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See COVID-19 Intervention on page 3

Special Issue on the 
Mathematics of Planet Earth

Read about the application of mathematics and computational 
science to issues concerning invasive populations, Arctic sea ice, 

insect flight, and more in this Planet Earth special issue!

Controlling Invasive 
Populations in Rivers
By Yu Jin and Suzanne Lenhart

Flow regimes can change significant-
ly over time and space and strongly 

impact all levels of river biodiversity, from 
the individual to the ecosystem. Invasive 
species in rivers—such as bighead and 
silver carp, as well as quagga and zebra 
mussels—continue to cause damage. 
Management of these species may include 
targeted adjustment of flow rates in rivers, 
based on recent research that examines the 
effects of river morphology and water flow 
on rivers’ ecological statuses. While many 
previous methodologies rely on habitat suit-
ability models or oversimplification of the 
hydrodynamics, few studies have focused 
on the integration of ecological dynamics 
into water flow assessments.

Earlier work yielded a hybrid modeling 
approach that directly links river hydrology 
with stream population models [3]. The 
hybrid model’s hydrodynamic component 
is based on the water depth in a gradu-
ally varying river structure. The model 
derives the steady advective flow from this 
structure and relates it to flow features like 
water discharge, depth, velocity, cross-

sectional area, bottom roughness, bottom 
slope, and gravitational acceleration. This 
approach facilitates both theoretical under-
standing and the generation of quantitative 
predictions, thus providing a way for scien-
tists to analyze the effects of river fluctua-
tions on population processes.

When a population spreads longitudinally 
in a one-dimensional (1D) river with spatial 
heterogeneities in habitat and temporal fluc-
tuations in discharge, the resulting hydrody-
namic population model is
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Figure 3. Comparison of real Arctic melt ponds with metastable equilibria in our melt 
pond Ising model. 3a. Ising model simulation. 3b. Real melt pond photo. Figure 3a cour-
tesy of Yiping Ma, 3b courtesy of Donald Perovich.

By Erin C.S. Acquesta, Walt Beyeler, 
Pat Finley, Katherine Klise, Monear 
Makvandi, and Emma Stanislawski

As the world desperately attempts to 
control the spread of COVID-19, the 

need for a model that accounts for realistic 
trade-offs between time, resources, and cor-
responding epidemiological implications is 
apparent. Some early mathematical models 
of the outbreak compared trade-offs for 
non-pharmaceutical interventions [3], while 
others derived the necessary level of test 
coverage for case-based interventions [4] 
and demonstrated the value of prioritized 
testing for close contacts [7].

Isolated analyses provide valuable 
insights, but real-world intervention strate-
gies are interconnected. Contact tracing is the 
lynchpin of infection control [6] and forms 
the basis of prioritized testing. Therefore, 
quantifying the effectiveness of contact trac-
ing is crucial to understanding the real-life 
implications of disease control strategies.

Contact Tracing Demands
Contact tracers are skilled, culturally 

competent interviewers who apply their 
knowledge of disease and risk factors when 
notifying people who have come into con-
tact with COVID-19-infected individuals. 
They also continue to monitor the situation 
after case investigations [1]. 

Case investigation consists of four steps:
1. Identify and notify cases
2. Interview cases
3. Locate and notify contacts 
4. Monitor contacts.

Most health departments are implement-
ing case investigation, contact identifica-
tion, and quarantine to disrupt COVID-
19 transmission. The timeliness of contact 
tracing is constrained by the length of the 
infectious period, the turn-around time for 
testing and result reporting, and the abil-
ity to successfully reach and interview 
patients and their contacts. The European 
Centre for Disease Prevention and Control 
approximates that contact tracers spend one 
to two hours conducting an interview [2]. 
Estimates regarding the timelines of other 
steps are limited to subject matter expert 
elicitation and can vary based on cases’ 
access to phone service or willingness to 
participate in interviews.

Bounded Exponential
The fundamental structure of our model 

follows traditional susceptible-exposed-
infected-recovered (SEIR) compartmental 
modeling [5]. We add an asymptomatic 
population A, a hospitalized population H , 
and disease-related deaths D,  as well as 
corresponding quarantine states. We define 
the states { , , , , , , }

,
S E A I H R D
i i i i i=0 1 for 

our compartments, such that i= 0  and i=1 

correspond to unquarantined and quaran-
tined respectively. Rather than focus on the 
dynamics that are associated with the state 
transition diagram in Figure 1, we introduce 
a formulation for the real-time demands 
on contact tracers’ time as a function of 
infection prevalence, while also respecting 
constraints on resources.

