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ABSTRACT

i ielectri ant (or
aining bounds on the effective dielectric constant (;

RecentLY D. Bergman introduced a method for obt ely on a variational principle but

conductivity) of a two-component mediurn.'Thls method does n(’)t rl g O e the ratio of the
instead exploits the properties of the effective parameter as an ana ty e schmiques of several
component parameters. Here the method is extended to multicomponen ]r1ne T e sonstant of
complex variables. We propose for the first time a series of boungis ont tC:l Li-(l) sEimShtrikman O o
a material of three or more components, as well as rederive the Wiener gn't stcl: D heunds for two-
real parameters, In addition, we obtain in a simple manner a known infimte s¢q

component media.

1. INTRODUCTION

Due To THE difficulty of calculating the effective paramete.rs.(e.g. ?wlegirtlecrgzgzinjs,
magnetic permeability, or electrical or thermal‘ (.:onductlwty) 0 ﬂa B e,
material, there has been much interest in obta}nmg bounds onf nai1 lti;;co e ponmt
WIENER (1912) gave optimal bounds on the effective parameters ol a m AN
material with fixed volume fractions and real component parametegs. e otroic
are sometimes known as the arithmetic and harmon}c m?an boun s oiariational
materials, HASHIN and SHTRIKMAN (1962) improved Wiener's bo2untc)15 ;lgSéI;f); o
principles. Recently BERGMAN (1978, 1979, 1980a,p, 1981, 1982a, ’1 ey
a method for obtaining bounds on complex eflective pgramet;rs v;;f uc e parameters
on variational principles. Instead it exploits the properties olt; tde ef 1§er D o
as analytic functions of the component parameters. The met OMOLTONg(T%O Lo
elaborated upon in detail and applied to several 'problems by MI o PAPAN;COLAOU
¢, 1982). A mathematical fo1mula(t:;;rll)of }llt was giveéls lké}; (;{r(Z’I;EEl; :r aman's trajectory

1983 ; hereafter referred to as . However, _ ) ot
glpproach which is discussed below, the method has 'been restrl'cte;i tootn\zloI gflfrlgi);ble,
materials, where the effective parameters are functions of a single ¢ tign e
the ratio of the two component parameters. This analytic con:m:a; e and
extended to multicomponent media in a direct way for the ﬁrstth m:l nal}; ¢ for sovers]
PAPANICOLAOU (1985 ; hereafter referred to as GP2). There the

iversi ick, NJ 08903, U.S.A.
+ Present address : Department of Mathematics, Rutgers University, New Brunswick,
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34 K. GoLDEN

cpmplex variables of the single variable integral representation for effective parameters
given in GP1 is obtained.

The main purpose here is to conjecture new complex versions of the Wiener
(sketched in GP2) and Hashin-Shtrikman bounds for multicomponent media using
Fhe extended representation formula. In particular, in the Hashin—Shtrikman case we
u}troducg a new fractional linear transformation of the effective parameters which
diagonalizes to second order the perturbation expansion of the effective parameters
abou’F a homogeneous medium. The representation formula is applied to this new
fgnctlon to obtain the real Hashin—Shtrikman bounds and conjectured complex exten-
sions, while it is directly applied to the effective parameter in the Wiener case. In
addmol_l, for two-component media, we derive in a simple manner in the Appendix a
known infinite sequence of bounds which incorporates more and more information
about the material, by using iterated fractional linear transformations.

In GP1 the integral representation involves a complex kernel containing the com-
ponent parameter information and a positive measure containing information about
the geometry of the composite. For three-component materials, the effective par-
ameters are analytic functions of two complex variables. One of these two variables
can be fixed as a multiple of the other, so that the effective parameters are treated as
analytic functions of a single complex variable. BERGMAN (1978, 1983) has applied
the single variable analytic method in this case to obtain the real Hashin-Shtrikman
bounds. However, this approach makes the above-mentioned measure depend upon
the component parameters as well as the geometry of the composite. A direct extension
of the analytic continuation method should rely on a representation of the effective
parameters which indeed separates the component parameters from the geometry of
the composite. This is accomplished in GP2 and here by treating the effective para-
meters explicitly as analytic functions of several complex variables.

One’reason for the usefulness of the multicomponent representation formula is the
following. As mentioned above, the effective parameters can be expanded about a
homogeneous medium. The information in this perturbation expansion can then be
used along with the representation formula to continue the effective parameters
beyond nearly homogeneous media to their full domain of analyticity.

2. OUTLINE OF METHODS AND RESULTS

iso\t&rlg E_‘SS‘(;{HG that the medium under study is an N-component microscopically
com pic dielectric. The rpathematical details of our formulation of the multi-
ponent problem are given in PAPANICOLAOU and VARADHAN (1982), GP1 and

GP2. ; . .
¢ foLet S(XT w) 'be a stationary stochastic process in xe R? and w e Q, where Q is the
et of all realizations of our random medium. We write

80x, @) = &1 (X, @) +e2%2(X, W)+ .. . +enxn(x, ©), 2.1)

where ¢, ; : ) .

funcfisg ! (gj < W, is the complex dielectric constant of medium j, and the indicator

equals ZC])% z;}‘;’) equals onekfor all realizations w e Q which have medium j at x, and
erwise. Let E(x, ) and D*(x, ) be the stationary random electric and

e
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displacement fields satisfying

D (x, w) = &(x, w) Ef (x, w) (22)

V- D¥x,w) =0 (2.3)

V x Ef(x,0) =0 2.4)

j P (dw) E¥(x,w) = e, (2.5)
Q

where e, is a unit vector in the kth direction for some k=1,2,...,d. In(25) Pisa
probability measure on Q which is compatible with the stationarity of the problem
(PapANICOLAOU and VARADHAN, 1982), so that we may focus attention at say x = 0,
and then drop the x notation.

