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Abstract. Polar sea ice is a critical component of Earth’s climate system. As a material, it is a multiscale
composite of pure ice with temperature-dependent millimeter-scale brine inclusions, and centimeter-scale poly-
crystalline microstructure which is largely determined by how the ice was formed. The surface layer of the polar
oceans can be viewed as a granular composite of ice floes in a sea water host, with floe sizes ranging from
centimeters to tens of kilometers. A principal challenge in modeling sea ice and its role in climate is how to use
information on smaller-scale structures to find the effective or homogenized properties on larger scales relevant
to process studies and coarse-grained climate models. That is, how do you predict macroscopic behavior from
microscopic laws, like in statistical mechanics and solid state physics? Also of great interest in climate science
is the inverse problem of recovering parameters controlling small-scale processes from large-scale observations.
Motivated by sea ice remote sensing, the analytic continuation method for obtaining rigorous bounds on the
homogenized coefficients of two-phase composites was applied to the complex permittivity of sea ice, which
is a Stieltjes function of the ratio of the permittivities of ice and brine. Integral representations for the effective
parameters distill the complexities of the composite microgeometry into the spectral properties of a self-adjoint
operator like the Hamiltonian in quantum physics. These techniques have been extended to polycrystalline mate-
rials, advection diffusion processes, and ocean waves in the sea ice cover. Here we discuss this powerful approach
in homogenization, highlighting the spectral representations and resolvent structure of the fields that are shared
by the two-component theory and its extensions. Spectral analysis of sea ice structures leads to a random ma-
trix theory picture of percolation processes in composites, establishing parallels to Anderson localization and
semiconductor physics and providing new insights into the physics of sea ice.

1 Introduction

The precipitous loss of nearly half the extent of the summer
Arctic sea ice cover in recent decades is perhaps the most
dramatic, large-scale development on Earth’s surface that has
been observed to be connected to planetary warming (Stroeve
et al., 2007, 2012; Maslanik et al., 2007; Notz and Commu-
nity, 2020; Notz and Stroeve, 2016). While the response of
the sea ice pack surrounding the Antarctic continent to the
changing climate has perhaps not been as clear as in the Arc-
tic, this past year the summer sea ice extent set a record low
(Turner et al., 2022), followed by a new record low in Febru-
ary 2023. The emerging dynamics of Earth’s polar marine en-
vironments are complex and highly variable and hence chal-

lenging to understand and predict. Yet these challenges must
be faced; the changing sea ice pack is a key component of
the greater climate system and directly impacts expanding
human activities in these regions. Sea ice has bearing on al-
most any study of the physics or biology of the polar marine
system, as well as on almost any maritime operations or lo-
gistics. Advancing our ability to analyze, model, and predict
the behavior of sea ice is critical to improving projections of
climate change and the response of polar ecosystems and in
meeting the challenges of increased human activities in the
Arctic (Golden et al., 2020).

One of the fascinating, yet formidable aspects of model-
ing sea ice and its role in global climate is the sheer range
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Figure 1. Sea ice as a multiscale composite material. From left to right: millimeter-scale brine inclusions that form the porous microstructure
of sea ice (Golden et al., 2007); centimeter-scale polycrystalline structure of sea ice (Arcone et al., 1986); melt ponds on Arctic sea ice in
late spring and summer (Don Perovich) turning the surface into a two-phase composite of ice and melt water; the sea ice pack as a granular
composite viewed from space (NASA), with “grains” ranging in horizontal extent from meters to tens of kilometers; and the Arctic Ocean
viewed from space (NASA).

of relevant length scales – over 10 orders of magnitude, from
the sub-millimeter scale to thousands of kilometers, as indi-
cated in Fig. 1. Modeling the macroscopic behavior of sea ice
on scales appropriate for climate models and process studies
depends on understanding the properties of sea ice on finer
scales, down to individual floes and even the scale of the
brine inclusions which control many of the distinct physical
characteristics of sea ice as a material. Climate models chal-
lenge the most powerful supercomputers to their fullest ca-
pacity. However, even the largest computers still limit the res-
olution to tens of kilometers and typically require clever ap-
proximations and parameterizations to incorporate the basic
physics of sea ice (Golden et al., 2020; Golden, 2015, 2009).
One of the fundamental challenges in modeling sea ice – and
a central theme in what follows – is how to account for the
influence of the microscale on macroscopic behavior, that is,
how to rigorously use information about smaller scales to
predict effective behavior on larger scales. Here we consider
three different homogenization problems in the physics of
sea ice: the classic two-phase problem of brine inclusions in
an ice host; sea ice as a polycrystalline material; and advec-
tion diffusion processes such as thermal conduction or nutri-
ent diffusion in the presence of, e.g., convective brine flow.
All of these questions are also of particular interest in polar
microbial ecology (Thomas and Dieckmann, 2003; Reimer
et al., 2022).

We observe that this central problem of finding the effec-
tive properties of sea ice is analogous to the main focus of
statistical mechanics, where the dynamics of molecular inter-
actions are used to find the macroscopic behavior of physical
systems (Thompson, 1988; Christensen and Moloney, 2005).
Moreover, mathematical homogenization theory for differ-
ential equations with random coefficients similarly seeks to
find the large-scale effective behavior from some knowledge
about the local coefficients (Milton, 2002; Torquato, 2002;
Bensoussan et al., 1978; Papanicolaou and Varadhan, 1982;
Kozlov, 1989). These fields of physics and applied mathe-
matics provide a natural framework for treating sea ice in
predictive models of climate and improving projections of
how Earth’s polar ice packs may evolve in the future.

The analytic continuation method (ACM) (Bergman,
1980; Milton, 1980; Golden and Papanicolaou, 1983;
Golden, 1997b; Milton, 2002), in particular, yields power-
ful integral representations for the effective or homogenized
transport coefficients of two-component (Golden and Papani-
colaou, 1983) or multicomponent (Golden and Papanicolaou,
1985; Golden, 1986) media. The method exploits the proper-
ties of these coefficients as analytic functions of ratios of the
constituent parameters for two-phase media, such as the ra-
tio of the electrical or thermal conductivities or the complex
permittivities. The geometry of the composite microstructure
is encoded into a self-adjoint operator G through the charac-
teristic function which takes the values 1 in one component
(brine) and 0 in the other (ice). The key step in obtaining
the integral representation, say in the case of electrical con-
ductivity, is to derive a formula for the local electric field in
terms of the resolvent of G and then apply the spectral theo-
rem in an appropriate Hilbert space. This representation for
the effective conductivity (or effective complex permittivity)
achieves a complete separation between the component pa-
rameters in the variable and the geometry of the microstruc-
ture embedded in the spectral measure of G. In a discrete
model of a composite, the operator G becomes a random
matrix, whose eigenvalues and eigenvectors can be used to
compute the spectral measure (Murphy et al., 2015).

The Stieltjes or Herglotz structure of the effective param-
eters and their integral representations can be used to find
rigorous bounds on the homogenized transport coefficients
(Bergman, 1980; Milton, 1980; Golden and Papanicolaou,
1983; Golden, 1986; Baker and Graves-Morris, 1996; Mil-
ton, 2002; Gully et al., 2015; Cherkaev, 2019). The bounds
are based on knowledge of the moments of the spectral mea-
sure or the correlation functions of the composite microstruc-
ture. Bounds on the complex permittivity of sea ice as a two-
phase composite were first obtained in the context of remote
sensing and the mathematical analysis of sea ice electromag-
netic properties (Golden, 1995; Golden et al., 1998b, c). For
example, the mass of the spectral measure is the brine vol-
ume fraction. If this is known, then one can obtain elemen-
tary bounds in the complex case, which reduce to the clas-
sical arithmetic and harmonic mean bounds for real param-
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eters. If the microgeometry is further assumed to be statis-
tically isotropic, then tighter Hashin-Shtrikman bounds can
be obtained. Tighter bounds can be obtained when the com-
posite is assumed to have a matrix-particle structure, e.g.,
separated brine inclusions in a pure ice host (Bruno, 1991;
Golden, 1997b). Such structure leads to gaps in the spectrum
of G and tighter constraints on the support of the spectral
measure.

In remote sensing applications of the inverse homoge-
nization problem (Cherkaev and Golden, 1998; Cherkaev,
2001), one uses measurements of bulk electromagnetic be-
havior, such as the effective complex permittivity, to ob-
tain information about the spectral measure (Cherkaev, 2001)
and bounds on the microstructural characteristics, such as
the brine volume fraction, connectivity (Cherkaev and Tripp,
1996; Cherkaev and Golden, 1998; Golden et al., 1998b;
Gully et al., 2007; Orum et al., 2012; Cherkaev and Bonifasi-
Lista, 2011), and crystal orientation (Gully et al., 2015). The
microscale structure, which determines the spectral measure
and the homogenized coefficient, is thus linked to the macro-
scopic behavior via the operatorG and its spectral character-
istics, and vice versa. In the multicomponent case with three
or more constituents, the homogenized transport coefficients
are analytic functions of two or more complex variables, and
a polydisc representation formula was found to obtain rigor-
ous bounds (Golden and Papanicolaou, 1985; Golden, 1986).

The first area of application where the ACM was extended
beyond the classical case of two-component and multiphase
composites is diffusive transport in the presence of a flow
field, which is widely encountered throughout science and
engineering (McLaughlin et al., 1985; Biferale et al., 1995;
Fannjiang and Papanicolaou, 1994, 1997; Pavliotis, 2002;
Majda and Kramer, 1999; Majda and Souganidis, 1994; Xin,
2009). In addition to thermal, saline, and nutrient trans-
port through the porous microstructure of sea ice, large-
scale transport of ice floes and heat are also advection dif-
fusion processes. Avellaneda and Majda (1989, 1991) found
a Stieltjes integral representation for the effective diffusiv-
ity as a function of the Péclet number for diffusion in an in-
compressible velocity field. Based on the approach in Golden
and Papanicolaou (1983), they set up a Hilbert space frame-
work and applied the spectral theorem to a resolvent rep-
resentation involving analogues of G and the electric field,
where the spectral measure depends on the geometry of the
velocity field, and knowledge of its moments yields bounds
on the effective diffusivity. In Murphy et al. (2017b, 2020a)
we proved novel versions of the Stieltjes formulas. We also
developed a framework to numerically compute the spectral
measures and a systematic method to find its moments – and
thus a hierarchy of bounds (Bergman, 1982; Golden, 1986)
for both the time-dependent and time-independent cases.

In another extension of the ACM to a large class of media,
a Stieltjes integral representation and rigorous bounds for the
effective complex permittivity of polycrystalline media were
developed in Gully et al. (2015), based on a resolvent for-

mula for the electric field and earlier observations in Mil-
ton (1981), Bergman and Stroud (1992), and Milton (2002).
The bounds assume knowledge of the average crystal ori-
entation and the complex permittivity tensor of an individ-
ual crystal grain. In sea ice, finding the complex permittiv-
ity tensor of an individual crystal involves homogenizing the
smaller-scale brine microstructure (Gully et al., 2015). The
polycrystalline structure of sea ice, as characterized by the
statistics of grain size, shape, and orientation, is influenced
by the conditions under which the ice was grown (Weeks
and Ackley, 1982; Petrich and Eicken, 2009; Untersteiner,
1986). For example, while sea ice grown in quiescent condi-
tions tends to have rather large-grained columnar structure,
when grown in more turbulent or wavy conditions, it typi-
cally has a fine-grained granular structure. These distinctly
different ice types have quite different fluid flow properties
(Golden et al., 1998a). Additionally, when there is a well-
defined current direction during formation, crystal orienta-
tions tend to be statistically anisotropic within the horizontal
plane (Weeks and Gow, 1980). This can significantly affect
the sea ice radar signature used in measurements of sea ice
thickness and other properties used to validate climate mod-
els (Golden and Ackley, 1981).

The interaction of ocean surface waves with polar sea
ice is a critical process in Earth’s climate system; its ac-
curate representation is of great importance for developing
efficient climate models. Declining summer sea ice has in-
creased wave activity and the importance of ice–ocean in-
teractions in the Arctic (Waseda et al., 2018). The Arctic
marginal ice zone (MIZ), the transitional region between
dense pack ice and open ocean characterized by strong wave-
ice and atmosphere–ice–ocean interactions, has widened sig-
nificantly (Strong and Rigor, 2013). These recent changes
can have complex implications for both sea ice formation
and melting (Li et al., 2021). Indeed, the propagation of sur-
face waves through Earth’s sea ice covers is a complex phe-
nomenon that drives their growth and decay. One of the main
approaches to studying waves in sea ice which is valid when
wavelengths are much greater than floe sizes is to model the
surface layer of the ice-covered ocean as a continuum with
effective properties (Bates and Shapiro, 1980; Keller, 1998;
Wang and Shen, 2010; Mosig et al., 2015). Recently, this
fundamental problem in sea ice physics was homogenized
with a Stieltjes integral representation for the effective com-
plex viscoelasticity of the surface layer, based on a resolvent
formula for the local strain field (Sampson, 2017). The in-
tegral involves a spectral measure of a self-adjoint operator
which depends on the geometry of the floe configurations.
The mass of the spectral measure is the area fraction of the
ocean covered by sea ice, which is a standard satellite data
product known as the sea ice concentration field. If the mea-
sure’s mass is known, rigorous bounds can be obtained on
the complex viscoelastic parameter. Previously, this effective
parameter had only been fitted to wave data.
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Early on in our work in extending the ACM to the above
problems in sea ice physics, it was clear that the classi-
cal approach based on bounding effective parameters using
the moments of the spectral measure would, in many cases,
have limited effectiveness. Bounds with only a moment or
two known can be quite wide, particularly for a high con-
trast in the properties of the constituents, like in sea ice.
We then developed a framework in the classic two-phase
case for computing the spectral measure through discretiza-
tion of the relevant microstructures and finding the eigen-
values and eigenvectors of the matrix representation of G.
By developing the mathematical foundation for these com-
putations (Murphy et al., 2015) and studying the properties
of computed spectral measures for a broad range of sea ice
and other microstructures, like human bone (Golden et al.,
2011; Bonifasi-Lista and Cherkaev, 2008, 2009; Bonifasi-
Lista et al., 2009; Cherkaev and Bonifasi-Lista, 2011), we
discovered that eigenvalue statistics displayed fascinating be-
havior depending on the connectedness of one of the phases.

The statistical behavior of the spectrum is related to the
extent that the eigenfunctions overlap. A key example is
the Anderson theory of the metal–insulator transition (MIT)
(Anderson, 1958; Evers and Mirlin, 2008), which provides
a powerful theoretical framework for understanding when a
disordered medium allows electronic transport and when it
does not. Indeed, for large enough disorder, the electrons are
localized in different places with uncorrelated energy lev-
els described by Poisson statistics (Shklovskii et al., 1993;
Kravtsov and Muttalib, 1997). For small disorder, the wave
functions are extended and overlap, giving rise to corre-
lated Wigner–Dyson (WD) statistics (Shklovskii et al., 1993;
Kravtsov and Muttalib, 1997) with strong level repulsion
(Guhr et al., 1998). In work on the effective complex per-
mittivity for electromagnetic wave propagation through two-
phase composites in the long wavelength regime (or other
transport coefficients such as thermal or electrical conductiv-
ity), we found an Anderson transition in spectral characteris-
tics as the microstructure developed long-range order in the
approach to a percolation threshold (Murphy et al., 2017a).
We observed transitions in localization characteristics of the
field vectors and associated transitions in spectral behavior
from uncorrelated Poissonian statistics to universal (repul-
sive) Wigner–Dyson statistics, reminiscent of the Gaussian
orthogonal ensemble (GOE) in random matrix theory. More-
over, mobility edges appear in a manner akin to Anderson lo-
calization, where such edges mark the characteristic energies
of the quantum MIT (Guhr et al., 1998). In Morison et al.
(2022) a novel class of two-phase media was introduced –
twisted bilayer composites – based on Moiré patterns, that
display exotic effective properties and dramatic transitions in
spectral behavior with very small changes in system param-
eters.

We have laid the groundwork for rigorous mathematical
modeling of sea ice processes using Stieltjes integral repre-
sentations for homogenized parameters in several contexts

of importance (Murphy and Golden, 2012; Murphy et al.,
2015; Gully et al., 2015; Murphy et al., 2017a, b, 2020a;
Golden et al., 2020; Golden, 2015, 2009, 1997b; Golden
et al., 1998b, c). We also mention a significant recent ad-
vance in obtaining a Stieltjes integral representation for the
fluid permeability of a porous medium (Bi et al., 2023) and
an excellent, recent review of Stieltjes integrals in materi-
als science (Luger and Ou, 2022; Ou and Luger, 2022). The
permeability result is relevant for sea ice modeling (Golden
et al., 1998a, 2007; Golden, 2009) and has eluded mathemat-
ical inquiry for quite some time.