When the work that is required to inves-
tigate new cases and monitor existing con-
tacts exceeds available resources, a backlog 
develops. To simulate this backlog, we 
introduce a new compartment C  for track-
ing the dynamic states of cases:

dC
dt

flow flow
in out

= −[ ] [ ].

Flow into the backlog compartment, repre-
sented by [ ],flow

in
 reflects case identifica-

tion that is associated with the following 
transitions in the model:

 – The rate of random testing: 
q t A t A t
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 – The population that was missed by 

the non-pharmaceutical interventions that 
require hospitalization: tIH t I t H t( ) ( ) ( ).0 ®

Here, q tr*( ) defines the time-dependent 
rate of random testing, q tt*( )  signifies the 
time-dependent rate of testing that is trig-
gered by contact tracing, and t

IH
 is the 

inverse of the expected amount of time for 
which an infected individual is symptomatic 
before hospitalization. These terms collec-
tively provide the simulated number of 
newly-identified positive COVID-19 cases. 
However, we also need the average number 
of contacts per case. We thus define func-
tion ( , , )κ φκT

S
 that depends on the aver-

age number of contacts a day ( ),k  the aver-
age number of days for which an individual 
is infectious before going into isolation 
( ),T
S

 and the likelihood that the individual 
Figure 1. Disease state diagram for the compartmental infectious disease model. Figure 
courtesy of the authors.

Modeling Resource Demands and Constraints 
for COVID-19 Intervention Strategies

Vast labyrinthine ponds on the surface of melting Arctic sea ice are key play-
ers in the polar climate system and upper ocean ecology. Researchers have 
adapted the Ising model, which was originally developed to understand mag-
netic materials, to study the geometry of meltwater’s distribution over the sea 
ice surface. In an article on page 5, Kenneth Golden, Yiping Ma, Courtenay 
Strong, and Ivan Sudakov explore model predictions.
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From Magnets to Melt Ponds
By Kenneth M. Golden, Yiping Ma, 
Courtenay Strong, and Ivan Sudakov

When the snow on top of Arctic sea 
ice begins to melt in late spring, 

small pools of water form on the surface. 
As the melt season progresses, these simply 
shaped meter-scale pools grow and coalesce 
into kilometer-scale labyrinths of cerulean 
blue with complex, self-similar boundaries. 
The fractal dimension of these boundaries 
transitions from one to roughly two as the 
area increases through a critical regime that 
is centered around 100 square meters [4]. 
While the white, snowy surface of the sea 
ice reflects most of the incident sunlight, 
the darker melt ponds act like windows and 
allow significant light to penetrate the ice 
and seawater underneath. Melt ponds thus 
help control the amount of solar energy that 
the ice pack and upper ocean absorb, strong-
ly influencing ice melting rates and the ecol-
ogy of the polar marine environment. They 
largely determine sea ice albedo—the ratio 
of reflected to incident sunlight—which is a 
key parameter in climate modeling.

When viewed from a helicopter, the beau-
tiful patterns of dark and light on the surface 
of melting sea ice are reminiscent of struc-
tures that applied mathematicians sometimes 

see when studying phase transitions and 
coarsening processes in materials science. 
They also resemble the complex regions of 
aligned spins, or magnetic domains, that are 
visible in magnetic materials. Figure 1 com-
pares two examples of magnetic domains 
with similar patterns that are formed by melt 
ponds on Arctic sea ice. Magnetic energy 
is lowered when nearby spins align with 
each other, which produces the domains. 
At higher temperatures, thermal fluctua-
tions dominate the tendency of the domains’ 
magnetic moments to also align, with no 
net magnetization M  of the material unless 
one applies an external magnetic field H  
to induce alignment. However, the ten-
dency for overall alignment takes over at 
temperatures below the Curie point T

c
, and 

the material remains magnetized even as 
the applied field H  vanishes, where the 
remaining non-zero magnetization ( )M ¹ 0  
is called spontaneous or residual.