The effective dielectric constant &% may now be defined as

ef = f P (dw) D¥(w). (2.6)

It is shown in GP1 that this ensemble average in an infinite stationary medium
coincides with the more standard definition involving a volume average. Since 2.2)-
(2.6) are linear in &(w), £ depends only on the ratios ;= &fey, i=1,...,N— 1. We
define

M (hry .o sn1) =§k- = J‘Q P (dw) (j’;l hjxj(a))+xN(a)))E{-‘(w). 2.7

Clearly m, has the same domain of analyticity in V-1 as does EF. It can be shown
(GoLDEN, 1984) that if at a finite (h,,. .., hy-,) there exists a unique solution Eﬁ‘.tp a
suitable formulation of (2.3)—(2.5), then E¥ is analytic at (hy, ..., hy—1). The condition
for existence and uniqueness is that the smallest convex set containing {L,hy,..., h_N_ 1}
does not contain the origin in C (GP2). Thus my is analytic when (&, .. ., hy_ ) satisfies
this condition. Furthermore, from the symmetric form of the definition

& = J P (dw) ia(a)) E} (w) E{(w), (2.8)
o J=

where the bar denotes complex conjugation, it is apparent that the diagonals m, map
{Imh, > 0} x :.. x {Im hy_, > 0} into the upper half plane with my(n, .. hyo) =
m(hla-“;h}\i-l)' )
We now outline the method which exploits these properties of m = My an_d br1<':ﬂy
describe the resulting bounds. As mentioned in Sect. 1, the analytic contlnuatlo’n
method relies on a representation of m which separates its dependence on the #;’s
from the geometry of the mixture. This representation is obtained ‘py treating m as
an analytic function on a product of upper half planes. It is mathematically convenient
to consider an auxiliary function f(G, ..., {n-1) = i1 —m(.. hy_)), i=+—1,
on a product of discs {|{;} < 1}, where it has positive real part, apd h;and {;are related
by a standard conformal mapping. Then the above representation for famounts to a
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manipulated form of the Cauchy Integral Formula applied to a product of discs, and
is displayed in (4.1), (4.2) and (4.3). The parameter information (hy) is contained in
the kernel involving the H, and the geometrical information is contained in the positive
measure . This measure p is concentrated on the (distinguished) boundary of the
product of discs and arises from the boundary values of the real part of /. As such,
cannot generally be identified with, say, a smooth function, but has singular (*-
function’”) components. Constraints on pcoming from assumptions about the mixture
geometry (e.g. volume fractions) are imposed by relating a suitable form of (4.1} to
the perturbation expansion (5.3) mentioned in Sect. 1.

The extremization procedure which yields the bounds is based on the following two
observations : (i) for fixed 4, 1 <i< N—1, (4.1) is linear in p, and (ii) the class of
admissible x forms a compact, convex set M. Then for fixed h;, extremal values of m
(or f) are attained by extreme points of M, just as in linear programming. We have
found that the multicomponent Wiener and Hashin—Shtrikman expressions for real
parameters arise from the simplest extreme points of M, which are products of a *“d-
function™ in one direction with uniform measure in the other directions, as in (5.1}
for three-component media. We then use the same type of simple measures to propose
new complex bounds, which for three-component media are illustrated in Fig. 1. For
the outermost bound (arcs a, b, c), only knowledge of ¢,, &, and &, is assumed. The
volume fractions are assumed as well to obtain arcs d and e, while statistical isotropy
is further assumed for arcs f and g. Arcs a, b, and ¢ are attained by actual composite
materials, as are parts of arcs d and e. We do not know if arcs f and g are optimal.

The fact that the above arcs are images of extreme points of admissible classes of
¢ does not provide mathematical proof that the obtained regions form rigorous
pounds. This difficulty arises (for N > 3) because the full set of extreme points of M
1s much larger than the simple class that we use, and, in fact, has not been completely
characterized (Rupmv, 1970, 1983; McDonaLD, 1982). Our extremization procedure
(to second order in the perturbation expansion) is thus stated in the form of five
fanction theoretic hypotheses which are as yet unproven in the above context. Never-
theless, using an extended version of Bergman’s trajectory method, MiLToN (1984)
has proven subsequently to the present work that arcs a, b, and c and arcs d and ¢

do indged form bounds for the complex dielectric constant. That arcs f and gflorma
bound is still conjecture.