We have focused here on the central role that the com-
posite “microgeometry” plays – via the operator G and its
spectral measure (and analogues) – in determining effective
behavior on scales relevant to coarse-grained climate models
and studies of sea ice processes. The geometry represents dif-
ferent composite structures in different contexts. At the finest
scales, the millimeter-scale brine inclusion microstructure
determines the properties of individual sea ice crystallites,
whose size and orientation statistics make up the centimeter-
scale polycrystalline microgeometry. Convective fluid flow
fields help transport heat, salt, and nutrients, where the flow
field geometry on centimeter to meter scales plays the role
of the composite microstructure in advection–diffusion pro-
cesses. Ponds on the surface of melting Arctic sea ice floes
define the microgeometry of the surface composite of melt
water and snow on meter to kilometer scales. The surface
layer of the ocean is a composite of sea water and sea ice,
with microgeometry defined by the concentration, geometry,
and arrangement of the ice floes on scales of meters to tens
of kilometers. Large-scale ice pack dynamics and transport
on the scale of the Arctic Ocean are determined primarily by
advective and thermal forcing. The “microstructure” of these
advective wind and current fields, as well as the temperature
field, can be on scales from meters to hundreds of kilometers.

Stieltjes integral representations provide information on a
wide range of transport parameters, including electrical and
thermal conductivity, complex permittivity, diffusion coeffi-
cient, and fluid permeability. These parameters can be used
as direct inputs into physical, biogeochemical, and ecologi-
cal models of sea ice processes and in large-scale numerical
models. The interplay between homogenization techniques
like the analytic continuation method here and models of
phase transitions in statistical physics (Banwell et al., 2023)
is particularly interesting across the full range of scales.
From the millimeter-scale brine inclusions (Golden et al.,
1998a, 2007) to meter-scale melt ponds (Ma et al., 2019)
and the thermal properties of the ice pack itself, our Stielt-
jes representations provide rigorous theories of how effective
parameters depend on the constituent parameters and mix-
ture geometries. Finally, we note that in applications of the
ACM to wave phenomena, such as the effective complex per-
mittivity for electromagnetic waves propagating through the
sea ice, the theory holds in the quasistatic regime where the
wavelength in the medium is assumed to be much longer than
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the microstructural scale. Typically, electromagnetic waves
in the megahertz and low gigahertz frequency ranges satisfy
this condition. For the effective complex viscoelasticity of
the upper layer of the ocean, the Stieltjes representation holds
again in the quasistatic regime where the wavelength is larger
than the typical floe size.

The analytic continuation method is a powerful approach
in homogenization that provides a robust mathematical
framework for rigorously studying effective properties in the
sea ice system. The body of work that is discussed here will
advance our sea ice modeling capabilities and how sea ice
is represented in global climate models, which will improve
projections of the fate of sea ice and the ecosystems it sup-
ports. Moreover, the functions we study here in the sea ice
context share the same mathematical properties as effective
parameters in many other areas of science and engineering.
Indeed, our work based on Stieltjes integrals has advanced
the physics of materials related to twisted bilayer graphene
and quasicrystals (Morison et al., 2022), biomedical en-
gineering of human bone (Golden et al., 2011; Bonifasi-
Lista and Cherkaev, 2008, 2009; Bonifasi-Lista et al., 2009;
Cherkaev and Bonifasi-Lista, 2011), and our understanding
of the physical properties of general polycrystalline media in
geosciences and other fields (Gully et al., 2015; Cherkaev,
2019).

2 Percolation models

Connectedness of one phase in a composite material is of-
ten the principal feature of the mixture geometry which de-
termines effective behavior. For example, if highly conduct-
ing inclusions are sparsely distributed, forming a discon-
nected phase within a poorly conducting encompassing host,
then the effective conductivity will be poor as well. How-
ever, if there are enough conducting inclusions so that they
form connected pathways through the medium, then the ef-
fective conductivity will be much closer to that of the inclu-
sions. Percolation theory (Broadbent and Hammersley, 1957;
Stauffer and Aharony, 1992; Grimmett, 1989; Bunde and
Havlin, 1991) focuses on connectedness in disordered and in-
homogeneous media and has provided the theoretical frame-
work for describing the behavior of fluid flow through sea ice
(Golden et al., 1998a, 2007; Golden, 2009).

Consider the d-dimensional integer lattice Zd , and the
square or cubic network of bonds joining nearest-neighbor
lattice sites. In the percolation model (Broadbent and Ham-
mersley, 1957; Stauffer and Aharony, 1992; Grimmett, 1989;
Bunde and Havlin, 1991), we assign to each bond a conduc-
tivity σ0 > 0 with probability p, meaning it is open (black),
and with probability 1−p we assign σ0 = 0, meaning it is
closed. Two examples of lattice configurations are shown in
Fig. 2 with p = 1/3 in (a) and p = 2/3 in (b). Groups of
connected open bonds are called open clusters. In this model
there is a critical probability pc, 0< pc < 1, the percolation

threshold, at which the average cluster size diverges and an
infinite cluster appears. For the d = 2 bond lattice, pc = 1/2.
For p < pc the infinite cluster density P∞(p)= 0, while
for p > pc, P∞(p)> 0 and near the threshold, P∞(p)∼
(p−pc)β as p→ p+c , where β is a universal critical ex-
ponent. It depends only on dimension and not on the de-
tails of the lattice. Let x,y ∈ Zd and τ (x,y) be the proba-
bility that x and y belong to the same open cluster. Then
for p < pc, τ (x,y)∼ e−|x−y|/ξ (p), and the correlation length
ξ (p)∼ (pc−p)−ν diverges with a universal critical exponent
ν as p→ p−c , as shown in Fig. 2c.

The effective conductivity σ ∗(p) of the lattice, now
viewed as a random resistor (or conductor) network, de-
fined via Kirchoff’s laws, vanishes for p < pc like P∞(p)
since there are no infinite pathways, as shown in Fig. 2e. For
p > pc, σ ∗(p)> 0, and near pc, σ ∗(p)∼ σ0(p−pc)t , p→
p+c , where t is the conductivity critical exponent, with 1≤
t ≤ 2 in d = 2,3 (Golden, 1990, 1992, 1997a), and numer-
ical values t ≈ 1.3 in d = 2 and t ≈ 2.0 in d = 3 (Stauffer
and Aharony, 1992). Consider a random pipe network with
fluid permeability k∗(p) exhibiting similar behavior k∗(p)∼
k0(p−pc)e, where e is the permeability critical exponent,
with e = t (Chayes and Chayes, 1986; Sahimi, 1995; Golden,
1997a). Both t and e are believed to be universal – they de-
pend only on dimension and not the lattice. Continuum mod-
els such as the Swiss cheese model can exhibit nonuniversal
behavior with exponents different from the lattice case and
e 6= t (Halperin et al., 1985; Feng et al., 1987; Stauffer and
Aharony, 1992; Sahimi, 1994; Kerstein, 1983).

3 Analytic continuation for two-phase composites

We now describe the analytic continuation method (ACM)
for studying the effective properties of composites (Bergman,
1980; Milton, 1980; Golden and Papanicolaou, 1983;
Golden, 1997b). This method has been used to obtain rig-
orous bounds on bulk transport coefficients of compos-
ite materials from partial knowledge of the microstruc-
ture, such as the volume fractions of the phases. Exam-
ples of transport coefficients to which this approach ap-
plies include the complex permittivity, electrical and ther-
mal conductivity, diffusivity, magnetic permeability, and
elasticity (Cherkaev, 2001; Cherkaev and Bonifasi-Lista,
2011; Cherkaev, 2019; Ou and Cherkaev, 2006; Ou,
2012; Kantor and Bergman, 1982; Avellaneda and Majda,
1989, 1991; Murphy et al., 2020b, 2017b). In the works of
Golden (Golden, 1995, 1997b, 2015, 2009; Golden et al.,
1998b, c, 2020), rigorous bounds on the complex permittivity
of sea ice were found.

To set ideas we focus on the complex permittivity, keep-
ing in mind the broad applicability of the ACM. Consider
a two-phase random medium with local permittivity tensor
ε(x,ω), a spatially stationary random field in x ∈ Rd and
ω ∈�, where � is the set of realizations of the medium.
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Figure 2. The two-dimensional square lattice percolation model below its percolation threshold of pc = 1/2 in (a) and above it in (b).
(c) Divergence of the correlation length as p approaches pc. The infinite cluster density of the percolation model is shown in (d), and the
effective conductivity is shown in (e).

We consider a two-phase locally isotropic medium, where
the components εjk , j,k = 1, ..,d , of ε satisfy

εjk(x,ω)= ε(x,ω)δjk , (1)

where d is dimension, δjk is the Kronecker delta, and

ε(x,ω)= ε1χ1(x,ω)+ ε2χ2(x,ω) . (2)

Later, we will consider a polycrystalline medium where ε is
a non-trivial symmetric matrix. Here, χi(x,ω) is the char-
acteristic function of medium i = 1,2, equaling 1 for ω ∈�
with medium i at x and 0 otherwise, with χ1+χ2 = 1. The
random electric and displacement fieldsE(x,ω) andD(x,ω)
satisfy

∇×E = 0 , ∇ ·D = 0 , D = εE . (3)

A variational problem (Golden and Papanicolaou, 1983) es-
tablishes that E can be written as E =Ef +E0 satisfying

E =Ef +E0 , ∇×Ef = 0 , 〈D ·Ef 〉 = 0 , 〈E〉 =E0 . (4)

In simpler terms, this says that curl-free and divergence-free
fields are orthogonal (Helmholtz’s theorem).

The effective permittivity tensor ε∗ is defined as 〈D〉 =
ε∗〈E〉, where 〈·〉 is ensemble averaging over � or, by an er-
godic theorem, spatial average over all of Rd (Golden and
Papanicolaou, 1983). We prescribe that E0 has direction ek ,
the kth direction unit vector, and focus on the diagonal co-
efficient ε∗ = ε∗kk , with ε∗ = 〈εE · ek〉. The key step of the
method is to obtain the following Stieltjes integral represen-
tation for ε∗ (Bergman, 1978; Milton, 1980; Golden and Pa-
panicolaou, 1983; Milton, 2002):

F (s)= 1−
ε∗

ε2
=

1∫
0

dµ(λ)
s− λ

, s =
1

1− ε1/ε2
, (5)

where µ is a positive Stieltjes measure with support in [0,1],
and F plays the role of a (negative) electric susceptibility
(Bergman, 1978). In the variable s = 1/(1−h), with h=
ε1/ε2, F (s) is a Stieltjes function (Golden, 1997c; Cherkaev,
2001; Murphy and Golden, 2012). This representation arises

from a resolvent formula for the electric field (in medium 1)
(Murphy et al., 2015; Cherkaev, 2001; Golden and Papani-
colaou, 1983):

χ1E = s(sI −G)−1χ1ek , G= χ10χ1, (6)

yielding F (s)= 〈[(sI −G)−1χ1ek] · ek〉, where
0 =−∇(−1)−1∇· is a projection onto the range of
the gradient operator ∇ and I is the identity operator.
Equation (5) is the spectral representation of the resolvent
formula in Eq. (6), and µ is a spectral measure of the
self-adjoint operator G= χ10χ1 on L2(�,P ).

A critical feature of Eq. (5) is that the component parame-
ters in s are separated from the geometrical information in µ.
Information about the geometry enters through the moments

µn =

1∫
0

λndµ(λ)= 〈G nχ1ek ·χ1ek〉. (7)

Then µ0 = φ, where φ is the volume or area fraction of
phase 1, such as the brine volume fraction, the open-water
area fraction, or melt pond coverage, and µ1 = φ(1−φ)/d if
the material is statistically isotropic. In general, µn depends
on the (n+1)-point correlation function of the medium. This
integral representation yields rigorous forward bounds for
the effective parameters of composites, given partial infor-
mation on the microgeometry via the µn (Bergman, 1980;
Milton, 1980; Golden and Papanicolaou, 1983; Bergman,
1982). The integral representations can also yield inverse
bounds, allowing one to use data about the electromag-
netic response of a sample to bound its structural param-
eters such as the volume fraction of each of the compo-
nents (McPhedran et al., 1982; McPhedran and Milton, 1990;
Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998;
Cherkaev, 2001; Zhang and Cherkaev, 2009; Bonifasi-Lista
and Cherkaev, 2009; Cherkaev and Bonifasi-Lista, 2011;
Day and Thorpe, 1999; Golden et al., 2011; Cherkaev, 2020).
See Sect. 5 for more details.

3.1 Spectral measure computations for two-phase
composites

Computing the spectral measure µ for a given 2D com-
posite microstructure first involves discretizing a two-phase
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image of the composite into a square lattice filled with 1s
and 0s corresponding to the two phases. On this square lat-
tice, the action of the differential operators ∇ and ∇· is de-
fined in terms of forward- and backward-difference operators
(Golden, 1992; Murphy et al., 2015). Then the key opera-
tor χ10χ1, which depends on the geometry of the network
via χ1, becomes a real-symmetric matrix M (Murphy et al.,
2015). Here 0 is a (non-random) projection matrix which de-
pends only on the lattice topology and boundary conditions,
and χ1 is a diagonal (random) projection matrix which deter-
mines the geometry and component connectivity of the com-
posite medium (Gully et al., 2015; Murphy et al., 2015). An-
other spectral approach to finding effective properties based
on analytic continuation relies on computation of the elec-
tromagnetic eigenstates of individual inclusions (Bergman
et al., 2020; Bergman, 2022).

The powerful integral representation in Eq. (5) is formu-
lated in a continuum setting. However, in order to actually
compute the spectral measures, we must discretize, for ex-
ample, an image of the brine inclusions or ice floes onto a
lattice, and represent the operator G as a matrix. The follow-
ing theorem provides a rigorous mathematical formulation
of integral representations for the effective parameters for
finite-lattice approximations of two-component media and
tells how to compute the spectral measures. The electric field
decomposition in this theorem is established using the fun-
damental theorem of linear algebra and orthogonality proper-
ties of the ranges and kernels of matrix representations for ∇,
∇×, and ∇· (Huang et al., 2019) and will be published else-
where. The integral representation in Eq. (8) is established in
Theorem 2.1 of Murphy et al. (2015).

Theorem 1. For each ω ∈�, let M(ω)=W(ω)3(ω) WT (ω)
be the eigenvalue decomposition of the real-symmetric ma-
trix M(ω)= χ1(ω)0χ1(ω). Here, the columns of the ma-
trix W(ω) consist of the orthonormal eigenvectors wi(ω),
i = 1, . . .,N , of M(ω), and the diagonal matrix 3(ω)=
diag(λ1(ω), . . .,λN (ω)) involves its eigenvalues λi(ω). De-
note Qi = wi w

T
i the projection matrix onto the eigenspace

spanned by wi and denote δλi (dλ) the Dirac δ measure cen-
tered at λi . The electric field E(ω) satisfies E(ω)=E0+

Ef (ω), with E0 = 〈E(ω)〉 and 0E(ω)=Ef (ω), and χ1E

satisfies the resolvent formula in Eq. (6) with G replaced by
M. The effective complex permittivity tensor ε∗ has compo-
nents ε∗jk , j,k = 1, . . .,d , which satisfy

ε∗jk = ε2(δjk −Fjk(s)), Fjk(s)=

1∫
0

dµjk(λ)
s− λ

,

dµjk(λ)=
N∑
i=1
〈δλi (dλ) χ1 Qi êj · êk〉 . (8)

From Theorem 1, the integral and χ1E in Eqs. (5) and (6)
have explicit representations in terms of the eigenvalues λi

and eigenvectors wi of M (Murphy et al., 2015, 2017a),

χ1E = s
∑
i

mi

s− λi
wi , F (s)=

∑
i

〈
m2
i

s− λi

〉
,

mi = χ1wi · êk, (9)

where êk plays the role of a standard basis vector on the
lattice. To compute µ, a non-standard generalization of the
spectral theorem for matrices is required, due to the projec-
tive nature of the matrices χ1 and 0 (Murphy et al., 2015).
We developed a projection method that shows the spectral
measure µ in Eq. (8) depends only on the eigenvalues and
eigenvectors of random submatrices of 0 of size N1 ≈ φN .
They correspond to diagonal components [χ1]ii = 1, as the
spectral weights mi (Christoffel numbers) associated with
eigenvectors satisfying χ1wi = 0 are themselves zero, mi =
0 (Murphy et al., 2015). Fortunately, since these submatri-
ces are much smaller for low volume fractions, this method
greatly improves the efficiency and accuracy of numerical
computations of µ.