The prototypical model of a magnetic 
material based on a lattice of interacting bina-
ry spins is the Ising model, which was pro-
posed in 1920 by Ernst Ising’s Ph.D. advisor 
Wilhelm Lenz. This model incorporates only 
the most basic physics of magnetic materials 
and operates on the principle that natural 
systems tend toward minimum energy states.

Consider a finite box Λ⊂2  that con-
tains N  sites. At each site, a spin variable 
s
i
 can take the values +1  or -1 (see 

Figure 2). To illustrate our melt pond Ising 
model, we formulate the problem of find-
ing the magnetization M T H( , )—or order 
parameter—of an Ising ferromagnet at tem-
perature T  in field H .  The Hamiltonian 
  with ferromagnetic interaction J ³0 
between nearest neighbor pairs is given by

w=− −∑ ∑
< >

H s J s s
i

i
i j

i j,

for any configuration w∈ = −Ω { , }1 1 N  of 
the spin variables. The canonical partition 
function Z

N
,  which yields the system’s 

observables, is given by

Z T H
N
( , ) exp( )= − =

∈
∑
ω

ωβ
Ω



exp( ),-bNf
N

where b=1/ ,kT  k  is Boltzmann’s 
constant, exp( )-β ω  is the Gibbs fac-
tor, and f

N
 is the free energy per site: 

f T H
N
( , )= ( / )log ( , ).-1 bN Z T H

N

The magnetization M T H( , ) =

lim
N iiN

s→∞ ∑
1

 is averaged over w∈Ω 

with Gibbs’ weights and expressed 
in terms of the free energy f T H( , )= 
lim ( , ):

N N
f T H→∞

M T H
f
H
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∂
∂

The model’s rich behavior is exempli-
fied in the existence of a critical tem-
perature T

c
—the Curie point—where 

M T M T H
H

( ) lim ( , )= >→0 0  for T T
c

<  
and M T( )= 0  for T T

c
³ .  Universal 

power law asymptotics for M T( )® 0  as 
T T

c
→ −  are independent of the lattice type 

and other local details.
The Metropolis algorithm is a common 

method for numerically constructing equi-
librium states of the Ising ferromagnet. 
In this approach, a randomly-chosen spin 
either flips or does not flip based on which 
action lowers or raises the energy. DE  
represents the change in magnetostatic 
energy from a potential flip (as measured 
by w), and the spin is flipped if ∆E ≤ 0. 
If ∆E>0,  the probability of the spin flip-
ping is given by the Gibbs factor for DE. 
Sweeping through the whole lattice and iter-
ating the process many times attains a local 
minimum in the system’s energy.

We have adapted the classical Ising model 
to study and explain the observed geometry 
of melt pond configurations and capture 
the fundamental physical mechanism of 
pattern formation in melt ponds on Arctic 
sea ice [5]. While previous studies have 
developed important and instructive numer-
ical models of melt pond evolution [2, 3], 

Figure 1. Comparison of magnetic domains and the patterns of meltwater on Arctic sea ice. 
1a. Magnetic domains in cobalt, roughly 20 microns across. 1b. Arctic melt pond, roughly 100 
meters across. 1c. Magneto-optic Kerr effect microscope image of maze-like domain struc-
tures in thin films of cobalt-iron-boron, roughly 150 microns across. 1d. Similarly-structured 
melt ponds, roughly 70 meters across. Figure 1a courtesy of [9], 1b and 1d courtesy of 
Donald Perovich, 1c courtesy of [10].

Figure 2. Lattice models in statistical mechanics. 2a. Two-dimensional (2D) Ising model, with 
spins either up or down at each lattice site. 2b. Spin configuration. Spin-up sites are blue and 
spin-down sites are white. Image courtesy of Kenneth Golden.

See Melt Ponds on page 7



November 2020 SIAM NEWS • 7

these models were somewhat detailed and 
did not focus on the way in which meltwa-
ter is distributed over the sea ice surface. 
Our new model is simplistic and accounts 
for only the system’s most basic physics. 
In fact, the only measured parameter is the 
one-meter lattice spacing, which is deter-
mined by snow topography data.