3. BoOUNDS FOR TwO-COMPONENT MEDIA

Let h =& fes, s = 1/(1—h), and Fy(s) = 6, — i 1) is ¢ i
negative real axis (oo, O] )o’r #(8) = 8y —my(h). From section 2, m,. (%) is analytic off the

finite Bor] Fuls) is analytic off [0, 1]. In GP1, it was proved that there exist
orel measures yy. (dz) on [0, 1) such that the diagonals py, (dz) are positive and

Fuls) = J e (d2)

o bk=lo.d sg,1] 3.
One proof of (3.1) depends on the operator representation arising from (2.3),
Fiyls) = LP(dw)x,[(s+I“xl)“’ e e, (3.2)
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1

£- plane

£,5 "4 +4i SSEAN

P =045
Pa =Q.1

P3=0.45 , Figure |
dimension = 3 Ey=i

—

+ + + t t

. . . ., i : in (6.4); ¢, Cy(e) in

F16. 1. Various points and arcs in the complex g*-plane. a, Ly(e) in (6.4); b, Ly(@) in (6.4); ¢, C1(@) 1

(6.5); d, Biy(z)) ig (6.12); e, By(z)) in (6.13); f, circular boundary of R¥ in (6.33) and (6.26),/g, :ﬂc/t::l‘)tr‘

boundary of R* similar to (6.23) and (6.26); A, &% = pif +pata+ Pty B, &% = 1/(/’3/*25)‘1’: &y Paf83) 5
C, = 6y 1/(1jA;—1/3e3) as in (5.28); D, &* = & +1/(1/4,—1/3,) as in (5.28).

where I' = V(—A)~'V - (and the differential operators d/dx, in I" are 2replacec:l by Lhe'mlﬁtmtiil)];];i
generators of the translation group on Q). In the Hilbert space L¥Q, P) ‘wuh w.mgla?(.t w
the inner product, I'y, is a bounded self adjoint operator of norm less than' OII“ eq)u#] o one
(GP1). The formula (3.1) is the spectral representau.on.of the resolvent (is1 + xllatec,l e
ty (dz) is the spectral measure of the family of projections of Ty A%Ol ef:l re g1 IZic o
exploils the fact that — Fy,{s) has positive imaginary part when Im s > 0, an 1(5i GLA);MAN
s = 0. Then a general representation theorem in function theory (AKHIEZEPfl atﬁ Sz tC:
1966) gives (3.1) for the diagonals i = k. It is this function theory approach tha
extend the analytic continuation method to muiticomponent me.dla. _ fe )

For|s| > 1, (3.1) can be expanded about a homogencous medium (s = o0 or 1= 1),

1
Y R o) = J 2 (d2). 3.3)
Fik(s)=T+_ST+ = e Hi X Hik
Equating (3.3) to the same expansion of (3.2) yields
(3.4)

W = (=" LP (dew) [T ed e

When i = k the moments ;) uniquely determine the positive i (;Tlllen V&%elg l?:éol\cnd;z itshz
analytic continuation of (3.3) to the full complex s-plane excluding [0, 11. s Hi
signed measure of mass 0.



338 K. GOLDEN

We now focus on one diagonal coefficient e, and call it ¢*, with m = g*/g, and

i

F) = 1=m(h) = f AL ) 6.5
0o S—2

Bounds on &* are obtained as follows. By (3.4) the mass of y in (3.5) equals the volume fraction

py of medium 1, which is less than or equal to 1. For se C off [0, 1], F(s, 4) in (3.5) is a linear

functional from the set M of positive measures of mass <1 on [0,1] into C. Thus extreme

points of the set of values of F(s, ) in C are attained by one-point measures &5, (dz), 0 < «,

a <1 since they are the extreme points of M (DUNFORD and SCHWARTZ, 1958). For these
measures Fhas the form

F(s)=i, O0<a<!, 0gaxgl. (3.6)

s—a

The‘ condition F(1) < 1 (BERGMAN, 1978) determines the allowed region in the F-plane. It is
the image of the triangle in («, a)-space, defined by a4+z<1,0<a < 1, 0 < @ < 1, under the
mapping (3.6). The region is bounded by a circular arc C(e) and a line segment L(x), with

14 o
Clo)= Py L) = o 0<a<l (3.7

These bounds are optimal and can be attained by slab composites aligned perpendicular and
parallel to the applied field. The arcs are traced out as the volume fraction varies, For real
parameters with ¢, < g, these bounds collapse to the interval g, < &* < &,.

If the volume fractions p, and p, = I —p,, are fixed as well as se C, then the mass of y in
(3-5)is fixed with u® = p . Then the values of Flic inside the circle parameterized by

@=L, -~o<icw 3.9
On the other hand,
I —sF(s)
E() =1—g,/e* = — "\ 3.9
(S) PI/E s(l ——-F(S)) (1 )

is an upper half plane function with the same domain of analyticity as F(s) (BERGMAN, 1982b)
80 that it has a representation like 3.5,

E(s):J; vﬁ?, s¢[0, 11. (3.10)

The perturbation expansion of E(s) forces the m

lie inside the circle ass of v equal to p,. Then the values of E(s)

C‘l(z)=sffz, —00 €z 0. (3.11)

In the e*-plane the intersection of these two re

responding to 0 < 7 < in (3.8

M_ILTON(1981b) s?low?tﬁé e 0 <2 Sp
aligned spheroids of mat
ve%a}.u;lr;he sarcsa ;a'urje traced out as the aspect ratio varies.