The measure µ exhibits fascinating transitional behavior
as a function of system connectivity. For example, in the
case of a random resistor network (RRN) with a low vol-
ume fraction p of open bonds, as shown in Fig. 2a, there
are spectrum-free regions at the spectral endpoints λ= 0,1
(Murphy and Golden, 2012; Murphy et al., 2015). However,
as p approaches the percolation threshold pc (Stauffer and
Aharony, 1992; Torquato, 2002) and the system becomes
increasingly connected, these spectral gaps shrink and then
vanish (Murphy and Golden, 2012; Jonckheere and Luck,
1998), leading to the formation of δ components of µ at
the spectral endpoints, precisely (Murphy and Golden, 2012)
when p = pc (and p = 1−pc in d = 3). This leads to crit-
ical behavior of σ ∗ for insulating/conducting and conduct-
ing/superconducting systems (Murphy and Golden, 2012).
This gap behavior of µ has led (Golden, 1997c; Murphy and
Golden, 2012) to a detailed description of these critical tran-
sitions in σ ∗, which is analogous to the Lee–Yang–Ruelle–
Baker description (Baker, 1990; Golden, 1997c) of the Ising
model phase transition in the magnetization M . Moreover,
using this gap behavior, all of the classical critical exponent
scaling relations were recovered (Murphy and Golden, 2012;
Golden, 1997c) without heuristic scaling forms (Efros and
Shklovskii, 1976) but instead by using the rigorous integral
representation for σ ∗ involving µ.

This spectral behavior emerges in all the systems men-
tioned above, such as the brine microstructure of sea
ice (Golden et al., 1998a, 2007; Golden, 2009) as shown in
Fig. 3, melt ponds on the surface of Arctic sea ice (Hoheneg-
ger et al., 2012) as shown in Fig. 4, and the sea ice pack
itself (Murphy et al., 2017a) in Fig. 5. This also gives rise to
critical behavior of the electric field, as shown in Fig. 3 for
2D cross sections of 3D brine microstructure, with E0 taken
to be in the vertical direction. Disconnected and weakly con-
nected examples of brine microstructure have small values of
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Figure 3. Electric fields and spectral measures for sea ice brine microstructure. (a) Electric field values in log-10 scale for X-ray CT images
of 2D vertical cross sections of sea ice brine microstructure, with increasing connectivity from left to right. (b) Corresponding spectral
functions µ(λ) (histogram representations) of the spectral measure µ in (c) and (d), which display spectral weights m2

i
versus the associated

eigenvalues λi of the matrix M and index i, respectively, where φ is the brine area fraction of the images in (a). The vertical bars in (d)
delineate the δ functions at the spectral endpoints λ= 0,1 seen in (c) from the rest of the spectrum, where λi . 10−14 and 1− λi . 10−14.
As the percentage of brine increases, the fluid phase becomes increasingly connected, resulting in a substantial increase in the strength of the
electric field, with “hot spots” forming in geometric bottlenecks. Macroscopic connectivity of the brine phase is characterized by the mass
of the δ function at λ= 0 switching from numerically zero, with the m2

i
. 10−30, to m2

i
∼ 1, giving rise to the “hot spots” in E via Eq. (9).

The electrical permittivity is taken to be ε1 = 63.3+ i1930 for brine and ε2 = 3.06 for ice (Backstrom and Eicken, 2006). E0 is taken to be
vertically oriented.

the electric field, while strongly connected brine microstruc-
tures are characterized by a substantial increase in the elec-
tric field’s strength, with “hot spots” forming in geometric
bottlenecks. A similar behavior is exhibited by the tempera-
ture gradient ∇T associated with the Stieltjes integral for the
effective thermal conductivity κ∗, as shown for melt ponds
atop Arctic sea ice in Fig. 4 and for Arctic pack ice in Fig. 5.

3.2 Generalization to rank deficient setting

In the periodic setting, for example, the matrix Laplacian
is singular, so the matrix representation of (−1)−1 in 0 is

not defined. We now extend the mathematical framework
developed in Murphy et al. (2015) to this setting. To make
the connection to the abstract Hilbert space (Golden and
Papanicolaou, 1983) and full-rank matrix (Murphy et al.,
2015) settings, we first give relevant details for these cases.
Equation (6) for the abstract Hilbert space setting follows
by applying the operator −∇(−1)−1 to the formula ∇ ·

D = 0, yielding 0D = 0. Equation (6) then follows by us-
ing 0Ef =Ef and 0E0 = 0 (Murphy et al., 2015), since
Ef is in the range of 0 and E0 is constant (Murphy
et al., 2020a, 2017b, 2015). The matrix form of ∇ ·D = 0
is −∇TD = 0, where ∇ now represents the finite-difference
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Figure 4. Temperature gradient fields and spectral functions for sea ice melt pond microstructure. (a) Temperature gradient field values
in log-10 scale for melt pond microstructure atop Arctic sea ice, with increasing connectivity from left to right (images courtesy of Don
Perovich), with corresponding spectral functions µ(λ) displayed below in (b). Here the gradient of temperature T , −∇T , plays the role of
Ef in Eqs. (3) and (4) (Milton, 2002) (Ef =−∇ϕ for some electrical potential ϕ); the component thermal conductivities κi , i = 1,2, play
the role of the complex electrical permittivities εi ; and the heat currentQ plays the role of the displacement fieldD; here, φ is the melt pond
area fraction for the images in (a). Analogous to Fig. 3, as the fluid phase becomes increasingly connected on macroscopic length scales, a
buildup of spectral measure mass at λ= 0 shown in (b) leads to the formation of a δ function at λ= 0, with corresponding switching in the
values of the m2

i
from numerically zero, with the m2

i
. 10−30 for the left an middle figure panels, to m2

i
∼ 1 for the rightmost panel. The δ

function at λ= 1 is also analogous to that in Fig. 3. Like E0 in Fig. 3, we take the average thermal gradient to be vertically oriented. The
thermal conductivity is taken to be κ1 = 0.5606 W m−1 K−1 for melt ponds and κ2 = 0.3073 W m−1 K−1 for the surrounding snow (Yen,
1981).

Figure 5. Temperature gradient fields and spectral functions for Arctic pack ice microstructure. (a) Temperature gradient field values in
log-10 scale for Arctic pack ice microstructure, with increasing connectivity from left to right (images courtesy of Don Perovich), with
corresponding spectral functions µ(λ) displayed below in (b). Analogous to Fig. 3, as the fluid phase becomes increasingly connected on
macroscopic length scales, a buildup of spectral measure mass at λ= 0 shown in (b) leads to the formation of a δ function at λ= 0; here, φ is
the open-ocean area fraction for the images in (a). We see a corresponding switching in the values of the m2

i
from numerically zero, with the

m2
i
. 10−30 for the left and middle figure panels, tom2

i
∼ 1 for the rightmost panel. The δ function at λ= 1 is also analogous to that in Fig. 3.

Like E0 in Fig. 3, we take the average thermal gradient to be vertically oriented. Thermal conductivity is taken to be κ1 = 0.57 W m−1 K−1

for ocean and κ2 = 2.11 W m−1 K−1 for ice floes (Pringle et al., 2006).
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matrix representation of the gradient operator and −∇T is
the finite-difference representation of the divergence opera-
tor, with negative matrix Laplacian given by ∇T∇ (Murphy
et al., 2015). As before, in Murphy et al. (2015) we applied
the matrix ∇(∇T∇)−1 to the formula −∇TD = 0, yielding
0D = 0, where 0 =∇(∇T∇)−1∇T , and Eq. (6) follows the
same way as before, using the fact that E0 is in the orthogo-
nal complement of the range of ∇, so 0E0 = 0.

Now consider the singular value decomposition of the
matrix gradient (Murphy et al., 2020a) of size m× n, say,
∇ = U6VT . Here U is a m×n matrix satisfying UTU= In;
6 is a n× n diagonal matrix with diagonal entries consist-
ing of the singular values of ∇; and V is a n× n orthogonal
matrix satisfying VTV= VVT = In, where In is the iden-
tity matrix of size n. When the matrix gradient is full rank
it has n strictly positive singular values, so 6 is an invert-
ible matrix, and the matrix representation of 0 is given by
0 = UUT . On the other hand, when the matrix gradient is
singular we have 6 = diag(61,0, . . .,0), where the diagonal
matrix 61 contains the n1 strictly positive singular values of
6 and the rest of the singular values have value 0. Denot-
ing U1 and V1 to be the columns of U and V corresponding
to the diagonal entries of 61, we have ∇ = U161VT1 , where
61 is invertible and UT1 U1 = VT1 V1 = In1 . This enables us
to write −∇TD = 0 as −V161UT1 D = 0; hence UT1 D = 0
and U1UT1 D = 0. Noting that the columns of U1 span the
range of the matrix gradient ∇, the matrix U1UT1 is a pro-
jection onto the range of ∇ (Murphy et al., 2020a). Defining
0 = U1UT1 , Eq. (6) follows the same way as before, using the
fact that E0 is in the orthogonal complement of the range of
∇ so 0E0 = 0. This clearly generalizes the full-rank setting.
More details will be published elsewhere.

4 Analytic continuation for polycrystalline media

Sea ice is a composite material with polycrystalline mi-
crostructure on the millimeter to centimeter scale. When sea
water freezes under turbulent conditions, granular sea ice
forms, which has small crystals with isotropic orientation an-
gles. Columnar sea ice forms in quiescent conditions, with
large crystals more strongly oriented in the vertical direction.
Examples of granular and columnar sea ice polycrystalline
microgeometries are displayed in Fig. 6a.

Our analysis of the transport properties of random, uni-
axial polycrystalline media (Barabash and Stroud, 1999) in
Gully et al. (2015), and a somewhat new formulation pre-
sented below, shows that the underlying mathematical frame-
work is a direct analogue of that for two-phase random media
discussed in Sect. 3. For simplicity, we discuss electrical per-
mittivity ε, keeping in mind the broader applicability to ther-
mal conductivity κ and electric conductivity σ , as well as
viscoelastic modulus (Cherkaev, 2019), etc. Polycrystalline
materials are composed of many crystallites (single crystals
of varying size, shape, and orientation) that can have differ-

ent local conductivities along different crystal axes. In con-
trast to Eq. (1), the local permittivity matrix of such media is
given by (Milton, 2002; Barabash and Stroud, 1999):

ε(x,ω)= RT 8R , 8= diag(ε1, . . .,εd ) , (10)

where R(x,ω) is a random rotation matrix satisfying RT =
R−1. For example, for d = 2 we have

ε = RT
[
ε1 0
0 ε2

]
R, R=

[
cosθ −sinθ
sinθ cosθ

]
, (11)

where θ = θ (x,ω) is the orientation angle, measured from
the direction e1 of the crystallite, which has an interior con-
taining x ∈ Rd for ω ∈�. In higher dimensions, d ≥ 3, the
rotation matrix R is a composition of “basic” rotation matri-
ces Rj , e.g., R=

∏d
j=1Rj , where the matrix Rj (x,ω) rotates

vectors in Rd by an angle θj = θj (x,ω) about the ej axis. For
example, in three dimensions

R1 =

[
1 0 0
0 cosθ1 −sinθ1
0 sinθ1 cosθ1

]
,

R2 =

[
cosθ2 0 sinθ2

0 1 0
−sinθ2 0 cosθ2

]
,

R3 =

[
cosθ3 −sinθ3 0
sinθ3 cosθ3 0

0 0 1

]
. (12)

In the case of uniaxial polycrystalline media, the local per-
mittivity along one of the crystal axes has the value ε1, while
the permittivity along all the other crystal axes has the value
ε2, so 8= diag(ε1,ε2) for 2D (which is the general setting
for 2D) and 8= diag(ε1,ε2,ε2) for 3D. Equation (10) can
be written in a more suggestive form in terms of the matrix
C= diag(1,0, . . .,0):

ε(x,ω)= ε1X1(x,ω)+ ε2X2(x,ω), (13)

which is an analogue of Eq. (2). Here X1 = RTCR and X2 =

RT (I−C)R, where I is the identity matrix on Rd . Since RT =
R−1 and C is a diagonal projection matrix satisfying C2

=

C, it is clear that the Xi , i = 1,2, are mutually orthogonal
projection matrices satisfying

XTj = Xj , XjXk = Xj δjk, X1+X2 = I, (14)

which are also properties of the characteristic functions χj in
Sect. 3.

Equations (3) and (4) are also satisfied in this polycrys-
talline setting (Golden and Papanicolaou, 1983). Similar to
the derivation of Eq. (6) in Sect. 3, a resolvent representa-
tion for X1E follows by applying the operator −∇(−1)−1

to the formula ∇ ·D = 0, yielding 0D = 0. Then, using
0Ef =Ef and 0E0 = 0 (Murphy et al., 2015) yields the
following analogue of Eq. (6):

X1E = s(sI −G)−1X1ek , G= X10X1, (15)
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Figure 6. Spectral analysis of polycrystalline media. (a) Cross sections of polycrystalline microstructure for granular and columnar sea ice
(Jean-Louis Tyson). (b) Discrete checkerboard polycrystal microstructure with isotropic crystallite orientations within the horizontal plane,
with small (top) and large (bottom) crystallite size. Cool and warm colors correspond to low- and high-displacement field values. (c) The
spectral function, a histogram representation of the spectral measure µ(λ), shown along with its theoretical prediction for such isotropic
media (Milton, 2002). (d) An example value of the complex effective permittivity of isotropic polycrystalline media captured by first- and
second-order bounds (Gully et al., 2015).

yielding the integral representation in Eq. (5) for F (s)=
〈[(sI −G)−1X1ek] · ek〉. As in the two-component setting, a
critical feature of Eq. (5) is that the component parameters
in s are separated from the geometrical information in µ. In-
formation about the geometry enters through the moments in
Eq. (7), withG given in Eq. (15) and χ1 replaced by X1. The
mass of the measure µjk is given by

µ0
jk = 〈X1ej · ek〉, µ

0
kk = 〈|X1ek|

2
〉, (16)

where the second equality follows from the fact that X1 is
a real-symmetric projection matrix. The statistical average
〈|X1ek|

2
〉 in Eq. (16) can be thought of as the “mean orien-

tation” or as the percentage of crystallites oriented in the kth
direction. For example, in the case of two-dimensional poly-
crystalline media, d = 2, Eq. (11) implies that

µ0
11 = 〈cos2θ〉, µ0

22 = 〈sin2θ〉, µ0
12 = 〈sinθ cosθ〉. (17)

Generalizing Eq. (12), with R=
∏d
j=1Rj , to dimensions

d ≥ 3 shows that µ0
jk is a linear combination of averages of

the form 〈
∏
icosni θisinmi θi〉, where ni,mi = 0,1,2, . . ..

Given partial information on the microgeometry incorpo-
rated into the moments µn, the integral representation (5) for
this polycrystalline setting yields rigorous forward bounds
for the effective parameters of composites (Gully et al., 2015;
Milton, 2002), as shown in Fig. 6d. The integral represen-
tation can also be used to obtain inverse bounds that give
estimates for the structural parameters of a composite de-
rived from the electromagnetic response of a sample. One

such structural characteristic is the average crystallite orien-
tation (Gully et al., 2015; Milton, 2002); see Sect. 5 for more
details.

Spectral measure computations for uniaxial
polycrystalline materials

Computing the spectral measureµ for a given polycrystalline
microgeometry first involves discretizing the composite into
a square lattice with vertex values in the range [0,2π ] cor-
responding to the crystallite orientation angles at each ver-
tex location. On this square lattice the action of the differen-
tial operators ∇ and ∇· are defined in terms of forward- and
backward-difference operators (Golden, 1992; Murphy et al.,
2015). Then the key operator X10X1, which depends on the
geometry of the network via X1, becomes a real-symmetric
matrix M. Here 0 is as in Sect. 3.1, and X1 is a banded (ran-
dom) projection matrix that determines the geometry of the
polycrystalline medium. In this setting, the integral and X1E

in Eqs. (5) and (6) have explicit representations in terms of
the eigenvalues λi and eigenvectors wi of M (Murphy et al.,
2015) given by Eq. (9), and similarly the spectral measure is
given by Eq. (8), with χ1 replaced by X1.

The following theorem provides a rigorous mathematical
formulation of integral representations for the effective pa-
rameters for finite-lattice approximations of random uniax-
ial polycrystalline media, analogous to Theorem 1 above.
This theorem formulated for the polycrystal problem holds
for both of the settings where the matrix gradient is full rank
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or rank deficient. The proof of the theorem will be published
elsewhere.

