (~4a5) We mention some of the facts relevant to us. 

Since q(x)  has period 1, if if(x) is a solution to (5.3), so is ~9(x+ 1). 
However, (nontrivial) periodic solutions of (6.3) need not exist. 
Nevertheless, there exist p # 0 and a nontrivial solution ~,(x) to (5.3) such 
that tp(x+ 1)=p~k(x). Let 01(x) and 02(x ) be the normalized, linearly 
independent solutions of (5.3) satisfying 01(0)= 1, 0'1(0)= 0, 02(0)= 0, and 
0~(0) = 1. Then the condition that there exists a nontrivial solution ~b(x) to 
(5.3) such that ~p(x+ 1)= p~b(x)is  

p2 _ ~ ( s ) p  + 1 = 0 (5.4) 

where ~(s)  = 01(1, s) + 0~(1, s) is the discriminant of (5.3). 
Qualitatively, for real s starting at - ~ ,  ~(s)  exhibits uniformly boun- 

ded oscillations between maxima at or above 2 and minima at or below 
- 2 .  These oscillations cease at s = 2 o, the supremum of the spectrum of the 
negative H, where ~(s  = 20)= +2. Beyond this point, ~ ( s ) >  2, s > 2o. The 
roots of ~ ( s ) =  +2 are precisely the 2o, 21 .... of Section 3. The roots of 
~(s)  = - 2  are the eigenvalues #0, #1 .... of H on LZ(A, dx)  with antiperiodic 
boundary conditions. The spectrum of H on L2(~,  dx) is purely absolutely 
continuous and is arranged in bands [#o, 2o], [2~, #1], [#2, 22] ..... In 
these "stability" bands, I~(s)l < 2, Ipl = 1, and the solutions of (5.3) are 
bounded. In the gaps (2 o, ~ ) ,  (#~, #o), (22, 21) ..... [~(s)[ >2 ,  [Plr  1, and 
the solutions of (5.3) are unbounded. 

We are, of course, most interested in small, positive s. In order to see 
how the solutions depend on s, let us analyze the Floquet multiplier p, 
which from (5.4) is given by 

p = �89 ___ �89 + 2 ) ( ~  - 2 ) ]  1/2 (5.5) 

As a function of the complex variable s, ~(s)  is entire, since 0t and 02 are. 

822/51/3-4-21 
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At s = 0, ~ ( s ) -  2 has a simple zero, so that 20 = 0 is nondegenerate. Thus, 
@(s) around s = 0 has the expansion 

~( s ) = 2+a l s+ azs2+  . . . ,  a l > 0  (5.6) 

so that 

p(s) = (1 + lals + ...) +_ �89 + ...)1/2 (5.7) 

We see from (5.7) that p(s) is analytic in , , /7 in a neighborhood of the 
origin x/7 = 0. The two roots (5.5) of (5.4) can be written as 

P l  =e-m, P2 =em (5.8) 

where m > 0 when s > 0 and is continued analytically. Then 

m(s) = log(1 + a l  , , / 7+  . . . )  (5.9) 

which proves the following result. 

L e m m a  5.1. The exponent m defined by (5.8) and (5.9) is analytic 
in ~ = , , /7 in a neighborhood of ~ = 0 with 

m(r = a I r -k- .-. (5.10) 

From (5.8) there are two linearly independent solutions to (5.3) of the 
form [-when ~(s )  # +2 ]  

yl(x, s) = e m ( S ) X p i ( x  , S), y2(x, s) = em(S)Xp2(x, s) (5.11 ) 

where Pl and P2 have period 1 in x and satisfy 

1d2p1 dpl . [ 1 2  ] 
2 dx 2-m-~x- t -  q ( x ) + - ~ m - s  p l = 0  (5.12) 

ld2p2 . dp2 . [ 1 2 ] 
2 dx 2 +m--~x* q(x)+-~m - s  p 2 = 0  (5.13) 

Using Yl and Y2, we can construct the Green's function ~o(X, s) satisfying 
(5.1) and classify its dependence on s. We remind the reader that by 
Corollary 4.2, Eq. (5.1) has a unique L 2 solution. 