1/(p1/e]+p,}a,) . 6< alere real and positive the region coliapses to the interval
Slaby or o2 rﬁaterials\ %1 1+ Paey, which are the Wiener bounds. They are attained by parallel
by setting « g (3.8) e u(;iaper Wiener bpund is equivalent to a lower bound on F obtained
G wigy oo - .eq,u;r;] th;: lower Wiener bound is the same as a lower bound on £ in
VA ently the upper bound on F in (3.8) with z = p,, as required by

gions is bounded by two circular ares cor-
s i in (3.11). As BERGMAN (1982b, 1983) and
se boupds are optimal. They are attained by a composite of uniformly
erial 1 in all sizes coated

with confocal shells of material 2, and vice

If the materia) ;
is
further assumed to be statistically isotropic, then u"in (3.4) can be
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computed, with (") = p, p,/d, where d is dimension, so that F is known to second order

A dls (3.12)
F(s) = P + P + ...
A convenient way of including this information is to use the transformation (BERGMAN, 1982b)
1 1
Fis) = —— ——. (3.13)
=

The function F,(s) is an upper hall plane function analytic off {0, 1] so that it has the rep-
resentation

Fi(s) = jl p (42 (3.14)

§—Z

Under (3.12) F, is known only to first order

Fi(s) = + (3.15)

papid
5
i ie inside the circle p,/(pd(s—2)h
which forces ® = p,/p\d. Then the values of E,(s)_ lie insi (psd(s
—0 LK oo.’ ISincepf'l[;‘s Fractional linear in F,, this circle is transformed to a circle in the
F-plane

pi(s—2)

— T —o K zE W (3.16)
s(s—z—p,ld)

Cy(2) =

Applying similar considerations to

_ P2 ppa(d—1) (3.17)
E(S)_—S‘—i_—-—_———dsz + ...
gives a circle in the E-plane,
[oXE) pa(s—2) —w <z W (3.18)

= Se—z—pd=Dydy’ _
. ar ar
In the g*-plane the intersection of these two circular regions 1s .boundgd bghtw\?e:tlircc:; a;fathe
corresponding to 0 € z < (d—1)/d in (3.16) and 0Kz < 1/d in 331.)1 t)h HZshin—Shtrikman
region, C5(0) = p,/(s —po/d) and Cy = pa/(s—p\(d—1)/d) are attainec by Cf(:) B erica
geomezcrie.s (spheres of all sizes of material 1 in the yolume fractlgri' P lo coated B et
shells of material 2 in the volume fraction p,, and vice vqrsa), an hlf on the B8 0 aITON,
order bounds. While there are at least five points on thearcin (3.16)t 121964 At 1976)
1981b), the arcin (3.18) violates the interchange inequality (KELLER, le )

3.19
m(ym(1/h) = 1, (3.19

. imal. MiLTON (1980)
which becomes an equality in two dimensions, and is FOHSEquen:.IX n(%t {)Qp)txmal M (
and BiRGMAN (1982b) have improved this bound by 1ncorpore: hle igme'rv “
When &, and &, are real and positive the region collapses to ’

1 P (3.20)
1 P ,__¢+_~), g, <&
81+pz/<ﬂ——+d—l>$3*<82 p‘/(gl—-a;_ dey

g,—&; de;
d is equivalent to a Jower bound on

i : in—Shtrikman bounds. The upper boun i ivalent to a
 Gbtained by Z‘iiiﬁgsi”—lk@?,dwo in (3.14). Similarly, the lower bound is equiva
'1 =

lower bound on E, = 1/p,— 1/sE.

i i jons and cannot be
_noint correlation unctions
el althogh Lo ; pequality forces relations among them

he | in ;
?f/l[culated 1i9r;31geng§11:13§131th?;8%’13) Lﬂeﬂx(gterchir(l"%eare known, then the transformation (3.13)
ILTON, a; ’ : e
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can be iterated to produce a function of the same type as F, known only to first order, which
is then easily extremized. This iteration procedure is described in the Appendix. The resulting
bounds form a nested sequence of lens-shaped regions.

The transformation F, in (3.13) can be used to obtain the bounds of TARTAR and MuraT

(1981)' and LURE and CHERKAEV (1984) for anisotropic composites. In two dimensiens
following (3.3) we write ,

B by B

Fu@) =45+ Fal) =T+ 5+ (3.21)

The anisotropic interchange inequality (MENDELSON, 1975 ; KOHLER and ParanicoLAOU, 1982)

my (R may(1/h) = 1 (3.22)
implies that (GOLDEN, 1984)
Bi+ B2 = pipa (3.23)

Equation (3.23) can also be obtained directly fi 4 Cre = pulb ¢ =l
The new funations y from (3.4), where f, = p'and and f, = u).

o~ 1 1 o~ 1 1

" —p_l_m’ =1)] —.S'Fzg (324)
are of the same type as F,, and F,, and are known to first order
~ _ pint = _ Bapi
F=2y ) Ry ~S”'+.... (3.29)
Applying the standard minimization for a fixed real s gives
Fy\(8)+ Foo(s) 2])2‘/‘1)‘], (3.26)

$
which is equivalent to

1 + _1_ < 25—p,

.. . F_ll Fy = D ‘ G-27
Similar considerations can be applied to E, giving

! 1 2s—p,
— +t——< .
E, " E, ™ (3.28)

The bounds (3 27) and (3.28 i
e b 2 .28) are opt is ani i . '
asimilar transformation by M)ILTO: Ia)n]clin élogl;l:; ? Illggtg;lroplc Faseas covered previously e