Theorem 2. For each ω ∈�, let M(ω)=W(ω)3(ω) WT (ω)
be the eigenvalue decomposition of the real-symmetric ma-
trix M(ω)= X1(ω)0X1(ω). Here, the columns of the ma-
trix W(ω) consist of the orthonormal eigenvectors wi(ω),
i = 1, . . .,N , of M(ω), and the diagonal matrix 3(ω)=
diag(λ1(ω), . . .,λN (ω)) involves its eigenvalues λi(ω). De-
note Qi = wi w

T
i the projection matrix onto the eigenspace

spanned by wi . The electric field E(ω) satisfies E(ω)=
E0+Ef (ω), with E0 = 〈E(ω)〉 and 0E(ω)=Ef (ω), and
the effective complex permittivity tensor ε∗ has components
ε∗jk , j,k = 1, . . .,d , which satisfy

ε∗jk = ε2(δjk −Fjk(s)), Fjk(s)=

1∫
0

dµjk(λ)
s− λ

,

dµjk(λ)=
N∑
i=1
〈δλi (dλ) X1 Qi êj · êk〉 . (18)

To numerically compute µ, a non-standard generalization
of the spectral theorem for matrices is required due to the
projective nature of the matrices X1 and 0 (Murphy et al.,
2015). In particular, a projection method analogous to that
in Murphy et al. (2015) shows that the spectral measure µ
in Eq. (18) depends only on the eigenvalues and eigenvec-
tors of the upper left N1×N1 block of the matrix R0RT ,
where N1 =N/d. These submatrices are smaller by a fac-
tor of d, which decreases the numerical cost of computations
of µ by a factor of d3. In Fig. 6, computations of the dis-
placement field D are displayed for 2D polycrystalline me-
dia for small and large crystal sizes alongside cross sections
of polycrystalline microstructure for granular and columnar
sea ice. When the effective permittivity tensor ε∗ is diagonal,
such as the setting of isotropically oriented crystallites, the
spectral measure for an infinite system is known in closed
form (Milton, 2002) to be dµ(λ)= (

√
(1− λ)/λ)(dλ/π ), as

shown in Fig. 6c. This measure has a singularity at λ= 0,
which indicates that the material is electrically conductive
on macroscopic length scales (Murphy et al., 2015; Mur-
phy and Golden, 2012). When the polycrystalline material
is isotropic, both the mass and first moment of the measure
µ are known, which enables two nested bounds for ε to be
computed (Gully et al., 2015), as shown in Fig. 6d.

5 Inverse homogenization: recovery of information
about the microstructure of composites

Developed originally for the effective complex permittivity
ε∗, the integral representation (Eq. 5) yields rigorous forward
bounds for the effective permittivity ε∗ of two-component
composites formed of materials with permittivity ε1 and ε2,
given partial information on the microgeometry via the mo-
ments µn (Bergman, 1980; Milton, 1980; Bergman, 1982;

Golden and Papanicolaou, 1983). One can also use the in-
tegral representation to recover information about the struc-
ture of the composite material – this is the problem of in-
verse homogenization (Cherkaev, 2001). For inverse homog-
enization, it is important that the representation (Eq. 5) sep-
arates information about the properties of the phases con-
tained in the parameter s from information about the mi-
crogeometry contained in the measure µ and its moments
µn = 〈G

nχ1ek ·χ1ek〉 in Eq. (7) via higher-order correlation
functions of the geometry function χ1.

In principle, the spectral measure µ and its moments µn
contain all the geometrical information about the composite.
For example, the mass µ0 is the volume fraction φ of the first
component in the composite,

µ0 =

1∫
0

dµ(z)= 〈χ1〉 = φ, (19)

and the fraction of the second phase is 1−φ. Connectivity
information is also embedded in the spectral measure.

The basis for inverse homogenization is provided by the
uniqueness theorem (Cherkaev, 2001), which formulates
the conditions under which the measure µ in the repre-
sentation (Eq. 5) can be uniquely reconstructed from mea-
sured data. For instance, complex permittivity data mea-
sured for a range of frequencies of the applied electromag-
netic field are sufficient to uniquely recover the measure µ
in Eq. (5) (Cherkaev, 2001). Such data are also sufficient
for the unique and stable reconstruction of the moments µn
(Cherkaev and Ou, 2008), provided the permittivity of one
of the phases is frequency dependent. Two major approaches
to inverse homogenization are (i) reconstruction of the mea-
sure µ (Cherkaev, 2001; Cherkaev and Ou, 2008; Day and
Thorpe, 1996; Zhang and Cherkaev, 2009; Bonifasi-Lista
and Cherkaev, 2009; Bonifasi-Lista et al., 2009; Cherkaev
and Bonifasi-Lista, 2011; Day and Thorpe, 1999; Day et al.,
2000; Golden et al., 2011; Cherkaev, 2020) and then cal-
culating its moments and (ii) inverse bounds for the struc-
tural parameters, such as the volume fractions of the compo-
nents (McPhedran et al., 1982; McPhedran and Milton, 1990;
Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998;
Cherkaev, 2001; Cherkaev and Ou, 2008), orientation of the
crystals (Gully et al., 2015), or connectedness (Orum et al.,
2012) of one phase.

When only a few data points are available, though the
uniqueness theorem (Cherkaev, 2001) is not immediately ap-
plicable, one can outline a set of measures consistent with the
measurements,

M= {µ : Fµ(s)= 1− ε∗/ε2}, (20)

and then determine an interval confining the first moment of
the measure µ providing, for instance, an interval of uncer-
tainty for the volume fraction of one material. For several
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data points corresponding to the same structure of the com-
posite, e.g., measurements at distinct frequencies, the bounds
for the volume fraction are given by an intersection of all ad-
missible intervals (Cherkaev and Tripp, 1996; Cherkaev and
Golden, 1998; Tripp et al., 1998). When the requirements for
the measurements needed to uniquely reconstruct the spec-
tral measure µ established by the uniqueness theorem are
satisfied, the set M is reduced to one point. But the map
from the set of measures to the set of microstructures is not
unique, and a variety of microgeometries generate the same
response under the applied field. Different microgeometries
corresponding to the same sequence of moments µ0,µ1, . . .

are the S-equivalent structures (Cherkaev, 2001) that are not
distinguishable by homogenized measurements.

An equivalent representation for the function F (s) in
Eq. (5) using a logarithmic potential of the measure µ in the
complex s plane is (Cherkaev, 2001)

F (s)=
d
ds

∫
ln |s− z| dµ(z),

d/ds = (∂/∂x− i ∂/∂y) , s =
1

1− ε1/ε2
. (21)

The solution to the inverse problem of recovering the mea-
sure µ is constructed by solving the minimization problem:

minµ ||Aµ−F ||2 , F (s)= 1− ε∗(s)/ε2 . (22)

Here A is the integral operator in Eq. (21) or in Eq. (5); the
norm is the L2 norm; F is the given function of the measured
data; and s ∈ C, where C is a curve in the complex plane cor-
responding to the range of frequencies of the applied field.
The solution of the minimization problem does not depend
continuously on the data. Unboundedness of the operator
A−1 leads to arbitrarily large variations in the solution, and
the problem requires regularization to design a stable nu-
merical algorithm (Cherkaev, 2001). Regularized inversion
schemes and stable reconstruction algorithms to recover µ
and its moments from data on the effective complex permit-
tivity were developed in Cherkaev (2001, 2004), Cherkaev
and Ou (2008), Bonifasi-Lista and Cherkaev (2009), and
Cherkaev and Bonifasi-Lista (2011). They are based on L2,
total variation (TV), non-negativity constraints, and con-
strained Padé approximations of the measure µ (Zhang and
Cherkaev, 2009). In applications to imaging of bone struc-
ture, spectral measures µ are computed with regularization
algorithms based onL2 constrained minimization, from elec-
tromagnetic (Bonifasi-Lista and Cherkaev, 2009; Cherkaev
and Bonifasi-Lista, 2011; Golden et al., 2011) and viscoelas-
tic (Bonifasi-Lista and Cherkaev, 2008; Bonifasi-Lista et al.,
2009; Cherkaev and Bonifasi-Lista, 2011) data. This allows
one to separate samples of healthy and osteoporotic bone by
distinguishing the relative fractions of bone tissue and mar-
row in the different microstructures, as well as the connectiv-
ity of the trabecular architectures.

The first application of Stieltjes representations to the elas-
tic properties of two-phase composites can be found in Kan-
tor and Bergman (1982, 1984). Using hydrostatic and devia-
toric projections3h and3s onto the orthogonal subspaces of
the second-order tensors which are proportional to the iden-
tity tensor and trace-free, the Stieltjes integral representation
was generalized in Cherkaev and Bonifasi-Lista (2011) to
the effective viscoelastic modulus and to two-dimensional
viscoelastic polycrystalline materials (Cherkaev, 2019) un-
der the assumption that the constituents have the same elas-
tic bulk and different (elastic and viscoelastic) shear moduli.
This representation was also used in inverse homogenization
(Bonifasi-Lista and Cherkaev, 2008; Cherkaev and Bonifasi-
Lista, 2011; Cherkaev, 2020) for successful recovery of the
volume fractions of the phases in a composite from a known
effective viscoelastic shear modulus.

Other approaches to the volume fraction bounds include
Engström (2005), Milton (2012), and Thaler and Milton
(2014), based on estimates for higher-order moments and on
variational bounds, as well as direct inversion of known for-
mulas or mixing rules (Bergman and Stroud, 1992; Levy and
Cherkaev, 2013) for effective properties of composites with
specific structure. However, an advantage of the methods dis-
cussed here is their applicability without a priori assumption
about the microgeometry.

Spectral coupling of various properties of composites

An important application of inverse homogenization is
for indirectly evaluating material properties through cross-
coupling (Cherkaev, 2001; Milton, 2002). Different proper-
ties of composites are coupled through their microgeometry;
this relationship can be used for estimating properties which
are difficult to measure from other effective properties. The
conventional approaches are based on empirical and semi-
empirical relations, such as, for instance, Kozeny–Carman
or Katz–Thompson. These relations estimate the permeabil-
ity of a porous material characterizing the microstructure by
a ”formation factor” F , which relates the properties of one
phase in the composite to the effective properties of the mate-
rial (Sahimi, 1995; Torquato, 2002; Wong et al., 1984; Wong,
1988).

In the spectral coupling method (Cherkaev, 2001) based
on the Stieltjes representation (5), the spectral measure
µ associated with the geometric structural function, cou-
ples various properties of the same material. Spectral cou-
pling (Cherkaev, 2001, 2004; Cherkaev and Zhang, 2003;
Cherkaev and Bonifasi-Lista, 2011) for two-component com-
posites allows us to recover various transport properties of
sea ice from the spectral measures computed using other
measured properties. In particular, this approach can uti-
lize effective complex permittivity data (recovered from
radar measurements) to calculate the thermal conductivity
(Cherkaev and Zhang, 2003) and hydraulic conductivity of
polycrystalline sea ice, which are normally difficult to mea-
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sure over large scales. Spectral coupling was also extended
to evaluating viscoelastic properties of two-component com-
posites in Cherkaev and Bonifasi-Lista (2011), for applica-
tions to characterizing bone properties and microarchitec-
ture.

Inverse homogenization for recovering microstructural pa-
rameters from effective property measurements is useful in
multiple forms of non-destructive testing of materials, specif-
ically in applications such as medical imaging as well as syn-
thetic aperture radar (SAR) remote sensing for assessing the
structure and transport properties of sea ice.

5.1 Bounds for the moments of the spectral measure

The second approach to the inverse homogenization prob-
lem is calculating inverse bounds for the structural param-
eters, such as the volume fraction of each of the compo-
nents (McPhedran et al., 1982; McPhedran and Milton, 1990;
Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998;
Cherkaev, 2001), orientation of the crystals (Gully et al.,
2015), or connectedness (Orum et al., 2012) of, say, the con-
ducting phase. An analytical approach to estimating the vol-
ume fractions of materials in a composite (Cherkaev and
Tripp, 1996; Cherkaev and Golden, 1998; Tripp et al., 1998)
gives explicit analytic formulas for the first-order inverse
bounds on the volume fractions of the constituents in a gen-
eral composite and second-order inverse bounds on the frac-
tions of the phases in an isotropic composite (Cherkaev and
Golden, 1998).

The inverse bounds are derived using analyticity of the ef-
fective complex permittivity of the composite. The first-order
bounds p(1)

l and p(1)
u for the volume fraction φ give the lower

and upper bounds for the zeroth momentµ0 of the measureµ
or its mass in Eq. (19) (Cherkaev and Tripp, 1996; Cherkaev
and Golden, 1998):

p
(1)
l ≤ φ ≤ p

(1)
u , p

(1)
l = |f |

2 Im(s̄)
Im(f )

,

p(1)
u = 1−

|g|2 Im (t̄)
Im(g)

. (23)

Here, t = 1− s, f is the known value of F (s), and g is the
known value of G(t)= 1− ε∗/ε1.

First- and second-order forward and inverse bounds are
illustrated in Fig. 7a (Cherkaev and Golden, 1998), where
first-order bounds for the effective complex permittivity of
all anisotropic composites that could be formed from two
materials of permittivity ε1 and ε2 are presented in the left
panel, while the second-order isotropic bounds are shown in
the right panel. The small lens shaped domains each con-
tain the anisotropic (left) and isotropic (right) mixtures cor-
responding to the volume fractions φ of the first component
equal to p(q)

l and p(q)
u , q = 1,2. The points p(q)

l and p(q)
u

give the lower and upper bounds for the volume fraction of
the first material in the composite. Superscripts q = 1 and

q = 2 indicate the first- and second-order bounds. For a set
of data points ε∗(k), k = 1, . . .,N corresponding to compos-
ites with the same structure, the bounds for the fraction φ of
the first phase in the material are given by an intersection of
all admissible intervals p(q)

l (k)≤ φ ≤ p(q)
u (k) (Cherkaev and

Tripp, 1996):

P
(q)
l =max

k
p

(q)
l (k)≤ φ ≤ min

k
p

(q)
u (k)= P (q)

u ,

q = 1,2. (24)

Here, p(q)
l (k) and p(q)

u (k) are lower and upper bounds for the
volume fraction φ calculated using the effective complex per-
mittivity ε∗(k), respectively, and q is the order of the bounds,
with q = 1 for a general mixture and q = 2 for an isotropic
composite.

In Cherkaev and Golden (1998), this method was applied
to estimating brine volume fraction in sea ice from two data
sets of 4.75 GHz measurements of the complex permittivity
ε∗ of sea ice (Arcone et al., 1986) at −6 and −11 ◦C with
fractions of brine φ = 0.036 and φ = 0.0205. Sea ice was
considered a composite of three components: pure ice, brine,
and air. The effective complex permittivity of the mixture
of ice and air was calculated with the Maxwell–Garnett for-
mula. The first-order bounds estimate the brine volume frac-
tion as 0.0213≤ φ ≤ 0.0664 and 0.0119≤ φ ≤ 0.0320, for
the data set 1 and 2, respectively. The second-order inverse
bounds derived with the assumption of 2D isotropy in the
horizontal plane give the following estimates for the brine
volume fraction: 0.0333≤ φ ≤ 0.0422 for the first data set
with brine volume φ = 0.036 and 0.0189≤ φ ≤ 0.0213 for
the second data set with volume fraction of brine φ = 0.0205.
The first-order bounds are further extended to polycrystalline
materials and allow estimation of the mean crystal orienta-
tion (Gully et al., 2015).

5.2 Matrix-particle forward and inverse bounds

Another parameter important in characterizing the structure
of a composite material consisting of inclusions within a host
matrix is the separation between inclusions. Inclusion sepa-
ration is an indicator of the connectedness of phases – a key
feature in critical behavior and phase transitions; the sepa-
ration parameter may be used to estimate closeness to the
percolation phase transition.

Composites with non-touching inclusions of one material
embedded in a host matrix of a different material are called
matrix-particle composites (Bruno, 1991). For a matrix-
particle composite with separated inclusions, tighter bounds
on the effective complex permittivity may be obtained. In
Orum et al. (2012), sea ice is considered a matrix-particle
composite in which the brine phase is contained in separated,
circular discs of radii rb randomly located on a horizontal
plane, each surrounded by a “corona” of ice with outer radius
ri. Such a material is called a q material, where q = rb/ri.
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Figure 7. Forward and inverse bounds. (a) Illustration of bounds on the volume fraction of one component in the mixture derived from
first-order anisotropic bounds (left panel), and from the second-order isotropic bounds (right panel) for the effective permittivity (Cherkaev
and Golden, 1998). The small lens-shaped domains each contain ε∗ of the anisotropic (left) and isotropic (right) composites corresponding to
the volume fractions of the first component pl and pu which give the lower and upper bounds for the fraction of the first material. (b) Lower
bounds on the separation parameter qmin versus temperature (Orum et al., 2012) calculated using data on the effective complex permittivity.
The inverted data clearly indicate that as the ice warms, the separations of the brine inclusions decrease. Stars and squares indicate different
sea ice slabs. (c) Polycrystalline bounds for different brine volume fractions (Gully et al., 2015) for the permittivity of sea ice (left) together
with the measured effective permittivity of sea ice in (Arcone et al., 1986). Comparison between two-component and polycrystalline bounds
(right) – the forward polycrystalline bounds shown in blue are a dramatic improvement over the two-component forward elementary bounds
and isotropic bounds shown in red.