I . e m m a  5.2. For  V periodic and s r  0],  the L 2 solution of 
(5.1) has the form 

~e V(x)-m(s)(x XO)pl(X ' S), X > XO (5.14) 
fi~ v(x)+m(s)(x-X~ X<Xo 

where Pl and P2 have the same period as V and satisfy (5.12) and (5.13). 
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Furthermore, for any fixed X CXo, ~to(X, ~) is analytic in ~ = x f s  in a 
punctured neighborhood of ~ = 0 with 

b_l(x) 
~o(X,~)= +bo(X)+bl(x)~+ ..., b 1#0 (5.15) 

Proof. For x > Xo, g(x) satisfying (5.2) is a linear combination of y~ 
and 72 in (5.11), and similarly for X<Xo. Since geL2(N,  dx), rio has the 
structure (5.14). Let ~bl and ~1 be the normalized solutions of (5.12) satisfy- 
ing ~bl(0)= 1, ~b'l(0)= 0, ~1(0)= 0, ~'~(0)= 1, and similarly for ~b2 and ~2 
satisfying (5.13). Then they are all entire in ( =  ~ .  The periodic solutions 
Pl and P2 of (5.12) and (5.13) have the form pl=bld?~+clO~ and p2= 
b2q~ 2 n t- c2~  2. The coefficients bl, c~, b2, and c2 are determined by imposing 
periodicity on p~ and P2, continuity of g in (6.2) across x = Xo, and the 
jump condition in the first derivative of g at X=Xo. Note that for 
periodicity it suffices to consider boundary conditions on Pl and P2 and not 
their derivatives, since periodic solutions must exist, but not all solutions 
have the same value at 0 and 1. Thus, there are four linear equations for b~, 
cl, bz, and c2, and they have coefficients which are entire functions of (. 
Moreover, the determinant of this system cannot vanish identically, due to 
the existence and uniqueness of the L 2 solution of the differential equation 
(Corollary 4.2), and, in fact, has discrete zeros only on the negative real 
axis. Thus, the bi and ci, i =  1, 2, are rational functions of entire functions 
of ~. As such, their worst singularities (at any finite ~) are isolated poles. 
Thus, there exists a punctured neighborhood of ( = 0 in which the bi and c~ 
are analytic in ~. Corollary 4.1 assures us that the b~ and ci have nonzero 
first-order poles at ~ = 0, and no higher order poles. Tracing back to rio 
proves the lemma. 

Lemma 5.2 says that the principal features of ~0(x, s ) fo r  periodic V 
reflect those for the special case V= 0. In this special case, 

1 
t~(X, S ) -  (2S) 1/2 e x p [ -  (2s) 1/2 Ix -x0[  ] (5.16) 

so that Pl = P2 = 1/(2s) 1/2 and m = (2s) I/2. 

5.2. Green's Function for V + B  and the M S D  

We are now in a position to assess the effect of adding a local pertur- 
bation B to the periodic potential V. For simplicity we take supp(B)c  
(0, 1 ) and Xo e (0, 1 ). Let t~(x, s) satisfy 

1 d2fi d 
2 dx 2 I- dx [( V' + B')~] - sfi = - 6 ( x  - Xo) (5.17) 

Using Lemma 5.2, we can prove the following about the structure of ft. 
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L e m m a  5.3. For V periodic, B supported in (0, 1), and 
s r  ( - o o ,  0], the L 2 solution fi of (5.17) outside of (0, 1) has the form 

fi(x s~ = ~'Tl(s) rio(X, s), x > 1 (5.18) 
' ' ' (72(s)  ~o(X, s), x < 0 

71(s)= 1 + 7 1 1 N ~ t -  712 S-t- "'" 
(5.19) 

72(s)= 1 + 7 2 1 x / s + 7 2 2 s +  --. 

whe re ,0  is as in Lemma 5.2. Furthermore, for any x, ~(x, () is analytic in 
= x/s  in a punctured neighborhood N of ~ = 0, and has a Laurent expan- 

sion there like (5.15). 

Proof. Since for x > 1, t~(x, s) satisfies the same ordinary differential 
equation as rio(X, s), we have that ~(x, s)=71~0(x, s). Similarly for x < 0 .  
Inside (0, 1), the homogeneous form of (5.17) has two normalized solutions 
~b and 0 (satisfying normalized boundary conditions at, say, x = 0), both of 
which are entire functions of s. For x e  (0, x0), f i= ClUb + CE0, for some cl 
and c2. Similarly, for xe(Xo, 1), ~=bl~b+b2O,  for some bl and b 2. Con- 
tinuity of fi at x - -0 ,  Xo, 1, continuity in dfi/dx at x = 0, 1, and the jump 
condition in the first derivative of e(V+B)O at X=Xo give six linear 
equations for cl, c2, bl, b2, 71, and 72 with coefficients that are entire in 
( = x//7. An argument similar to the one given in the proof of Lemma 5.2, 
which appeals to Corollaries 4.1 and 4.2, tells us that these coefficients are 
analytic in ( =  xf~ with at worst discrete poles on the negative real axis. 
The coefficients cl, c2, bl,  and b 2 have at worst first-order poles in ~ at 

= 0, with no higher order poles. Furthermore, 71 = 710 + 711 ~ + "" ", and 

72 - -720+721x / s+  .... The conditions that the mean displacement is 
o(x//7), which follows from the invariance principle, and that both u and uo 
have integrals over ~ equal to 1, can be shown, using the techniques in the 
proof of the next theorem, to give two independent linear equations for 710 
and 720. The unique solution of these equations is 710 = 720 = 1, SO that the 
lemma is proved. 