4. THE PoLyDIsC REPRESENTATION FORMULA

For simplicit ;
phcity we consider three-component media so that m(hy, hy) = e*e

and F(s,. 5) = 1

and hz(::;/)% lor ’;l(il,lh/g)l are functions of two complex variables, /i, = &,/e,,
Im 5, >0). As a c‘ounte( ;lzl) and s, = 1/(1—/,). Denote U?= {Im s, > 0} x
iFisus) with /(0,0 't of Flsi,5): U2 {Im F <0}, consider f((,,(s)=
= (=050, T2 1,5, 1n by o oy 2T DX = {61 < 1} x (1] < 1} and
result may be state;d as fo’ll. n GP2 thg analogue of (3.5) for / in D?is derived. The
ows. A function (¢, ;) which is holomorphic with positive
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real part in D? may be represented as

1 2z (2n
S, 8 = w(0,0) + §L L (H\Hy+ H\+ Hy— 1) pu(dr, dey), (4.1)
where v is the imaginary part of f,
_ e‘t|+c] ei12+c2
H, e 2—m 4.2)

and p is a positive Borel measure satisfying

2 (2n
J: J‘ eltirmid y (dry,d) =0 when nmm <0, n,me{0,+1,+2,...}. (4.3)
) 0

The representation (4.1) is obtained by manipulation of the two-variable Cauchy
formula for f(¢,,(;) in D2 The measure u(dt,,ds;) in (4.1) and (4.3) is the radial
(weak®) limit of u(Re"s, Re"?) dt,dt, as R — 1, where u is the real part of f. The Fourier
condition (4.3) arises from the fact that f has a Fourier series with only nonnegative
powers of Re™ and Re:.

Because F(s,,s,) is analytic when s, and s, are real and off [0, 1], the measure
p(dt),dt) must vanish on a corresponding subset E of T?={0<¢ < 2n} %
{0< 1, < 2n}. The effect on p of this support condition and the Fourier condition
(4.3) is discussed in the author’s thesis (GOLDEN, 1984).

5. THE WIENER AND HASHIN-SHTRIKMAN BOUNDS FOR
THREE-COMPONENT MEDIA

For two-component media the bounds were obtained by examining the images of
extreme points of the set of positive measures of mass <1 under the mapping (}25).
Denote M, = {positive Borel measures y on T that satisfy the Fourier condition
(4.3) and have total mass < 1}. The simplest extreme points of M, have the form

dt dt
it = b (de) x 52, k= Bos(dn) x 5, (5.1)

where 0 < ¢F, 1f < 2nand o, f < 1. However, as mentioned in Sect. 2, the full set of
extreme points of M, has not been completely characterized. Nevertheless, we have
been able to recover the Wiener and Hashin-Shtrikman bounds for th'ree-compon.ent
media with real g,, &, and &, by using sums of the measures in (5.1) with apl?ropnate
weights. It appears then that such measures give ex.trema'l values of functions reﬁ-
resented by (4.1) for fixed ¢, and (. We will make this conjecture more precise m the
present and following sections.

Before we begin with the derivation of the bo : from the set of
feature of our procedure. The representation (4.1) provides a map lLronl

; sure
random geometries of a three-component material to_M ,- However, nczlt e:grz I;:Le:dom
in M,, even those with the appropriate mass restriction coyrespoln s*/s 1 —&5fc*
geometry. This is so because each of the six related functions 1—&%/és, 387

unds, we should point out the following
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1 —¢g*[e,, 1 —gy/e*, 1 —¢*[e,, and 1—¢,/e* for an appropriate set of variables, has a
counterpart in D? with the representation (4.1) and the same mass restriction on p.
Then, given any one function, say F(s,,s,) = 1 —&*/e;, the measure p in M, that
represents it must contain this information, thereby restricting the admissible class.
The practical significance of this fact is that the full boundary of the allowed region
for ¢* under various assumptions cannot be obtained by using the measures in (5.1}
in the representation formula for F = 1—¢*/g; alone. We must consider one or more
of the above auxiliary functions as well as F. In other words, a bound obtained from
consideration of 1—eg;/e* using the measures in (5.1) corresponds to a bound on
1 —¢&*/e; involving measures much more complicated than those in (5.1). Therefore,
we employ the above auxiliary functions as an integral part of our procedure.

In order to rederive the Wiener and Hashin—Shtrikman bounds, we give the ana-
logue of (3.2) with i = k for three-component media,

| 1 1 1 -1
F(S], SZ) = LP(dCO) <'El" X1+ ;‘Xz) [(1‘!" ';:"FXH,; FXQ> L’k]'ek. (5.2)
§2 S 2

where [ is the identity. Note that the operators I'y, and I'y, in (5.2) do not commute,
so that it is not immediately clear how to extend the spectral analysis described at the
beginning of Sect. 3 to multicomponent media. For |s,| > 1 and |s,] > 1, (5.2) can be
expanded about a homogeneous medium (s; = s, = o),

F(s,s5,) = J P(dw) [(7_;1 i Yo _ Xl %l T+ %) Iy ”)ekji ‘e
Q 1

5 st 8 $182

(5.3)

To state the first form of our conjecture precisely, we introduce a function K(sy, 52)
that has the same properties as F(s,, s,). Namely,

(i) Kis analyticin U?
(i) K: U2 {Im K < 0}
(i) K(5),5) = K(s;,5,) (5.4)
(iv) K(o0,c0) =0
(V) K(s:,s,) is analytic for real s, and s, when both s, and s, are off [0, 1].