The minimal separation of brine inclusions is 2(ri− rb)=
2ri(1− q). In this case, as it is shown in Bruno (1991), the
support of µ in Eq. (5) lies in an interval [sm, sM ], 0< sm <
sM < 1 such that sm = 1

2 (1− q2) and sM = 1
2 (1+ q2). The

further the separation of the inclusions, the smaller the in-
terval [sm, sM ], and the tighter the bounds. Smaller q values
indicate well-separated brine (and colder temperatures as in
Fig. 7), while q = 1 corresponds to no restriction on the sep-
aration, with sm = 0 and sM = 1.

Two parameters characterizing the structure of the sea ice
composite are the volume fraction φ of the brine inclusions
and a separation parameter q that quantifies how close the
inclusions are to each other. Using observed values of effec-
tive complex permittivity and inverting the forward-matrix-
particle bounds, information about these two parameters is
obtained in Orum et al. (2012) by solving a reduced in-
verse spectral problem and bounding the volume fraction of
the constituents. Inverse bounds for inclusion separation are
shown in Fig. 7 (Orum et al., 2012), where the lower bound
qmin is displayed versus temperature of the sea ice slab. The
inverted data clearly indicate that as the ice warms, the sep-
arations of the brine inclusions decrease. It is remarkable

that this important phenomenon is characterized from elec-
tromagnetic measurements through an inversion scheme.

5.3 Extension to polycrystalline composites

The method of inverse bounds (Cherkaev and Tripp, 1996;
Cherkaev and Golden, 1998; Tripp et al., 1998) for structural
parameters of a composite from measured effective proper-
ties was extended to polycrystalline materials in Gully et al.
(2015). In the case of a uniaxial polycrystalline composite,
Gully et al. (2015) developed bounds for the mean orienta-
tion of crystals in the sea ice from measured values of ice
permittivity. As columnar and granular microstructures have
different mean single crystal orientations (Weeks and Ack-
ley, 1982), this inverse approach is useful for determining
ice type when using remote sensing techniques.

The structures of different types of ice formed under dif-
ferent environmental conditions vary tremendously. For in-
stance, for congelation ice frozen under calm conditions, the
crystals are vertically elongated columns, and each crystal it-
self is a composite of pure ice platelets separating layers of
brine inclusions. The orientation of each individual crystal-
lite is determined by the direction of the c axis, which is per-
pendicular to the orientation of platelets or lamellae of pure
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ice. Finding the bounds for the crystal orientations enables us
to electromagnetically distinguish columnar ice from granu-
lar ice. This is a critical problem in sea ice physics and bi-
ology, as these different structures have vastly different fluid
flow properties, which affects melt pond evolution, nutrient
replenishment, brine convection, and other mesoscale pro-
cesses in the ice cover.

Bounds for the effective permittivity of polycrystalline
composites are much tighter than those bounding the permit-
tivity of a general two-component material. Such polycrys-
talline bounds constructed in Gully et al. (2015) are shown
in Fig. 7c. This dramatic improvement over the classic two-
component bounds is due to additional information about
single crystal orientations included in the new bounds.

As was discussed in the polycrystal section, the zeroth
moment µ0

kk in Eq. (16) of the measure µ in the integral
representation of the effective properties of a uniaxial poly-
crystalline material is µ0

kk = 〈|X1ek|
2
〉, where the statistical

average 〈|X1ek|
2
〉 can be viewed as the “mean crystal ori-

entation” related to the percentage of crystallites oriented
in the kth direction. Extending the inverse bounds method
(Cherkaev and Tripp, 1996; Cherkaev and Golden, 1998;
Tripp et al., 1998) to polycrystalline materials, the inverse
polycrystalline bounds (Gully et al., 2015) estimate the mean
crystal orientation by bounding the zeroth momentµ0

kk of the
measure µ using measured data on the ice permittivity. This
procedure gives an analytic estimate (the first-order inverse
bounds) for the range of values of the mean crystal orienta-
tion similar to Eq. (23):

〈eTk X1ek〉l ≤ 〈e
T
k X1ek〉 ≤ 〈e

T
k X1ek〉u ,

〈eTk X1ek〉l = |f |
2 Im(s)

Im(f )
,

〈eTk X1ek〉u = 1− |g|2
Im(t)
Im(g)

, (25)

Here, X1 is defined in the polycrystalline section as X1 =

RTCR; f is the known value of F (s); and g is the known
value of G(t)= 1− ε∗/ε1, with t = 1− s.

Inverse polycrystalline bounds computed in Gully et al.
(2015) for different types of sea ice, granular and columnar,
show that the method allows the type of ice to be revealed
through electromagnetic data. For statistically isotropic gran-
ular ice shown in Fig. 6a (top), the inverse mean crystal orien-
tation bounds (Gully et al., 2015) estimate the deviation an-
gle as π/2± .02 (with the true value π/2). The inverse mean
crystal orientation bounds (Gully et al., 2015) for colum-
nar ice (see Fig. 6a, bottom) estimate the angle of deviation
of the crystal’s axis from the vertical as 20± 8◦. These re-
sults demonstrate a significant difference in the reconstructed
mean orientations of crystals in columnar and in granular ice
and provide a foundation for distinguishing the types of ice
using electromagnetic measurements.

6 Analytic continuation for advection diffusion
processes

The enhancement of diffusive transport of passive scalars
by complex fluid flow plays a key role in many impor-
tant processes in the global climate system (Washington and
Parkinson, 1986) and Earth’s ecosystems (Di Lorenzo et al.,
2013). Advection of geophysical fluids intensifies the dis-
persion and large-scale transport of heat (Moffatt, 1983),
pollutants (Csanady, 1963; Beychok, 1994; Samson, 1988),
and nutrients (Di Lorenzo et al., 2013; Hofmann and Mur-
phy, 2004) diffusing in their environment. In sea ice dynam-
ics, where the ice cover couples the atmosphere to the po-
lar oceans (Washington and Parkinson, 1986), the transport
of sea ice can also be enhanced by eddy fluxes and large-
scale coherent structures in the ocean (Watanabe and Ha-
sumi, 2009; Lukovich et al., 2015). In sea ice thermodynam-
ics, the temperature field of the atmosphere is coupled to the
temperature field of the ocean through sea ice, a composite
of pure ice with brine inclusions whose volume fraction and
connectedness depend strongly on temperature (Thomas and
Dieckmann, 2003; Golden et al., 2007; Golden, 2009). Con-
vective brine flow through the porous microstructure can en-
hance thermal transport through the sea ice layer (Lytle and
Ackley, 1996; Worster and Jones, 2015).

Over the years, a broad range of mathematical techniques
have been developed that reduce the analysis of complex
composite materials with rapidly varying structures in space
to solving averaged or homogenized equations that do not
have rapidly varying coefficients and involve an effective pa-
rameter. The core idea here is that the motion of a parti-
cle diffusing in a velocity field with regular geometry (in-
cluding stationary random, periodic, or quasiperiodic vari-
ations) is governed on a large-scale and long times by a
diffusion equation with an effective diffusion tensor, which
depends on the geometry of the velocity field and the lo-
cal diffusivity. In Taylor (1921), it was first shown that a
long-time, large-scale dispersion of passive scalars can be
described by an effective diffusivity tensor κ∗. Motivated
by Papanicolaou and Varadhan (1982), the effective param-
eter problem was extended to complex velocity fields, with
rapidly varying structures in both space and time, provid-
ing a rigorous mathematical foundation for calculating ef-
fective (eddy) viscosity and the effective (eddy) diffusivity
tensors (McLaughlin et al., 1985). The effective parameter
problem of (anomalous) super-diffusion and sub-diffusion
is given in Biferale et al. (1995) and Fannjiang (2000).
Based on McLaughlin et al. (1985), Avellaneda and Ma-
jda (1989, 1991) adapted the ACM (Golden and Papanico-
laou, 1983) to the advection diffusion equation and obtained
a Stieltjes integral representation of the effective diffusivity
tensor κ∗ for flows with zero mean drift involving the Péclet
number ξ of the flow. This representation encapsulates the
geometric complexity of the flow in a spectral measure as-
sociated with a random Hermitian operator (or matrix). Us-
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ing methods developed for composite media (Milton, 2002),
they obtained rigorous bounds on the components of κ∗.
Moreover, in analogy to methods developed for composites
(Milton, 2002), they also found velocity fields which realize
these bounds, such as the famous confocal sphere configu-
rations that realize the Hashin–Shtrikman bounds of com-
posites (Hashin and Shtrikman, 1962; Avellaneda and Ma-
jda, 1991). Remarkably, this method has also been extended
to time-dependent flows (Avellaneda and Vergassola, 1995;
Murphy et al., 2017b); flows with incompressible nonzero
effective drift (Pavliotis, 2002; Fannjiang and Papanicolaou,
1994); flows where particles diffuse according to linear colli-
sions (Pavliotis, 2010); and solute transport in porous media
(Bhattacharya, 1999), which has a direct application to dif-
fusive brine advection in sea ice. All yield Stieltjes integral
representations of the symmetric and, when appropriate, the
antisymmetric part of κ∗.

We now briefly describe our recent results on this frame-
work (Murphy et al., 2017b, 2020a). It is an important ex-
ample of how Stieltjes integral representations can provide a
rigorous basis for analysis of problems for sea ice involving
advection diffusion processes. The dispersion of a cloud of
passive scalars with density φ(t,x) (not to be confused with
earlier usage as the brine volume fraction) diffusing with
molecular diffusivity ε and being advected by an incompress-
ible velocity field u(t,x) satisfying ∇ ·u= 0 is described by
the advection–diffusion equation as follows:

∂φ

∂t
= u ·∇φ + ε1φ, φ(0,x)= φ0(x). (26)

Here, the initial density φ0(x) and the fluid velocity field u
are assumed to be given. In Eq. (26), the molecular diffusion
constant is ε > 0, and1=∇ ·∇ =∇2 is the Laplacian. This
equation also models the transport of heat advected by the
fluid velocity field u and diffused with molecular diffusion
coefficient ε. To simplify our presentation, we assume that
the velocity field u in Eq. (26) is temporally and spatially pe-
riodic. Non-dimensionalization (Murphy et al., 2020a) and
homogenization (McLaughlin et al., 1985) of Eq. (26) shows
that long-time, large-volume (or area) macroscopic thermal
transport is described by a diffusion equation involving an
averaged scalar density φ̄ and a symmetric, constant (Pavli-
otis, 2002) effective diffusivity tensor κ∗ (McLaughlin et al.,
1985),

∂φ̄(t,x)
∂t

=∇ · [κ∗∇φ̄(t,x)], φ̄(0,x)= φ0(x). (27)

For simplicity, we consider a diagonal coefficient κ∗kk , k =
1, . . .,d , of κ∗; set κ∗ = κ∗kk; and write u= u0v, where u0 is
the (constant) strength of u and v is a non-dimensional ve-
locity field containing the geometric and dynamic informa-
tion about u. In these non-dimensional variables, the Péclet
number ξ and molecular diffusivity ε are related by ξ = 1/ε
(Murphy et al., 2017b, 2020a).

Using a mathematical framework that is strikingly simi-
lar to that in Sect. 3, the effective diffusivity has the follow-
ing Stieltjes integral representation (McLaughlin et al., 1985;
Avellaneda and Majda, 1991; Murphy et al., 2017b, 2020a):

κ∗ = ε(1+〈|∇ψk|2〉), 〈|∇ψk|2〉 =

∞∫
−∞

dν(λ)
ε2+ λ2 , (28)

where 〈·〉 denotes averaging over the space–time period cell
for periodic flows (Murphy et al., 2017b, 2020a) or statisti-
cal average for random flows (Avellaneda and Majda, 1989;
Avellaneda and Vergassola, 1995), and ψk is the solution to a
cell problem (McLaughlin et al., 1985; Murphy et al., 2017b).
An equivalent statement which emphasizes the connection to
the two-component composites setting in Eq. (5) is

F (ε)= 1−
κ∗

ε
=−

∞∫
−∞

dν(λ)
ε2+ λ2 . (29)

The vector fieldE(t,x)=∇ψk(t,x)+ek satisfies Eq. (3) for
two-component composite materials, withD = εE, ε = εI+
S, S= (−1)−1∂t +H, and ε plays the role of the medium’s
electrical permittivity tensor (Murphy et al., 2017b, 2020a).
Here, ∂t denotes partial differentiation with respect to time,
and H(t,x) is the stream matrix, given in terms of the in-
compressible velocity field v =∇ ·H, that satisfies HT

=

−H (Avellaneda and Majda, 1991, 1989). When the flow is
time-independent, v = v(x), then ψk = ψk(x) and S=H(x).
Moreover κ∗ = ε∗, with ε∗ = (ε∗)kk defined above (Murphy
et al., 2017b). The integral representation for κ∗ in Eq. (28)
follows from the resolvent formula

∇ψk = (εI+0S0)−1gk, gk =−0Hek, (30)

which is an analogue of Eq. (6). The operator 0S0 is an-
tisymmetric due to the asymmetry of both the operators ∂t
and H, so i0S0 is a self-adjoint operator (Murphy et al.,
2017b), where i =

√
−1 is the imaginary unit, and 0 =

−∇(−1)−1∇· is the same projection operator arising in the
setting of two-component composites. Equation (28) shows
that brine advection enhances the thermal diffusivity since
κ∗ ≥ ε.

Analytical calculations of the spectral measure ν are ex-
tremely difficult except for simple flows like shear flow
(Avellaneda and Majda, 1991). However, Padé approximants
[L/M] provide rigorous, converging upper and lower bounds
(Baker and Graves-Morris, 1996) for the Stieltjes function
f (z)= 〈|∇ψk|2〉/z=−F/z in Eqs. (28) and (29), where
z= 1/ε2; Padé approximants can be calculated using the mo-
ments νn of ν. Despite this, the lack of a method to calcu-
late the moments νn of ν has impeded progress on obtain-
ing explicit bounds for specific flows using this procedure
(Avellaneda and Majda, 1991, 1989) since 1991. We have re-
cently developed a mathematical framework that can be used
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Figure 8. Spectral measures for effective diffusivities. (a) Streamlines for BC flow with fluid velocity field v = (C cosy,B cosx) with
B = 1, C = 1−p, and increasing values of p from left to right. BC cell flow with closed streamlines arises for B = C = 1. As the value of
C decreases from 1, the streamlines elongate in the y direction giving rise to large-scale thermal transport, even in the absence of molecular
diffusivity, when ε = 0. BC shear flow is attained when B = 1 and C = 0, for which the spectral measure is known to be a δ function
at the origin λ= 0 (Avellaneda and Majda, 1991), as shown in the rightmost panel of (a) and (c). (b) Corresponding spectral functions
ν22(λ) (histogram representations) for the spectral measures ν22 in (c), which display the spectral measure weights |mj |2 vs. eigenvalues
λj of the matrix M= i0H0 for the value of p shown in (a). Since the streamlines do not become elongated in the x direction, the spectral
functions for the measure ν11 are qualitatively similar to those of ν22 for BC cell flow, for all p. The spectral functions in (b) are ensemble
averaged for B = 1 and C = 1− ζ with ζ ∼ U ([0,p]), with p = 0.01, 0.5, 0.7, and 1, from left to right. The zoomed-in insets in (c) with
−5× 10−4

≤ λi ≤ 5× 10−4 show the density of the measure near the spectral origin λ= 0 increasing as BC cell flow transitions to BC
shear flow.

to compute, in principle, all of the moments νn for a spa-
tially or space–time periodic velocity field v, hence Padé ap-
proximant bounds. We have utilized these results to provide
rigorous bounds for the enhancement of sea ice thermal con-
ductivity by brine fluid velocity fields. These findings will be
published elsewhere.