Now we use the information about fi contained in Lemma 5.3 to 
obtain a Laurent series expansion for the Laplace transform /~(s) of the 
MSD. 

T h e o r e m  5.1. For X, satisfying (4.8) in d = l  with smooth, 
periodic V, compactly supported, smooth B, and fixed starting point Xo, 
the Laplace transform E(s) of the MSD is analytic in ( = ~  in a 
punctured neighborhood of ( =  0, and has there a Laurent expansion 

D+ (5.20) 
~ ( s ) = ~  . =  3 

where D is the same as in Theorem 3.2, and the/3, depend on V, B, and Xo. 
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Proof. Using Lemma 5.3, we write 

~ ' ( s )  = (x  - Xo) ~ ~(x ,  s )  d x  
--cO 

=~ _ (X-Xo)~ e-~+m~'-~~ 
oo 

+yl f ?  (X_Xo)2e v m(x-xo)pldx+A(s ) (5.21) 

where Pl and P2 are defined by (5.14), and 

A(s)=f/ (X-Xo)2~(x,s)dX-el f/ (X-Xo)2~odx (5.22) 

so that 

a _ l  
A(s) = ~ + a o + a 1 X ~  --k ... (5.23) 

,5 
Equation (5.23) is justified by noting that ~ and Uo are analytic in x/s  and 
jointly continuous in ~ and x in the product of a punctured 
neighborhood of 0 and [0, 1]. The periodicity of V, Pl, and P2 allows 
(5.21) to be written as 

E(s ) :72  ~ fo ( - n - O - x ~  2 em(-n-~ XO,e-V( ~ 
n = 0  

-{- ~1 E (n+O-xo) 2e-m("§176176 v(~ 
n = O  

+ A(s) (5.24) 

= A z + A  1 + A  (5.25) 

We analyze A 1 in (5.25). With ~ = O - x o  we have 

Aa=7l  dOe-vpl  (n+~)2 e -m("+~) (5.26) 
n~O 

Now, 

632 ,/ oo ) 
(n + cr 2 -- ~~m2 \ Zff__oe--mn e -m( '+~)-  l e  "~ X" 

n=O 
(5.27) 
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A simple calculation shows that 

n = 0  n =  3 

for some c'n, so that, as for (5.23), 

A1 = ~ cn(,,/~)" (5.29) 
n = - - 4  

and similarly for 

n - -  - - 4  

Since the diffusion constant must be the same as that for the periodic 
potential V by Theorem 4.3, we must have c 4 -t- b ~4 = D, which proves the 
theorem. 

Finally, by inverting the Laplace transform, we have the following 
result. 

T h e o r e m  5.2. For X, satisfying (4.8) in d = l  with smooth, 
periodic V, compactly supported, smooth B, and fixed starting point Xo, 
the MSD for any e > 0  is analytic in t and has the asymptotic series 
representation as t approaches oo in the angular region larg tl ~< n / 2 -  e, 

o o  

 El .-Xol:l .Z0 
where D is the same as in Theorem 3.2, and ~, C, ~1, ~2 .... depend on V, B, 
and Xo. 

Proof. The theorem follows from Theorem 5.1. We employ Theorem 
37.1 in Doetsch. u6) For  this theorem to apply to our situation, we need 
that E(s) is analytic in the region larg sl ~< n - e and that E(s) ~ 0 as s ~ oo 

in this region, which is the content of Theorem 4.2. 
We remark that ~, C, and the ~n are in general presumably nonzero. 

That  ~ :~ 0 in the special case of rapidly decaying potentials was discussed 
in Ref. 1. 

Recall that the generator for periodic V, 

1 d 2 d 
L * -  V' 2dx 2 ~--~x on L2(E, e2V dx) 

has absolutely continuous spectrum arranged in bands, the first of which is 
immediately to the left of the origin. The effect of adding B to V uT) is to 
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leave the continuous spectrum invariant, but cause eigenvalues to appear in 
the gaps between the bands [although not in (0, oo) for L* ~< 0]. Let Ho = 
�89 +q, where q=�89 and HI=(J=�89 Rofe- 
Beketov ~17) has shown that if ~b satisfies 

f ~ (1-4-Ixl)I~(x)l d x <  0o (5.32) 
- - o O  

then there are at most a finite number of eigenvalues in each gap of the 
continuous spectrum of H. For  bounded ~b of compact support, (5.32) is 
trivially satisfied. 