Because K has these properties, it has a counterpart in D?which has the representation
(4.1). With sums of the measures in (5.1) in mind, for the counterpart of K in D we
let p(dn,dn) = (u (A1) x do/2m)+ (us (dty) x dt,/27) in (4.1) where pu, and g, are
positive Borel measures on [r, 37/2). Then by mapping (4.1) to U? via g =(s;—Df
(1), e = (z—)/(z+1), j=1,2, and f =ik, and imposing K(w, c0) =0, we

obtain
K(s1,5) = Ki(s)+ K(s2), (5.5)
where
'y (dz) 1 d
K(s)=f i (dz, - Ha2(dzy)
ISy b n—z, Ki(s2) N TZ__Z_2~ (5.6)
In (5.6) u, (d

z1) and p,(dz,) are new positive Borel measures on [0, 1).

Complex permittivity of multicomponent material 343

Now, for the Wiener bounds we assume that the volume fractions of the three

materials p,, p» and p; = 1 —p, —p, are known as well as s, 5, > 1. In other words, F
in (5.3) is known to first order,

Hmm=%+%+m. (5.7

We now state

HyroTrESIS 1. If K(s\, 5,) in (5.4) is known to first order, i.e. if for fixed 0,0, > 0

o o
m%m=§+f+m, (5.8)
1 2

then for fixed s,, 8, > 1, K is minimized by (5.5), where K, and K, in (5.6) are separately
minimized subject to

o
K](S|)=E«—l+..., Kz(S2)=“}‘+..“ (59)
5 52

Note that in Hypothesis 1, K in (5.4) does not have the form (5.5) in general. The
upshot of the conjecture is that X attains its minimum within the special class (5.5).

We apply this hypothesis to K = F under (5.7). The minimum of (5.5) is obtained
by letting pt; = p,dg and p, = p,d, in (5.6). Then

Hmm>&+&= (5.10)
S 5
which is an upper bound on £*. The lower bound is obtained by considering
&y F(5,59)
g*  F(s,s)—1

where t, = | —s, and #, = 1—s,. The function H(z,, 1,) has the same analyticity prop-
erties as F(s,, 55) and has the first order expansion

H(t, 1) = 1 (5.11)

Hinm) =2+ B (5.12)
1 2

Applying Hypothesis 1 to K = H gives

p (5.13)

H(t, ) > u +
n o h

In terms of &*, (5.10) and (5.13) become

l/‘ﬂ + £ + Ej) < g* € P&+ PaEat Patss (5.14)
€ €2 &

. attai 1
which are the classical Wiener bounds. They are optimal, and are attained by paralle

plane configurations of the materials.

cond order
If the material is further assumed to

be statistically isotropic, then the se
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terms in (5.3) can be calculated (GoLDEN, 1984). Then F has the expansion

D P op—pf P2—p3 2p\p>
F(sl,sz)—sl+s2 +-——ds% + i dns,

(5.15)

Note that there arises in (5.15) a nonzero second order cross term, —2p,p,/ds;s,, so
that (5.5) is not applicable. However, consider the function

F(S]aSZ)

G(Shsz) = 1
1 '—EF(SI:S2)

, (5.16)

which has the same analyticity properties as F so that its counterpart in D? has the
representation (4.1). To second order G(s, 55) has the expansion

I T I . T (5.17)
G(sl,sz)—sl +s2 +ds,2+ds§+slsz+

The important point to note is that there is no second order cross term in (5.17), i.e.

the transformation (5.16) has diagonalized the perturbation expansion (5.15) to second
order. To obtain the bounds we now state

HYPOTHESIS 2. If K(s\,8,) in (5.4) is known to have the Jollowing expansion to second
order for fixed o, B, o5, By > 0,

o o 0
K(Slasz)=—l+—2-+—ﬁz~l+ﬁ—22+——*—+..., (5.18)
1 52 ST 85T 815,

then for fixed s,, 8 > 1, K is minimized by (5.5), where K,

and K, in (5.6) are separately
minimized subject to

o
K1(81)=S—:+§%—‘+..., Kz(s2)=53+éj+.... (5.19)

§; 5

We apply Hypothesis 2 to

K= G and call X, = G, and K, = G,, which are both
known to second order,

Py Pr D2
GS = — —_ e = — — caee 5°2O)
1(s1) s Tagt o Ouls) 5 Tag T (
To incorporate the constraints

(5.20) into the minimization of G, and G, we use the
transformation procedure deve

loped for two-component media. Let
1 1

Ji=— o (5.21)
: b 56
and similarly for G,. Then to first order

1/d
J1(31)=M+....

8

(5.22)
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i in (5.6), it is
Since J,(s,) has the same type of integral representation as does K,(s)) in (5.6)
ni?nimi;eé for fixed s, > 1 by the measure (1/dp,)d,, so that
1/dp, (5.23)

Jis) =2 5

Combining (5.23) with the analogous result for G, yields for G,

P2 (5.24)
G(s1,50) 2 "8‘1—1 Tt
- S

N d d

< ¢ consider
hich is an upper bound on &*. To get the lower bound forlsl S/&: )\ ‘f;}:"e’ function
;( g)) = 1—e*[e,, where g, =1/(1—¢;f&)) and 5= 1é( t;:?:ccl)n.d order has the
F’(gz‘ q3) has the same analyticity properties as F! (1,52) an
Y3
expansion

ps =B PP WP (5.25)

o P
F(q2, g3) = o + - + dg? * dg? dgaq3

* consider
As in the above treatment for the upper bound on &%, we

. F(g1,95) (5.26)
Gng)=—""71_

1 b EF(qh ‘h)
. Hypothesis 2
which again diagonalizes to second order the expansion (5.25)- Under Hyp
with K = G, we have

i P P (5.27)
Gl s—— 7

‘R B~
< &, In terms of
where now we get an upper bound because g, §3 < Owheng <& <8
e*, (5.24) and (5.27) become