The simulated ponds are metastable equi-
libria of our melt pond Ising model. They 
have geometrical characteristics that agree 
very closely with observed scaling of pond 
sizes [6] and the transition in pond fractal 
dimension [4]. Researchers have also devel-
oped continuum percolation models that 
reproduce these geometrical features [1, 8].

We aim to use our Ising model to introduce 
a predictive capability to cryosphere model-
ing based on ideas of statistical mechanics 
and energy minimization, utilizing just the 
essential physics of the system. The model 
consists of a two-dimensional lattice of 
N  square patches, or pixels, of meltwater 
( )s
i
= +1  or ice ( ),s

i
=−1  which corre-

spond to the spin-up or spin-down states 
in the Ising ferromagnet. Configurations 
w∈ = −Ω { , }1 1 N  of the spin field s

i
 rep-

resent the distribution of meltwater on the 
sea ice surface. Each patch interacts only 
with its nearest neighbors and is influenced 
by a forcing field. However, sea ice surface 
topography—which can vary from site to 
site and influence whether a patch comprises 
water or ice—plays the role of the applied 
field in our melt pond Ising model. Our 
model is then actually a random field Ising 
model, and one can write the Hamiltonian as

w=− − −∑ ∑
< >

( ) .
,

H h s J s s
i i

i
i j

i j

Here, h
i
 are the surface heights (taken to be 

independent Gaussian variables with mean 
zero) and H  is a reference height (taken 
to be zero in the model’s simplest form). 
The spin field s

i
 is reorganized to lower 

the free energy, and the order parameter 
is the pond area fraction F M= +( )/ ,1 2  
which is directly related to sea ice albedo. 
We set temperature T = 0  and assume for 
simplicity that environmental noise does not 
significantly influence melt pond geometry.

Independent flips of a weighted coin 
determine the system’s initial random con-
figuration. A pixel or site has a probability 
p  of its spin being +1,  or meltwater. The 
system then updates based on simple rules: 

Melt Ponds
Continued from page 5

pick a random site i  and update s
i
 as 

follows. If a majority exists among s
i
' s 

four nearest neighbors, we assume that 
heat diffusion drives s

i
 to agree with this 

majority. Otherwise we assume water’s 
tendency to fill troughs, as determined by 
the local value of the random field h

i
. This 

update step, which corresponds to energy 
minimization via Glauber spin flip dynam-
ics, iterates until s

i
 becomes steady. The 

spin-up or meltwater clusters in the final 
configurations of the spin field s

i
 exhibit 

geometric characteristics that agree surpris-
ingly well with observations of Arctic melt 
ponds (see Figure 3, on page 1). The final 
configuration is a metastable state — a 
local minimum of w. As neighboring 
sites exchange heat, spins tend to align to 
minimize energy. In doing so, they coarsen 
away from the purely random initial state. 
The emergence of this order from disorder 
is a central theme in statistical physics and 
an attractive feature of our approach.

The ability to efficiently generate realis-
tic pond spatial patterns may enable advanc-
es in how researchers account for melt 
ponds and many related physical and bio-
logical processes in global climate models 
(GCMs). Typical GCM grid spacing is tens 
to hundreds of kilometers, so melt ponds are 

subgrid-scale and thus too small to resolve 
on the model grid. Instead, GCMs use 
parameterizations to specify a pond frac-
tion. Specifically, modern parameterizations 
in GCMs track a thermodynamically-driven 
meltwater volume and distribute it over the 
sea ice thickness classes that are present 
in a grid cell, beginning with the thinnest 
class since it presumably has the lowest 
ice height [3]. This yields a pond fraction 
F  and a first-order approximation to sea 
ice albedo, a a a

sea ice water snow
F F= + −( ) ,1  

but does not address how the pond’s area 
is organized spatially. Our simple model 
provides a framework for prescribing a 
subgrid-scale spatial organization whose 
realistic fractal dimension or area-perimeter 
relation could have important influences on 
pond evolution [7].

At this stage, total agreement between 
this simple model and the real world is too 
much to ask. The Ising model is unable to 
resolve features that are smaller than the 
lattice constant, and the metastable state 
also inherits certain unrealistic features 
from the purely random initial condition. 
Nonetheless, the model may be able to use 
more sophisticated rules to reproduce actual 
melt pond evolution. We anticipate that 
emerging techniques—like machine learn-
ing—will deduce such evolutionary rules 
from observational data.
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