The mild effect of the perturbation on the spectrum of Ho is reflected 
in Lemma 5.3. If the perturbation were to, say, introduce eigenvalues 
arbitrarily close to zero, then the branch point structure ff exhibited in 
Lemma 5.3 would presumably not occur. Instead, 0 would be an essential 
singularity. However, because of the branch point structure in s, ff can be 
continued across the negative real axis near 0 in such a way that ~(x, s) is 
multiple-valued in a punctured neighborhood of s = 0 .  In fact, fi(x, s) is 
single-valued and analytic in a punctured neighborhood of the origin of a 
two-sheeted Riemann surface with parameter ~ = x/~. 

We expect that for a "truly random" potential, fi(x, s) will have an 
essential singularity at s = 0. Nevertheless, since the Nash estimates still 
hold, fi(x, s) for d =  1 has the asymptotic behavior 1/x/~ as s ~ 0 ,  as 
indicated in Corollary 4.1. 

We close by remarking that the arguments and techniques used in this 
paper also apply to diffusion processes with generator L = V. aV, as well as 
to the case of L = bV- aV, with a, b > 0. 

APPENDIX. PROOF OF THEOREM 3.2 

Unless explicitly indicated otherwise, all constants are independent of 
Xo. In the proof we shall use the following result. 

I . e m m a  A.1. For  X, satisfying (2.1) with fixed starting point x o and 
periodic V, 

E [ X ,  -- Xo] = Bo(xo) + O(e IXlit) (A.1) 

where sup,, o IBo(xo)t < o% and 21 is as in Theorem 3.1. 

Proof. We may assume that xo~A, the period cell. From (2.1) and 
the periodicity of V we have that 

fo E x o [ X , - x o ]  = - Exo[VV(s ds (A.2) 
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We must analyze Exo[VV(X,)], which can be written as 

Ex~ = fA VV(x) U~o(X, s) dx 

where Uxo(X, s) is the solution in A of 

Ou/Ot = L'u, u(x, 0) = 6(x - Xo) 

(A.3) 

(A.4) 

under periodic boundary conditions with L* as in (2.5). Let Ueq dx = d#(x). 
We write 

E~o[V v(R~)] = ~  VV(x) JUno(X, s ) -  ~,(x)] ax (A.5) 

since ~ VVd#= O. Using the fact that for large enough s ~18) 

]lU~o(., S)--U~q(')]]L2(A.aU)= O(e I~l~) (a.6) 

we obtain 

Exo[VV(X~)] = O(e -l~l ')  (A.7) 

Then, writing (A.2) as 

Exo[X,-xo] = - Exo[VV(R,)] ds+ E~o[VV(YL)] as (A.8) 

yields (A.1). 
At this point we restrict ourselves to d =  1. By a coupling of two 

processes XI 1) and XI 2) we mean a simultaneous realization of these 
processes on the same probability space (S, if, p).O9) Let X~ ~) and X~ 2) be 
the two proesses satisfying (2.1), starting in equilibrium on the period cell 
[Xo - 1, Xo) - Axo and at fixed Xo ~ [0, 1 ), respectively. For  any particular 
sample of XI 1) that starts at y ~ Ax0, consider its translate XI ~) + 1. Together 
they form a moving box and XI 2) starts inside this box. The coupling of the 
processes XI 1) and XI 2) is such that they move independently until the time 

when XI 2) hits the side of the box, i.e., until XI 2) = XI ~) rood 1, after which 
X~ 2) is glued to the copy of XI 1) that it hit. The gluing is permissible by the 
Markovian nature of the processes. Let e, = X~ 2) - X~ ~), so that 0 ~< 8, ~< 1. 
For t ~ > v , ~ t = 0 o r l .  