3 1 1 28)
il o) <o (g -a) - Bl A
1 1

materials. These
hich are the Hashin-Shtrikman bounds .for three-coﬁi(;rg:ltw&d). The upper
gounds are optimal for certain volume fraction _re%lme;éres of s" and &, each coated
: i t sized sp .
i ined by a mixture of all differen < attained by the same
\?vc:?}?g liiigzlggpro};riate volume fraction. The lower bound is a
3

: i ed. . . izable to N-component
mixture with ¢, and i rtfveI{)SC)ve arguments ar¢ immediately gener_alhzgcomposed asin (5.5)

We remark here that the a -1, analogous to (5.4), is d o ot for
materials. The function K(s,- .., 5), ’ on procedure is then car

mizati €18 h 7o
e e oty peint (1?), ne hf'é(ﬁvé)ckE;: )t(ltlft the G transformation in (5.16) diagonaliz
each piece. The only point that nee

to SBCOI}d OIdCI the pe[tu] ba 0. F for —CO]I)pOIlCnt IIlateIla]S. A Slmplc Cal'
tion BxpanSlon f f N
culatlon Sho WS that it dOeS.
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6. New CoMPLEX BOUNDS FOR THREE-COMPONENT MEDIA

We first give bounds on £* assuming no information about the material aside from
€1, &2 and e; which are now complex. These bounds are the analogues of (3.7) for three-
component media and are determined primarily by the condition F(1,1) < 1. They

were first shown to the author by Mirton (1984) in a form to be described later, but
can be derived in the context of this paper by using

HYPOTHESIS 3. Suppose K(s),s;) in (5.4) is subjected only to K(1,1)< 1 for fived
(81,50 € U Then boundary points of the allowed region for K can be obtained by first
setting yy = 0 in (5.5) and (5.6) and then extremizing K, subject 1o K\(1) < 1, and then
setting ju, = 0 in (5.5) and (5.6) and extremizing K, subject to Ky(1) < 1.

In particular, when extremizing K, we let p = o0, in (5.6) so that

Ki(s) = —, (6.1)

S1—2y

and the condition that K,(1) <1 becomes o;+z, < 1. Then the image of either
{(,2)):2,=0,0< e, < 1} or {(a,z))1oy+2, = 1, 0y, z, > 0} lies on the boundary
of the allowed region for K|, and similarly for K,. Note that we do not generate the
entire boundary of the allowed region using this procedure applied only to K.

We now obtain the above described zeroth order bounds by applying the above
hypothesis to K = F. If y, = 0 in (5.6), then one of the following two arcs joining 0
and 1/s, lies on the boundary of the allowed region in the F-plane,

oy

—_—, 0 <1, (6.2)
si—(1—ay) :

o
Ly(a,) = s-l, Ci(ay) =
1

If ;=0 in (5.6), then one of the following two arcs joining 0 and 1/s, lies on the
boundary of the allowed region,

2]

o
Ly(op) = sf’ Cyloy) = m,
—(1-—-a,

0ga, < 1. 6.3)

Hypothesis 3 can then be applied to F(g,, g3) = 1 —¢&*/g, to obtain a line segment and
a circular arc, each of which joins 1 /s1 and 1/s,, thus filling out the boundary of the
allowed region. The other segment and circular arc obtained from F(qy, ¢;) will be the
same as one of the above pairs from E(sy, s5).

In the Foplane the allowed region may be described as follows. Let T be the
tnangular region lying inside the three line segments above with vertices 0, 1/s;, and
1/s,. Let_ Tcbe j[he curvilinear triangular region lying inside the three circular arcs
z;?ove with vertices 0, 1/s, and 1/s,. Then the allowed region is the union of T , and

.

MILTON (1984) has p

' (198 ointed out to the author that these bounds have a simple
mterpretation in the g*

-Plane and are easily shown to be optimal. Let 7% be the
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triangular region bounded by the line segments
Liy(o) = agy+ (1 —a)ey,
Lyy(o) = 0834 (1—) €3, (6.4)
L) = ag,+(1—o)e;, 0l
Let T% be the curved triangular region bounded by the circular arcs
Cia(o) = 1/(erfer+(1—0)/er),
Cos(ar) = 1/(afez+(1 —)fe3), (6.5)
Cia(0) = 1(ofe; +(1—w)fer), 0<a<l
Each circular arc Cy(e), when extended, passes through &, &, and the OI‘lg'II‘L Ele
allowed region is again the union of 7% and T%. All segments and arcs are atlt'dgw}i 13
The line segment L; is attained by a slab geometry parallel to the'app1 1e. ec
composed of materials ; and j in the volume fractions o and l‘—a. The c1rcuﬁa1l ;m:.r h,-j
is attained by the same slab geometry but arranged_perpendlcular to the field. ni
outermost arcs of the zeroth order bounds for pa‘rtlcu_lar values of the compone
dielectric constants are depicted as arcs a, b, and c in Fig. 1. N
If the volume fractions p,, p, and p; are known as well as &, & and &, then Fis

known to first order as in (5.7). To get complex bounds on ¢* which incorporate this
information, we state