Spectral measure computations for advection diffusion
processes

We have extended our numerical methods discussed for two-
component media in Sect. 3.1 to compute the spectral mea-
sure ν for spatially periodic flows (Murphy et al., 2020a)
and developed Fourier methods for computing ν for space-
time periodic flows (Murphy et al., 2017b). For simplicity,
we focus our discussion to the setting of spatially periodic
flows. Computing the spectral measure ν for a given flow
involves discretizing the spatially dependent stream matrix
H(x), which becomes a banded antisymmetric matrix satis-
fying HT

=−H. The projection matrix 0 is given by that
in Sect. 3.1, and the key self-adjoint operator is given by
G= i0H0, which becomes a Hermitian matrix M. In this

case, the integral in Eq. (28) and the resolvent in Eq. (30) are
given in terms of the eigenvalues λj and eigenvectors wj of
the matrix M

∇ψk =
∑
j

mj

ε− iλj
wj , 〈|∇ψk|

2
〉 =

∑
j

〈
|mj |

2

ε2+ λ2
j

〉
,

mj = wj ·gj , (31)

which is analogous to Eq. (9).
The computations in Murphy et al. (2017b, 2020a) and

those displayed in Fig. 8 show that the spectral origin λ= 0
for advection diffusion plays the role of the spectral end-
points λ= 0,1 for two-component and polycrystalline com-
posite materials. An increase in spectral mass at λ= 0 in-
creases the advection-driven enhancement of effective diffu-
sivity above the bare molecular diffusivity ε in the advection-
dominated regime, where ε� 1 (or Péclet number ξ � 1).
For example, the closed streamlines shown in the leftmost
panel of Fig. 8a for BC cell flow, with fluid velocity field
v = (C cosy,B cosx) and B = C = 1, transport tracers in a
short-range periodic motion, so long-range transport is only
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possible due to molecular diffusion. Consequently, in the
advection-dominated regime, the effective diffusivity scales
as κ∗ ∼ ε1/2 (Fannjiang and Papanicolaou, 1994, 1997; Mur-
phy et al., 2020a), vanishing as ε→ 0. As shown in Fig. 8b
and c, and also in Murphy et al. (2017b, 2020a), this is re-
flected in the spectral measure ν by the lack of adequate mass
near λ= 0 for the singular integrand 1/(ε2

+ λ2) to over-
come the multiplicative factor of ε for κ∗ = ε(1+〈|∇ψk|2〉)
in Eq. (28).

On the other hand, when B 6= C the streamlines elongate
and connect to neighboring cells which gives rise to long-
range advection of tracers, even in the absence of molecu-
lar diffusion. This is reflected in the spectral measure by a
buildup of adequate mass near λ= 0 for the singular inte-
grand 1/(ε2

+ λ2) to overcome the multiplicative factor of ε
for κ∗ = ε(1+〈|∇ψk|2〉) in Eq. (28), leading to a non-zero
value of κ∗ in the limit ε→ 0 (Murphy et al., 2017b). This is
a key example of how the behavior of the spectral measure ν
governs the behavior of the bulk transport coefficient κ∗.

7 Random matrix theory in sea ice physics

In random matrix theory (RMT) (Guhr et al., 1998; Bohi-
gas and Giannoni, 1984; Deift and Gioev, 2009), long- and
short-range correlations of the bulk eigenvalues away from
the spectral edge (Canali, 1996; Guhr et al., 1998) for ran-
dom matrices are measured using various eigenvalue statis-
tics (Guhr et al., 1998; Bohigas and Giannoni, 1984), such
as the eigenvalue spacing distribution (ESD), spectral rigid-
ity 13, and number variance 62. To observe statistical fluc-
tuations of these bulk eigenvalues about the mean density,
the eigenvalues must be unfolded (Bohigas and Giannoni,
1984; Guhr et al., 1998; Canali, 1996; Plerou et al., 2002).
The localization properties of the eigenvectors are measured
in terms of quantities such as the inverse participation ratio
(IPR) (Plerou et al., 2002; Evers and Mirlin, 2008).

In Murphy et al. (2017a), we found that as a percola-
tion threshold is approached and long-range order devel-
ops, the behavior of the ESD transitions from weakly corre-
lated Poissonian statistics toward obeying universal Wigner–
Dyson (WD) statistics of the Gaussian orthogonal ensemble
(GOE). The eigenvectors de-localize, and mobility edges ap-
pear (Murphy et al., 2017a), similar to the metal/insulator
transition in solid state physics. We explored the transition
in the 2D and 3D RRN, as well as in sea ice microstruc-
tures such as in 2D discretizations of the brine microstruc-
ture of sea ice (Golden et al., 1998a, 2007; Golden, 2009),
melt ponds on Arctic sea ice (Hohenegger et al., 2012), the
sea ice pack itself, and porous human bone (Golden et al.,
2011; Kabel et al., 1999; Bonifasi-Lista and Cherkaev, 2009;
Cherkaev and Bonifasi-Lista, 2011). We extended these re-
sults to two-component composite media with quasiperiodic
microgeometry in Morison et al. (2022).

For highly correlated WD spectra exhibited by, for ex-
ample, real-symmetric matrices of the GOE, the nearest-
neighbor ESD P (z) is accurately approximated by P (z)≈
(πz/2)exp(−πz2/2), which illustrates eigenvalue repulsion
and vanishes linearly as spacings z→ 0 (Guhr et al., 1998;
Stone et al., 1991; Canali, 1996). In contrast, the ESD for un-
correlated Poisson spectra, P (z)= exp(−z), allows for sig-
nificant level degeneracy (Guhr et al., 1998). In Fig. 9a we
display the ESDs for Poisson (blue) and WD (green) spec-
tra, along with the behavior of the ESDs for the matrix M=
χ10χ1, corresponding to the Arctic melt ponds in Fig. 4
with fluid area fraction φ. It shows that for sparsely con-
nected systems, the behavior of the ESDs is well described
by weakly correlated Poisson-like statistics (Canali, 1996).
With increasing connectedness, the ESDs transition toward
highly correlated WD statistics with strong level repulsion.
This behavior of the ESD reveals a mechanism for the col-
lapse in the spectral gaps of µ. For sparsely connected sys-
tems, the weak level repulsion allows for significant level
degeneracy and resonances in µ as shown in Murphy et al.
(2015) for the 2D percolation model and in Fig. 4a for Arctic
melt pond microstructure. As the system becomes increas-
ingly connected, the level repulsion increases, causing the
eigenvalues to spread out, which, in turn, causes the gaps in
the measure near the spectral edges to collapse and subse-
quently form δ components of the measure at the spectral
endpoints λ= 0,1 (as shown in the figures in Sect. 3.1). Our
computations of 13 and 62 are shown in Fig. 9b for the
brine microstructure in Fig. 3. Notice that as the system be-
comes increasingly connected, the long-range statistics tran-
sition towards that of the GOE, indicating an increase in the
long-range correlations of the eigenvalues.

The eigenvectors wj of M= χ10χ1, associated with the
N1×N1 submatrices of 0, also exhibit a connectedness-
driven transition in their localization properties. The IPR is
defined as Ij =

∑
i |w

i
j |

4, i,j = 1, . . .,N1, where wij is the
ith component of wj . Eigenvectors of matrices in the GOE
are known to be highly extended (Deift and Gioev, 2009),
with an asymptotic value of the IPR given by IGOE = 3/N1
(Plerou et al., 2002).

In Murphy et al. (2017a), we found for the 2D and 3D
percolation models that as p surpasses pc and long-range
order is established in a RRN, “mobility edges” form in
the eigenvector IPR, with a sudden increase in the num-
ber of extended eigenvectors. This is analogous to Ander-
son localization, where mobility edges mark the character-
istic energies of the metal–insulator transition (MIT) (Guhr
et al., 1998). Remarkably, the mobility edges for RRN are
due to very extended eigenstates associated with δ compo-
nents that form at the spectral endpoints precisely at the
percolation threshold pc (and 1−pc for 3D) (Murphy and
Golden, 2012), which control critical behavior in insulator/-
conductor and conductor/superconductor systems (Murphy
and Golden, 2012; Clerc et al., 1990; Bergman and Stroud,
1992). This and other eigenvector phenomena were observed
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Figure 9. Eigenvalue spacing statistics for sea ice melt ponds (a) and long-range eigenvalue statistics for the brine structures in sea ice (b).
(a) Eigenvalue spacing distribution (ESD) P (z) for the melt ponds shown in Fig. 4. (b) Spectral statistics for the brine structures shown in
Fig. 3. We see the transition toward universal Wigner–Dyson statistics as melt water phases and brine phases become connected over the
scale of the sample.

for two-component composite media with quasiperiodic mi-
crogeometry in Morison et al. (2022).

The IPR phenomenon for the eigenvectors of the matrix
M= χ10χ1 is shown for sea ice brine microstructure in
Fig. 10c. The electric fieldE within sea ice brine microstruc-
ture exhibits a frequency-dependent Anderson localization
transition, as shown in Fig. 10a and b. To generate these fig-
ures, the IPR of the electric field, IPR[E](s) in the brine
phase χ1E, was calculated as a function of s via Eq. (9)
for Im s = 0.001 and 0≤ Re s ≤ 1 and then normalized to
have unit length. The values of s were then selected where
IPR[E](s) attains its maximum and minimum, correspond-
ing to the most localized and most extended E, respectively.
For those values of s, the electric fields for brine microstruc-
ture are shown in Fig. 10a and b. The localized electric fields
in (a) are characterized by high-intensity “hot spots” at the
brine-ice interfaces, while extended electric fields have high
intensities spread out more evenly across the connected and
near-connected brine components.

8 Conclusions

We have gone on a tour of various areas of sea ice physics
concerned with homogenization and how they can be rig-
orously addressed with the powerful analytic continuation
method and its extensions. The effective complex permittiv-
ity of sea ice treated as a two-phase composite of pure ice
with brine inclusions, or treated as a polycrystalline material,
and the effective diffusivity for advection diffusion problems
are all Stieltjes functions of their variables. We showed how

these functions have integral representations involving spec-
tral measures which distill the mixture or velocity field ge-
ometries into the spectral properties of a self adjoint opera-
tor, akin to the Hamiltonian in quantum physics. These spec-
tral representations have been used to obtain rigorous for-
ward and inverse bounds on effective transport coefficients
for sea ice. Finally, viewing the behavior of these spectral
representations through the lens of random matrix theory has
revealed fascinating parallels between quantum transport in
disordered media, Anderson localization, and classical trans-
port phenomena.
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Figure 10. Anderson localization transition for electric fields in sea ice brine microstructure. Examples of (a) localized and (b) extended
electric fields for sea ice brine microstructure with increasing connectedness from left to right. The values of s are taken to satisfy Im(s)=
0.001 with 0≤ Re(s)≤ 1. The electric fields are displayed for values of Re(s) which (a) maximize and (b) minimize IPR[E](s), which
correspond to the values of such s associated with (a) most localized and (b) most extended electric fields. (c) Corresponding IPR for
eigenvectors wj plotted versus index j . The vertical lines define the δ components of µ, where the eigenvalues satisfy λj . 10−14 and
1− λj . 10−14. The horizontal lines mark the IPR value IGOE = 3/N1 for the Gaussian orthogonal ensemble (GOE) with matrix size
N1 ≈ φN , where N = Ldd.

Special issue statement. This article is part of the special issue
“Interdisciplinary perspectives on climate sciences – highlighting
past and current scientific achievements”. It is not associated with a
conference.

Acknowledgements. We gratefully acknowledge support from
the Applied and Computational Analysis Program and the Arctic
and Global Prediction Program at the US Office of Naval Research
(grant nos. N00014-18-1-2552, N00014-21-1-2909, N00014-13-
10291, N00014-15-1-2455, and N00014-18-1-2041). We are also
grateful for support from the Division of Mathematical Sciences and
the Division of Polar Programs at the US National Science Foun-
dation (NSF) (grant nos. DMS-0940249, DMS-2136198, DMS-
2111117, DMS-2206171, DMS-1715680, and DMS-1413454). Fi-
nally, we would like to thank the NSF Math Climate Research
Network (MCRN), and especially Chris Jones, for supporting this
work.

Financial support. This research has been supported by the Of-
fice of Naval Research (grant nos. N00014-21-1-2909, N00014-18-
1-2552, N00014-13-10291, N00014-15-1-2455, and N00014-18-

1-2041) and the National Science Foundation (grant nos. DMS-
2206171, DMS-2111117, DMS-0940249, DMS-2136198, DMS-
1715680, and DMS-1413454).

Review statement. This paper was edited by Vera Melinda Galfi
and reviewed by two anonymous referees.

References

Anderson, P.: Absence of diffusion in certain random lattices, Phys.
Rev., 109, 1492–1505, 1958.

Arcone, S. A., Gow, A. J., and McGrew, S.: Structure and dielectric
properties at 4.8 and 9.5 GHz of saline ice, J. Geophys. Res., 91,
14281–14303, 1986.

Avellaneda, M. and Majda, A.: Stieltjes integral representation and
effective diffusivity bounds for turbulent transport, Phys. Rev.
Lett., 62, 753–755, 1989.

Avellaneda, M. and Majda, A.: An integral representation and
bounds on the effective diffusivity in passive advection by lami-
nar and turbulent flow, Comm. Math. Phys., 138, 339–391, 1991.

https://doi.org/10.5194/npg-30-527-2023 Nonlin. Processes Geophys., 30, 527–552, 2023



548 K. M. Golden et al.: Stieltjes functions and spectral analysis in the physics of sea ice

Avellaneda, M. and Vergassola, M.: Stieltjes integral representation
of effective diffusivities in time-dependent flows, Phys. Rev. E,
52, 3249–3251, 1995.

Backstrom, L. G. E. and Eicken, H.: Capacitance probe
measurements of brine volume and bulk salinity in first-
year sea ice, Cold Reg. Sci. Technol., 46, 167–180,
https://doi.org/10.1016/j.coldregions.2006.08.018, 2006.

Baker, G. A.: Quantitative Theory of Critical Phenomena, Aca-
demic Press, New York, https://doi.org/10.1016/B978-0-12-
075120-4.X5001-5, 1990.

Baker, G. A. and Graves-Morris, P. R.: Padé Approximants, En-
cyclopedia of Mathematics and its Applications, Cambridge
University Press, 746 pp., ISBN 0521450071, 9780521450072,
1996.

Banwell, A., Burton, J., Cenedese, C., Golden, K. M., and Åström,
J.: Physics of the cryosphere, Nature Rev. Phys., 5, 446–449,
2023.

Barabash, S. and Stroud, D.: Spectral representation for the effective
macroscopic response of a polycrystal: application to third-order
non-linear susceptibility, J. Phys. Condens. Matter, 11, 10323–
10334, 1999.

Bates, H. F. and Shapiro, L. H.: Long-period gravity
waves in ice-covered sea, J. Geophys. Res., 85, 1095,
https://doi.org/10.1029/jc085ic02p01095, 1980.

Bensoussan, A., Lions, J. L., and Papanicolaou, G.: Asymptotic
Analysis for Periodic Structures, North-Holland, Amsterdam, the
Netherlands, ISBN 9780080875262, 1978.

Bergman, D. J.: The dielectric constant of a composite material – A
problem in classical physics, Phys. Rep. C, 43, 377–407, 1978.

Bergman, D. J.: Exactly solvable microscopic geometries and rig-
orous bounds for the complex dielectric constant of a two-
component composite material, Phys. Rev. Lett., 44, 1285–1287,
1980.

Bergman, D. J.: Rigorous bounds for the complex dielectric con-
stant of a two–component composite, Ann. Phys., 138, 3058–
3065, 1982.

Bergman, D. J.: Eigenstates of Maxwell’s equations in mul-
ticonstituent microstructures, Phys. Rev. A, 105, 062213,
https://doi.org/10.1103/PhysRevA.105.062213, 2022.

Bergman, D. J. and Stroud, D.: Physical properties of macroscop-
ically inhomogeneous media, Solid State Phys., 46, 147–269,
1992.

Bergman, D. J., Chen, P. Y., and Farhi, A.: Scattering electromag-
netic eigenstates of a two-constituent composite and their ex-
ploitation for calculating a physical field, Phys. Rev. A, 102,
063508, https://doi.org/10.1103/PhysRevA.102.063508, 2020.

Beychok, M. R.: Fundamentals of Stack Gas Dispersion, self-
published, 193 pp., ISBN 0964458802, 9780964458802, 1994.

Bhattacharya, R.: Multiscale diffusion processes with periodic co-
efficients and an application to solute transport in porous media,
Ann. Appl. Probab., 9, 951–1020, 1999.

Bi, C., Ou, M.-J. Y., and Zhang, S.: Integral representation of hy-
draulic permeability, P. Royal Soc. Edinburgh A, 153, 907–936,
https://doi.org/10.1017/prm.2022.25, 2023.

Biferale, L., Crisanti, A., Vergassola, M., and Vulpiani, A.: Eddy
diffusivities in scalar transport, Phys. Fluids, 7, 2725–2734,
1995.

Bohigas, O. and Giannoni, M. J.: Chaotic motion and random ma-
trix theories, in: Mathematical and computational methods in

nuclear physics (Granada, 1983), vol. 209 of Lecture Notes in
Physics, Springer, Berlin, 1–99, https://doi.org/10.1007/3-540-
13392-5_1, 1984.