Now we write 

E r  ()~"~ 2) - -  X0)  2 ] = E[(XI2)) 2 - 2xoX~ 2) + x 2 ] (A.9) 
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By Lemm a  A.1, 

E [  - 2XoXl 2) + Xo] = Bl(xo)  + O(e - I'hlt) (A.10) 

where SUpxo [Bl(xo)[ < 00. Via the coupling, we write 

E[(XI2)) 2 ] = E[-(XII)) 2 + 2/3,X111 + gt 2 ] (A.11) 

The first term on the right can be written as 

E[(X~1)) 2 ] = E [ ( X I ' ) -  X(01)) 2 + 2(X~ l) - y(ot)) X(o 1) + (X<o')) 2 ] 

= E e l ( X , -  So) =] + 2 [~o ~(dy) y e y ( x ,  - y )  
~xo - I  

f x c~ + i~(dy)y 2 (A.12) 
0 - - 1  

Thus, from Theorem 3.1 and Lemma  A.1 we obtain 

E[(X~'))  2] = Dt + C,(xo)  + O(e-I~lJ,) (A.13) 

where SUpxo ICl(xo)l < oo. 
To  control  the last two terms on the right in (A.11), we must  analyze 

the probabil i ty  P{ r  > t} that  XI 2) has not  hit the box by time t. First, it is 
easy to see from (2.1) and the fact that  V V is bounded  and the properties 
of Brownian mot ion  that  infxo P{T ~< 1 } - ~ > 0, so that  P{T > 1 } ~< 1 - ~ .  
By the Markov  property,  P { z >  n} ~< ( 1 -  (1)", and in general, 

P{.z > t} ~ Ce ~' (A.14) 

for some ~ > 0 and some constant  C < oo. 
The last term on the right in (A.11) can be written as 

= E[e,  (1{, > ,} + I{,_< ~} )] 

where I{,>~} is the indicator  function for the event { t > z } ,  and similarly 
for I{, ~ ~ }. Since 

- -  2 - -  2 E[e,l{,>~}] = E [ e ~  I { , > , } ]  = E [ e L ]  - E[-e2~ I { , .< , } ]  

and /~{t~< T} <<.Ce -r we have 

/7[g~] = C2(xo) + O(e -~') (A.15) 

where sup~ o IC2(xo)l < oo. 
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Finally, for the second term in (A.11), again we split the expectation, 

(A.16) EF~ tX I I ) I  = E [ ~ . t X l l ) ( I { t > ~ }  -[- I{,~})] 

The second term in (A.16) gives, by the Schwarz inequality, 

E[e,XI~)I{t~<,} ] ~< C3(t+ 1) 1/2 e r = O(e-b t )  (A.17) 

for some b > 0. The first term in (A.16) can be written as 

E [ e , X I ' ) I { , > , } ]  = E [~ ,X~I ) I { ,>T} ]  + E [ e , ( X l  I) - X~ ' ) ) ]  (A.18) 

= I + I I  (A.19) 

For ! we have 

with 

IE[G,X~')]! ~< R[IX~*) [ I  < oo (A.21) 

uniformly in x0, and 

IE[eTX~)I{,,<,}] I ~< {E[-(X~I))21 }1/2 [P{"c > t } ]  m (A.22) 

= O(e -r (A.23) 

Here we have used (A.14) to control the moments of X~ ~). Let o~ be the 
a-algebra generated by the process up to time 3. Then, using (A.14) and 
Lemma A.1, we have 

I = E [ e T I { t > z } E j , ( ) ( I  1 ) ' -  x~l))l 

= E [ e , I { ,  > ~} Ex, (X ,  , - Xo)] 

= E E e , I { , > , } ( B o ( X , )  + O(e- Ix't ( ' - ' ) ) ]  

= E[gr  Bo(A"T) ] -- EI-svBo(X',) I{ t~ ,} ]  

+ E [ e , I ~ , < , } .  O(e- I;~'l('- ~))] 

= B3(xo) + O(e-" ')  (A.24) 

where suPx0 [B3(xo)[ < co and ~/=min(1211, 4/2). This concludes the proof 
for d =  1. 

In dimensions d >~ 2 the proof is essentially the same as in d = 1, except 
that the coupling is not as readily obtainable as in d =  1. However, we 
proceed as follows. Let x~ 1) be the process on A satisfying (2.1) that starts 
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in equilibrium, and let R~2) be the same except that  it starts at a fixed 
x0 ~ A. Let u~2)~x t) be the density of  ~ 2 )  Since 

X 0 " ~' ~ = t  " 

inf ][u(~lq)(X)/x --x0'/2)fx, , 1)[]L,(A)> 0 (A.25) 
X 0  

we are assured (19) of  the existence of  a coupling for which 

/~[)~1) 4: )~(2) for some s >/ t ]  = O(e o)  for some ~ > 0 (A.26) 

The key difference for d >~ 2 is that  when we "unwrap"  these processes onto  
~a to obtain  X~ 1) and XI 2), e, = XI 2) - Xl 1~ can be unbounded,  depending on 
how many  times it "wrapped a round"  the torus before coupling. However,  
by (A.26), the probabil i ty of sup, Je,[ being large is exponentially small, 
which allows the p roof  to proceed to a conclusion in a similar manner  to 
d = l .  
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