Bonifasi-Lista, C. and Cherkaev, E.: Analytical relations between
effective material properties and microporosity: Application to
bone mechanics, Int. J. Eng. Sci., 46, 1239–1252, 2008.

Bonifasi-Lista, C. and Cherkaev, E.: Electrical impedance spec-
troscopy as a potential tool for recovering bone porosity, Phys.
Med. Biol., 54, 3063–3082, 2009.

Bonifasi-Lista, C., Cherkaev, E., and Yeni, Y. N.: Analyt-
ical approach to recovering bone porosity from effective
complex shear modulus, J. Biomech. Eng., 131, 121003,
https://doi.org/10.1115/1.4000082, 2009.

Broadbent, S. R. and Hammersley, J. M.: Percolation processes I.
Crystals and mazes, Proc. Cambridge Philos. Soc., 53, 629–641,
1957.

Bruno, O.: The effective conductivity of strongly heterogeneous
composites, Proc. R. Soc. London A, 433, 353–381, 1991.

Bunde, A. and Havlin, S. (Eds.): Fractals and Disordered Systems,
Springer-Verlag, New York, https://doi.org/10.1007/978-3-642-
51435-7, 1991.

Canali, C. M.: Model For a random-matrix description of the
energy-level statistics of disordered systems at the Anderson
transition, Phys. Rev. B, 53, 3713–3730, 1996.

Chayes, J. T. and Chayes, L.: Bulk transport properties and expo-
nent inequalities for random resistor and flow networks, Comm.
Math. Phys., 105, 133–152, 1986.

Cherkaev, E.: Inverse homogenization for evaluation of effective
properties of a mixture, Inverse Problems, 17, 1203–1218, 2001.

Cherkaev, E.: Spectral coupling of effective properties of a ran-
dom mixture, in: IUTAM Symposium on Asymptotics, Singular-
ities and Homogenisation in Problems of Mechanics, edited by:
Movchan, A. B., vol. 113 of Solid Mechanics and Its Applica-
tions, Springer Netherlands, 331–340, https://doi.org/10.1007/1-
4020-2604-8_32, 2004.

Cherkaev, E.: Internal friction and the Stieltjes analytic representa-
tion of the effective properties of two-dimensional viscoelastic
composites, Arch. Appl. Mech., 89, 591–607, 2019.

Cherkaev, E.: Internal resonances and relaxation memory ker-
nels in composites, Philos. T. Roy. Soc. A, 378, 20190106,
https://doi.org/10.1098/rsta.2019.0106, 2020.

Cherkaev, E. and Bonifasi-Lista, C.: Characterization of structure
and properties of bone by spectral measure method, J. Biomech.,
44, 345–351, https://doi.org/10.1016/j.jbiomech.2010.10.031,
2011.

Cherkaev, E. and Golden, K. M.: Inverse bounds for microstructural
parameters of composite media derived from complex permittiv-
ity measurements, Waves in random media, 8, 437–450, 1998.

Cherkaev, E. and Ou, M.-J.: Dehomogenization: reconstruc-
tion of moments of the spectral measure of the compos-
ite, Inverse Problems, 24, 065008, https://doi.org/10.1088/0266-
5611/24/6/065008, 2008.

Cherkaev, E. and Tripp, A. C.: Bounds on porosity for dielectric log-
ging, in: 9th Conference of the European Consortium for Math-
ematics in Industry, 304–306, Technical University of Denmark,
Copenhagen, Denmark, 1996.

Cherkaev, E. and Zhang, D.: Coupling of the effective properties of
a random mixture through the reconstructed spectral representa-
tion, Physica B, 338, 16–23, 2003.

Nonlin. Processes Geophys., 30, 527–552, 2023 https://doi.org/10.5194/npg-30-527-2023

https://doi.org/10.1016/j.coldregions.2006.08.018
https://doi.org/10.1016/B978-0-12-075120-4.X5001-5
https://doi.org/10.1016/B978-0-12-075120-4.X5001-5
https://doi.org/10.1029/jc085ic02p01095
https://doi.org/10.1103/PhysRevA.105.062213
https://doi.org/10.1103/PhysRevA.102.063508
https://doi.org/10.1017/prm.2022.25
https://doi.org/10.1007/3-540-13392-5_1
https://doi.org/10.1007/3-540-13392-5_1
https://doi.org/10.1115/1.4000082
https://doi.org/10.1007/978-3-642-51435-7
https://doi.org/10.1007/978-3-642-51435-7
https://doi.org/10.1007/1-4020-2604-8_32
https://doi.org/10.1007/1-4020-2604-8_32
https://doi.org/10.1098/rsta.2019.0106
https://doi.org/10.1016/j.jbiomech.2010.10.031
https://doi.org/10.1088/0266-5611/24/6/065008
https://doi.org/10.1088/0266-5611/24/6/065008


K. M. Golden et al.: Stieltjes functions and spectral analysis in the physics of sea ice 549

Christensen, K. and Moloney, N. R.: Complexity and Criticality,
Imperial College Press, London, 2005.

Clerc, J. P., Giraud, G., Laugier, J. M., and Luck, J. M.: The electri-
cal conductivity of binary disordered systems, percolation clus-
ters, fractals and related models, Adv. Phys., 39, 191–309, 1990.

Csanady, G. T.: Turbulent diffusion of heavy
particles in the atmosphere, J. Atmos. Sci.,
20, 201–208, https://doi.org/10.1175/1520-
0469(1963)020<0201:TDOHPI>2.0.CO;2, 1963.

Day, A. R. and Thorpe, M. F.: The spectral function of random re-
sistor networks, J. Phys. Cond. Matt., 8, 4389–4409, 1996.

Day, A. R. and Thorpe, M. F.: The spectral function of composite -
the inverse problem., J. Phys. Cond. Matt., 11, 2551–2568, 1999.

Day, A. R., Grant, A. R., Sievers, A. J., and Thorpe,
M. F.: Spectral function of composites from reflectiv-
ity measurements, Phys. Rev. Lett., 84, 1978–1981,
https://doi.org/10.1103/PhysRevLett.84.1978, 2000.

Deift, P. and Gioev, D.: Random Matrix Theory: Invariant En-
sembles and Universality, Courant Lecture Notes, Courant In-
stitute of Mathematical Sciences, 217 pp., ISBN 0821847376,
9780821847374, 2009.

Di Lorenzo, E., Mountain, D., Batchelder, H. P., Bond, N.,
and Hofmann., E. E.: Advances in marine ecosystem
dynamics from US GLOBEC: The horizontal-advection
bottom-up forcing paradigm, Oceanography, 26, 22–33,
https://doi.org/10.5670/oceanog.2013.73, 2013.

Efros, A. L. and Shklovskii, B. I.: Critical behavior of conductiv-
ity and dielectric constant near the metal-non-metal transition
threshold, Phys. Stat. Sol. (b), 76, 475–485, 1976.

Engström, C.: Bounds on the effective tensor and the struc-
tural parameters for anisotropic two-phase composite ma-
terial, J. Phys. D, 38, 3695, https://doi.org/10.1088/0022-
3727/38/19/019, 2005.

Evers, F. and Mirlin, A. D.: Anderson transitions, Rev. Modern
Phys., 80, 1355–1418, 2008.

Fannjiang, A. and Papanicolaou, G.: Convection–enhanced diffu-
sion for random flows, J. Stat. Phys., 88, 1033–1076, 1997.

Fannjiang, A. C.: Phase diagram for turbulent transport: sampling
drift, eddy diffusivity, and variational principles, Physica D, 136,
145–174, 2000.

Fannjiang, A. C. and Papanicolaou, G.: Convection enhanced dif-
fusion for periodic flows, SIAM J. Appl. Math., 54, 333–408,
1994.

Feng, S., Halperin, B. I., and Sen, P. N.: Transport properties of
continuum systems near the percolation threshold, Phys. Rev. B,
35, 197–214, 1987.

Golden, K.: Bounds on the complex permittivity of sea ice, J. Geo-
phys. Res. (Oceans), 100, 13699–13711, 1995.

Golden, K. and Papanicolaou, G.: Bounds for effective parameters
of heterogeneous media by analytic continuation, Comm. Math.
Phys., 90, 473–491, 1983.

Golden, K. and Papanicolaou, G.: Bounds for effective parameters
of multicomponent media by analytic continuation, J. Stat. Phys.,
40, 655–667, 1985.

Golden, K. M.: Bounds on the complex permittivity of a multicom-
ponent material, J. Mech. Phys. Solids, 34, 333–358, 1986.

Golden, K. M.: Convexity and exponent inequalities for conduction
near percolation, Phys. Rev. Lett., 65, 2923–2926, 1990.

Golden, K. M.: Exponent inequalities for the bulk conductivity of a
hierarchical model, Comm. Math. Phys., 43, 467–499, 1992.

Golden, K. M.: Percolation models for porous media, in: Homog-
enization and Porous Media, edited by: Hornung, U., 27–43,
Springer-Verlag, 1997a.

Golden, K. M.: The interaction of microwaves with sea ice, in: Wave
Propagation in Complex Media, IMA Volumes in Mathematics
and its Applications, vol. 96, edited by Papanicolaou, G., 75–94,
Springer-Verlag, 1997b.

Golden, K. M.: Critical behavior of transport in lattice and contin-
uum percolation models, Phys. Rev. Lett., 78, 3935–3938, 1997c.

Golden, K. M.: Climate change and the mathematics of transport
in sea ice, Notices of the American Mathematical Society, 56,
562–584 and issue cover, 2009.

Golden, K. M.: Mathematics of sea ice, in: The Princeton
Companion to Applied Mathematics, edited by: Higham,
N. J., Dennis, M. R., Glendinning, P., Martin, P. A., San-
tosa, F., and Tanner, J., Princeton University Press, 694–705,
https://doi.org/9780691150390, Princeton, 2015.

Golden, K. M. and Ackley, S. F.: Modeling of anisotropic electro-
magnetic reflection from sea ice, J. Geophys. Res.-Oceans, 86,
8107–8116, 1981.

Golden, K. M., Ackley, S. F., and Lytle, V. I.: The percolation phase
transition in sea ice, Science, 282, 2238–2241, 1998a.

Golden, K. M., Borup, D., Cheney, M., Cherkaeva, E., Dawson,
M. S., Ding, K. H., Fung, A. K., Isaacson, D., Johnson, S. A.,
, Jordan, A. K., Kong, J. A., Kwok, R., Nghiem, S. V., Onstott,
R. G., Sylvester, J., Winebrenner, D. P., and Zabel, I.: Inverse
electromagnetic scattering models for sea ice, IEEE T. Geosci.
Remote, 36, 1675–1704, 1998b.

Golden, K. M., Cheney, M., Ding, K. H., Fung, A. K., Grenfell,
T. C., Isaacson, D., Kong, J. A., Nghiem, S. V., Sylvester, J., and
Winebrenner, D. P.: Forward electromagnetic scattering models
for sea ice, IEEE T. Geosci. Remote, 36, 1655–1674, 1998c.

Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle,
D., and Zhu, J.: Thermal evolution of permeability and mi-
crostructure in sea ice, Geophys. Res. Lett., 34, L16501,
https://doi.org/10.1029/2007GL030447, 2007.

Golden, K. M., Murphy, N. B., and Cherkaev, E.: Spectral analysis
and connectivity of porous microstructures in bone, J. Biomech.,
44, 337–344, 2011.

Golden, K. M., Bennetts, L. G., Cherkaev, E., Eisenman, I.,
Feltham, D., Horvat, C., Hunke, E., Jones, C., Perovich, D.,
Ponte-Castañeda, P., Strong, C., Sulsky, D., and Wells, A.: Mod-
eling sea ice, Notices of the American Mathematical Society, 67,
1535–1555, 2020.

Grimmett, G.: Percolation, Springer-Verlag, New York, 1989.
Guhr, T., Müller-Groeling, A., and Weidenmüller, H. A.:

Random-matrix Theories in quantum physics: common con-
cepts, Phys. Rep., 299, 189–425, https://doi.org/10.1016/S0370-
1573(97)00088-4, 1998.

Gully, A., Backstrom, L. G. E., Eicken, H., and Golden, K. M.:
Complex bounds and microstructural recovery from measure-
ments of sea ice permittivity, Physica B, 394, 357–362, 2007.

Gully, A., Lin, J., Cherkaev, E., and Golden, K. M.: Bounds
on the complex permittivity of polycrystalline composites
by analytic continuation, P. Roy. Soc. A, 471, 20140702,
https://doi.org/10.1098/rspa.2014.0702, 2015.

https://doi.org/10.5194/npg-30-527-2023 Nonlin. Processes Geophys., 30, 527–552, 2023

https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2
https://doi.org/10.1103/PhysRevLett.84.1978
https://doi.org/10.5670/oceanog.2013.73
https://doi.org/10.1088/0022-3727/38/19/019
https://doi.org/10.1088/0022-3727/38/19/019
https://doi.org/9780691150390
https://doi.org/10.1029/2007GL030447
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1098/rspa.2014.0702


550 K. M. Golden et al.: Stieltjes functions and spectral analysis in the physics of sea ice

Halperin, B. I., Feng, S., and Sen, P. N.: Differences between lattice
and continuum percolation transport exponents, Phys. Rev. Lett.,
54, 2391–2394, 1985.

Hashin, Z. and Shtrikman, S.: A Variational Approach to the Theory
of Effective Magnetic Permeability of Multiphase Materials, J.
Appl. Phys., 33, 3125–3131, 1962.

Hofmann, E. E. and Murphy, E. J.: Advection, krill, and
Antarctic marine ecosystems, Antarct. Sci., 16, 487–499,
https://doi.org/10.1017/S0954102004002275, 2004.

Hohenegger, C., Alali, B., Steffen, K. R., Perovich, D. K.,
and Golden, K. M.: Transition in the fractal geome-
try of Arctic melt ponds, The Cryosphere, 6, 1157–1162,
https://doi.org/10.5194/tc-6-1157-2012, 2012.

Huang, T.-M., Lin, W.-W., and Wang, W.: Matrix repre-
sentations of discrete differential operators and operations
in electromagnetism, Ann. Math. Sci. Appl., 4, 55–79,
https://doi.org/10.4310/AMSA.2019.v4.n1.a3, 2019.

Jonckheere, T. and Luck, J. M.: Dielectric resonances of binary ran-
dom networks, J. Phys. A, 31, 3687–3717, 1998.

Kabel, J., Odgaard, A., van Rietbergen, B., and Huiskes, R.: Con-
nectivity and the elastic properties of cancellous bone, Bone, 24,
115–120, 1999.

Kantor, Y. and Bergman, D. J.: Elastostatic resonances: a new ap-
proach to the calculation of the effective elastic constants of com-
posites, J. Mech. Phys. Solids, 30, 355–376, 1982.

Kantor, Y. and Bergman, D. J.: Improved rigorous bounds on the
effective elastic moduli of a composite material, J. Mech. Phys.
Solids, 32, 41–62, 1984.

Keller, J. B.: Gravity waves on ice-covered water, J. Geophys. Res.-
Oceans, 103, 7663–7669, https://doi.org/10.1029/97jc02966,
1998.

Kerstein, A. R.: Equivalence of the void percolation problem for
overlapping spheres and a network problem, J. Phys. A, 16,
3071–3075, 1983.

Kozlov, S. M.: Geometric aspects of homogenization, Russ. Math.
Surv., 44, 91, 1989.

Kravtsov, V. E. and Muttalib, K. A.: New class of random matrix
ensembles with multifractal eigenvectors, Phys. Rev. Lett., 79,
1913–1916, 1997.

Levy, O. and Cherkaev, E.: Effective medium approximations for
anisotropic composites with arbitrary component orientation,
J. Appl. Phys., 114, 164102, https://doi.org/10.1063/1.4826616,
2013.

Li, J., Babanin, A. V., Liu, Q., Voermans, J. J., Heil, P., and Tang,
Y.: Effects of wave-induced sea ice break-Up and mixing in a
high-resolution coupled ice-ocean model, J. Marine Sci. Eng., 9,
365, https://doi.org/10.3390/jmse9040365, 2021.

Luger, A. and Ou, M.-J. Y.: On Applications of Herglotz-
Nevanlinna Functions in Material Sciences, I: Classical The-
ory and Applications of Sum Rules, 433–459, Springer Inter-
national Publishing, Cham, https://doi.org/10.1007/978-3-031-
04496-0_19, 2022.

Lukovich, J. V., Hutchings, J. K., and Barber, D. G.: On sea-ice
dynamical regimes in the Arctic Ocean, Ann. Glaciol., 56, 323–
331, 2015.

Lytle, V. I. and Ackley, S. F.: Heat flux through sea ice in the West-
ern Weddell Sea: Convective and conductive transfer processes,
J. Geophys. Res., 101, 8853–8868, 1996.

Ma, Y., Sudakov, I., Strong, C., and Golden, K. M.: Ising model
for melt ponds on Arctic sea ice, New J. Phys., 21, 063029,
https://doi.org/10.1088/1367-2630/ab26db, 2019.

Majda, A. J. and Kramer, P. R.: Simplified models for turbu-
lent diffusion: Theory, numerical modelling, and physical phe-
nomena, Phys. Rep., 237–574, https://doi.org/10.1016/S0370-
1573(98)00083-0, 1999.

Majda, A. J. and Souganidis, P. E.: Large scale front dy-
namics for turbulent reaction-diffusion equations with
separated velocity scales, Nonlinearity (Bristol), 7, 1–30,
https://doi.org/10.1088/0951-7715/7/1/001, 1994.

Maslanik, J. A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi,
D., and Emery, W.: A younger, thinner Arctic ice cover: In-
creased potential for rapid, extensive sea-ice loss, Geophys. Res.
Lett., 34, L24501, https://doi.org/10.1029/2007GL032043, 2007.

McLaughlin, D., Papanicolaou, G., and Pironneau, O.: Convection
of microstructure and related problems, SIAM J. Appl. Math.,
45, 780–797, 1985.

McPhedran, R. C. and Milton, G. W.: Inverse transport prob-
lems for composite media, MRS Proceedings, 195, 257–274,
https://doi.org/10.1557/PROC-195-257, 1990.

McPhedran, R. C., McKenzie, D. R., and Milton, G. W.: Extraction
of structural information from measured transport properties of
composites, Appl. Phys. A, 29, 19–27, 1982.

Milton, G. W.: Bounds on the complex dielectric constant of a com-
posite material, Appl. Phys. Lett., 37, 300–302, 1980.

Milton, G. W.: Bounds on the complex permittivity of a two-
component composite material, J. Appl. Phys., 52, 5286–5293,
1981.

Milton, G. W.: Theory of Composites, Cambridge University Press,
Cambridge, 2002.

Milton, G. W.: Universal bounds on the electrical and elastic re-
sponse of two-phase bodies and their application to bounding the
volume fraction from boundary measurements, J. Mech. Phys.
Solids, 60, 139–155, 2012.

Moffatt, H. K.: Transport effects associated with turbulence with
particular attention to the influence of helicity, Rep. Prog. Phys.,
46, 621–664, 1983.

Morison, D., Murphy, N. B., Cherkaev, E., and Golden, K. M.: Or-
der to disorder in quasiperiodic composites, Commun. Phys., 5,
148, https://doi.org/10.1038/s42005-022-00898-z, 2022.

Mosig, J. E. M., Montiel, F., and Squire, V. A.: Compari-
son of viscoelastic-type models for ocean wave attenuation in
ice-covered seas, J. Geophys. Res.-Oceans, 120, 6072–6090,
https://doi.org/10.1002/2015jc010881, 2015.

Murphy, N. B. and Golden, K. M.: The Ising Model and critical
behavior of transport in binary composite media, J. Math. Phys.,
53, 063506, https://doi.org/10.1063/1.4725964, 2012.

Murphy, N. B., Cherkaev, E., Hohenegger, C., and Golden, K. M.:
Spectral measure computations for composite materials, Com-
mun. Math. Sci., 13, 825–862, 2015.

Murphy, N. B., Cherkaev, E., and Golden, K. M.:
Anderson transition for classical transport in com-
posite materials, Phys. Rev. Lett., 118, 036401,
https://doi.org/10.1103/PhysRevLett.118.036401, 2017a.

Murphy, N. B., Cherkaev, E., Xin, J., Zhu, J., and Golden, K. M.:
Spectral analysis and computation of effective diffusivities in
space-time periodic incompressible flows, Ann. Math. Sci. Appl.,
2, 3–66, https://doi.org/10.4310/AMSA.2017.v2.n1.a1, 2017b.

Nonlin. Processes Geophys., 30, 527–552, 2023 https://doi.org/10.5194/npg-30-527-2023

https://doi.org/10.1017/S0954102004002275
https://doi.org/10.5194/tc-6-1157-2012
https://doi.org/10.4310/AMSA.2019.v4.n1.a3
https://doi.org/10.1029/97jc02966
https://doi.org/10.1063/1.4826616
https://doi.org/10.3390/jmse9040365
https://doi.org/10.1007/978-3-031-04496-0_19
https://doi.org/10.1007/978-3-031-04496-0_19
https://doi.org/10.1088/1367-2630/ab26db
https://doi.org/10.1016/S0370-1573(98)00083-0
https://doi.org/10.1016/S0370-1573(98)00083-0
https://doi.org/10.1088/0951-7715/7/1/001
https://doi.org/10.1029/2007GL032043
https://doi.org/10.1557/PROC-195-257
https://doi.org/10.1038/s42005-022-00898-z
https://doi.org/10.1002/2015jc010881
https://doi.org/10.1063/1.4725964
https://doi.org/10.1103/PhysRevLett.118.036401
https://doi.org/10.4310/AMSA.2017.v2.n1.a1


K. M. Golden et al.: Stieltjes functions and spectral analysis in the physics of sea ice 551

Murphy, N. B., Cherkaev, E., Zhu, J., Xin, J., and Golden, K. M.:
Spectral analysis and computation for homogenization of ad-
vection diffusion processes in steady flows, J. Math. Phys., 61,
013102, https://doi.org/10.1063/1.5127457, 2020a.

Murphy, N. B., Cherkaev, E., Zhu, J., Xin, J., and Golden, K. M.:
Spectral analysis and computation for homogenization of ad-
vection diffusion processes in steady flows, J. Math. Phys., 61,
013102, https://doi.org/10.1063/1.5127457, 2020b.

Notz, D. and Community, S.: Arctic Sea Ice in
CMIP6, Geophys. Res. Lett., 47, e2019GL086749,
https://doi.org/10.1029/2019GL086749, 2020.

Notz, D. and Stroeve, J.: Observed Arctic sea-ice loss directly fol-
lows anthropogenic CO2 emission, Science, 354, 747–750, 2016.

Orum, C., Cherkaev, E., and Golden, K. M.: Recovery of inclusion
separations in strongly heterogeneous composites from effective
property measurements, Proc. Roy. Soc. London A, 468, 784–
809, 2012.

Ou, M.: Two-parameter integral representation formula for the ef-
fective elastic moduli, Complex Variables and Elliptic Equations,
57, 411–424, 2012.

Ou, M. J. and Cherkaev, E.: On the integral representation formula
for a two-component elastic composite, Math. Meth. Appl. Sci.,
29, 655–664, 2006.

Ou, M.-J. Y. and Luger, A.: On Applications of Herglotz–
Nevanlinna Functions in Material Sciences, II: Extended Ap-
plications and Generalized Theory, 461–499, Springer Inter-
national Publishing, Cham, https://doi.org/10.1007/978-3-031-
04496-0_20, 2022.

Papanicolaou, G. and Varadhan, S.: Boundary value problems with
rapidly oscillating coefficients, in: Colloquia Mathematica So-
cietatis János Bolyai 27, Random Fields (Esztergom, Hungary
1979), 835, North-Holland, 1982.

Pavliotis, G. A.: Homogenization theory for advection-diffusion
equations with mean flow, PhD thesis, Rensselaer Polytechnic
Institute Troy, New York, 2002.

Pavliotis, G. A.: Asymptotic analysis of the Green–Kubo formula,
IMA J. Appl. Math., 75, 951–967, 2010.

Petrich, C. and Eicken, H.: Growth, structure and properties of sea
ice, in: Sea Ice, edited by: Thomas, D. N. and Dieckmann, G. S.,
23–77, Wiley-Blackwell, 2009.

Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N.,
Guhr, T., and Stanley, H. E.: Random matrix approach to
cross correlations in financial data, Phys. Rev. E, 65, 066126,
https://doi.org/10.1103/PhysRevE.65.066126, 2002.

Pringle, D. J., Trodahl, H. J., and Haskell, T. G.: Di-
rect measurement of sea ice thermal conductivity: No
surface reduction, J. Geophys. Res.-Oceans, 111, C5,
https://doi.org/10.1029/2005JC002990, 2006.

Reimer, J. R., Adler, F. R., Golden, K. M., and Narayan, A.: Uncer-
tainty quantification for ecological models with random parame-
ters, Ecol. Lett., 25, 2232–2244, 2022.

Sahimi, M.: Applications of Percolation Theory, Taylor and Francis
Ltd., London, 1994.

Sahimi, M.: Flow and Transport in Porous Media and Fractured
Rock, VCH, Weinheim, 1995.

Sampson, C. S.: Multiscale Models of Sea Ice Phenomena, PhD
Thesis, University of Utah, Department of Mathematics, 2017.

Samson, P. J.: Atmospheric Transport and Dispersion of Air Pollu-
tants Associated with Vehicular Emissions, in: Air Pollution, the

Automobile, and Public Health, edited by: Watson, A. Y., Bates,
R. R., and Kennedy, D., 77–97, National Academy Press (US),
Washington, DC, 692 pp., ISBN 978-0-309-08682-0, 1988.

Shklovskii, B. I., Shapiro, B., Sears, B. R., Lambrianides, P., and
Shore, H. B.: Statistics of spectra of disordered systems near the
metal-insulator transition, Phys. Rev. B, 47, 11487–11490, 1993.

Stauffer, D. and Aharony, A.: Introduction to Percola-
tion Theory, 2nd edn., Taylor and Francis Ltd., London,
https://doi.org/10.1201/9781315274386, 1992.

Stone, A. D., Mello, P. A., Muttalib, K. A., and Pichard, J.-L.: Ran-
dom Matrix Theory and Maximum Entropy Models for Disor-
dered Conductors, Chap. 9, 369–448, in: Mesoscopic Phenom-
ena in Solids, edited by: Altshuler, B. L., Lee, P. A., and Webb,
R. A., Elsevier Science Publishers, Amsterdam, Netherlands,
https://doi.org/10.1016/B978-0-444-88454-1.50015-2, 1991.

Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze,
M.: Arctic sea ice decline: Faster than forecast, Geophys. Res.
Lett., 34, L09501, https://doi.org/10.1029/2007GL029703, 2007.

Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T.,
Holland, M., and Meier, W. N.: Trends in Arctic sea ice extent
from CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39,
L16502, https://doi.org/10.1029/2012GL052676, 2012.

Strong, C. and Rigor, I. G.: Arctic marginal ice zone trending wider
in summer and narrower in winter, Geophys. Res. Lett., 40,
4864–4868, https://doi.org/10.1002/grl.50928, 2013.

Taylor, G. I.: Diffusion by continuous movements, Proceedings
of the London Mathematical Society, Third Series, 2, 196–211,
1921.

Thaler, A. E. and Milton, G. W.: Exact determination of the vol-
ume of an inclusion in a body having constant shear modu-
lus, Inverse Problems, 30, 125008, https://doi.org/10.1088/0266-
5611/30/12/125008, 2014.

Thomas, D. N. and Dieckmann, G. S. (Eds.): Sea Ice: An Introduc-
tion to its Physics, Chemistry, Biology and Geology, Blackwell,
Oxford, ISBN 978-0-632-05808-2, 2003.

Thompson, C. J.: Classical Equilibrium Statistical Mechanics, Ox-
ford University Press, Oxford, ISBN 9780198519843, 1988.

Torquato, S.: Random Heterogeneous Materials: Microstruc-
ture and Macroscopic Properties, Springer-Verlag, New York,
https://doi.org/10.1115/1.1483342, 2002.

Tripp, A. C., Cherkaev, E., and Hulen, J.: Bounds on the complex
conductivity of geophysical mixtures, Geophys. Prospect., 46,
589–601, 1998.

Turner, J., Holmes, C., Harrison, T. C., Phillips, T., Jena, B., Reeves-
Francois, T., Fogt, R., Thomas, E. R., and Bajish, C. C.: Record
low Antarctic sea ice cover in February 2022, Geophys. Res.
Lett., 49, e2022GL098904, *, 2022.

Untersteiner, N.: The Geophysics of Sea Ice, Plenum, New York,
https://doi.org/10.1007/978-1-4899-5352-0, 1986.

Wang, R. and Shen, H. H.: Gravity waves propagating into an ice-
covered ocean: A viscoelastic model, J. Geophys. Res., 115,
https://doi.org/10.1029/2009jc005591, 2010.

Waseda, T., Webb, A., Sato, K., Inoue, J., Cohout, A., Penrose, B.,
and Penrose, S.: Correlated increase of high ocean waves and
winds in the ice-free waters of the Arctic Ocean, Sci. Rep., 8,
4489, https://doi.org/10.1038/s41598-018-22500-9, 2018.

Washington, W. M. and Parkinson, C. L.: An Introduction to Three-
Dimensional Climate Modeling, University Science Books, 422
pp., ISBN 0935702520, 9780935702521, 1986.

https://doi.org/10.5194/npg-30-527-2023 Nonlin. Processes Geophys., 30, 527–552, 2023

https://doi.org/10.1063/1.5127457
https://doi.org/10.1063/1.5127457
https://doi.org/10.1029/2019GL086749
https://doi.org/10.1007/978-3-031-04496-0_20
https://doi.org/10.1007/978-3-031-04496-0_20
https://doi.org/10.1103/PhysRevE.65.066126
https://doi.org/10.1029/2005JC002990
https://doi.org/10.1201/9781315274386
https://doi.org/10.1016/B978-0-444-88454-1.50015-2
https://doi.org/10.1029/2007GL029703
https://doi.org/10.1029/2012GL052676
https://doi.org/10.1002/grl.50928
https://doi.org/10.1088/0266-5611/30/12/125008
https://doi.org/10.1088/0266-5611/30/12/125008
https://doi.org/10.1115/1.1483342
https://doi.org/10.1007/978-1-4899-5352-0
https://doi.org/10.1029/2009jc005591
https://doi.org/10.1038/s41598-018-22500-9


552 K. M. Golden et al.: Stieltjes functions and spectral analysis in the physics of sea ice

Watanabe, E. and Hasumi, H.: Pacific water transport in the
western Arctic Ocean simulated by an eddy-resolving cou-
pled sea ice–ocean model, J. Phys. Oceanogr., 39, 2194–2211,
https://doi.org/10.1175/2009JPO4010.1, 2009.

Weeks, W. F. and Ackley, S. F.: The growth, structure and proper-
ties of sea ice, Monograph 82-1, in: The Geophysics of Sea Ice,
edited by: Untersteiner, N., Springer US, Boston, MA, 9–164,
https://doi.org/10.1007/978-1-4899-5352-0_2, 1982.

Weeks, W. F. and Gow, A. J.: Crystal alignments in the fast ice of
Arctic Alaska, J. Geophys. Res., 85, 1137–1146, 1980.

Wong, P.: The statistical physics of sedimentary rocks, Physics To-
day, 41, 24–32, 1988.

Wong, P., Koplick, J., and Tomanic, J. P.: Conductivity and perme-
ability of rocks, Phys. Rev. B, 30, 6606–6614, 1984.

Worster, M. G. and Jones, D. W. R.: Sea-ice thermodynamics
and brine drainage, Philos. T. Roy. Soc. A, 373, 20140166,
https://doi.org/10.1098/rsta.2014.0166, 2015.

Xin, J.: An Introduction to Fronts in Random Media, Surveys and
Tutorials in the Applied Mathematical Sciences, Springer New
York, https://doi.org/10.1007/978-0-387-87683-2, 2009.

Yen, Y.-C.: Review of thermal properties of snow, ice, and sea ice,
vol. 81, US Army, Corps of Engineers, Cold Regions Research
and Engineering Laboratory, 1981.

Zhang, D. and Cherkaev, E.: Reconstruction of spectral function
from effective permittivity of a composite material using ratio-
nal function approximations, J. Comput. Phys., 228, 5390–5409,
2009.

Nonlin. Processes Geophys., 30, 527–552, 2023 https://doi.org/10.5194/npg-30-527-2023

https://doi.org/10.1175/2009JPO4010.1
https://doi.org/10.1007/978-1-4899-5352-0_2
https://doi.org/10.1098/rsta.2014.0166
https://doi.org/10.1007/978-0-387-87683-2

	Abstract
	Introduction
	Percolation models
	Analytic continuation for two-phase composites
	Spectral measure computations for two-phase composites
	Generalization to rank deficient setting

	Analytic continuation for polycrystalline media
	Inverse homogenization: recovery of information about the microstructure of composites
	Bounds for the moments of the spectral measure
	Matrix-particle forward and inverse bounds
	Extension to polycrystalline composites

	Analytic continuation for advection diffusion processes
	Random matrix theory in sea ice physics
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