HYPOTHESIS 4. If K(s,, 5,) in (5.4) is known to first order, i.e. if for Sfixed 0,0 > 0
% (6.6)
K(S],Sz) = 5, + 5 4+,
then for fixed (s, s2)€ U? the values of K(s\, ) lie inside the regjon géenerla)zfedt l;(})} the
sum of the two circles that contain the values of Ki(s1) and K,(s,) in (5.6) subjec
o

o o ©.7)
KI(S|)=S_:+"~1 KZ(SZ)—-S2+"“

With K, as in (6.7), we obtain its extremal values by letting s, = 6, in (5.6). The

allowed values of K, lie inside the circle
o

S1—Z ’

1 — ] —p*
Applying Hypothesis 4 to K = F under (5.7) then restricts the values of F = 1—¢*/¢;
to lie inside the region R, generated by

6.8
K\(s)) = —00 K2 S ©. ©8)

P1+p2

, —0Xz,2 %90 6.9)
S1—2Z1 $H

F(Sb SZ) =

- ; in (5.6), $0
Notice that we have ignored the support restrictions on y; and 1ﬁhere;1t tlga(tsfx)lher
that these bounds are seemingly very crude. We will see later, though,

certain circumstances these bounds are optimal.
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The region R, can be constructed as follows. First, p\/(s;—z,) and p,/(s,—z,) with
—® 2,2, < 00 are both circles in the lower half plane that contain the origin and
are thus tangential to the real axis. Now add to each point p,/(s,—z,) the circle
Pf($2—23), — 00 < z, < 0. The outside boundary of R, is a circle characterized by

OF
()2

where “arg” denotes argument and F is as in (6.9). This condition is equivalent to
arg(s1 —z)) = arg (s,—zy), or,

_ b baa 6.11)
a=g (e b )

where 8, = a,+ib, and S=a
image of the line (6.11) in (zy,
F-plane by

»+ib,. Thus the outside boundary B;(z,) of Ry .is the
z)-space under (6.9) and can be parameterized in the

+p.b, /b
BS(ZI)=p1 Daby/ 2,

Sl'-Z]

0 <z, € 0. (6.12)

With arg e; < arge, < arg ¢,, we have that (92 g€ L?, where L? = {Im g, < 0} x

{Im ¢, < 0}. Then we can apply Hypothesis 4 to #(g,, ¢;), which restricts its values to
a circular region R, bounded by

Bi(z)) = P2+P3ql2ﬂizz/1m 9
1

, —00 K2z < oo. (6.13)

In the g*-plane the regions R, and R,
complex extension of the Wiener boun
the zeroth order complex bounds desc
and (6.13) in the g*-plane are de

In the above bounds we hawv
arge, < arge, < arge,, 1/(1

become circular regions R¥ and R¥ Then, a
ds (5.14) is the intersection of (R¥n R} with
ribed above. The two arcs arising from (6.12)
picted as arcs d and e in Fig. 1.

© not considered the function 1—g*/s, because with
—¢&1/e5) is in the upper half plane while 1 /(1 —&s/e5) is in the lower half
plane. We have so far only considered functions on U? or L2 Better bounds can be obtained
by considering [ —&*/e, on the domain of analyticity given in Sect. 2, which is more general
than U? or 2 Furthermore, we have not included the functions 1—e/e* and 1-—g/e*,
because they give the same first order bounds on &* as do 1—¢&*/e; and 1 —e*/g,, as a simple
calculation shows,

We now discuss the optimality of the new complex Wiener bounds. Let us focus
on F = 1—¢g*/e;. Recall that for an actual material, z, and z, in (6.9) are restricted by
0<z,2<1and F(I,1) < 1. These conditions define a region Z in the lower left
hand corner of the unit square in (21, z2)-space. This region Z is bounded by the line
segments (0,0) — (ps/(1—p,),0) and (0,0) ~ (0, ps/(1—py)), and the hyperbolic arc
defined by p,/(1 —z,)+ py(1 —2)=1,0< 2,2, < 1. If the line (6.11) passes through
the region Z in (21, 20)-space then the following geometry (MiLTON, 1984) attains that
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section of Bs(z,). Expression (6.9) can be written as

l—Zl Zy
o=(1- 2 - e () 005 +2)
P2 1-2, 2)) (6.14)
o(2) 0525

i i ite con-
This expression is clearly the effective dielectric conls(;ar_lt (t:v}t;e avgﬁ;?npeosfmctions
sisting of slabs of three materials parallel to the fie " kllrel e e vl is ust o,
(1—py/(1 —2;)—po/(1 = 22)), (P,/(1 —21)), al?d (Pz/(l‘—zz))-ﬁ 4 composed of o, in the
The second is a slab composite perpendicular 'to the fie hc'~d 11; b composite
volume fraction 1 —z, and &, in the volume fraction z;. The t it e the
perpendicular to the field composed of &, in the volume frgctlon o (Zz o étays ”
volume fraction z,. The attained arc is traced out as z; varies so 122
“ iszosv?;lniéi)wfhi)l\zl that an arc of Bs(z,) different from but ppssllblyei\gl:é%mgs
that above can be attained by an actual material. The_ cl:lff:; /Eg N
H(l,, t;) = 1 —g,/e* is the same as that generated by F(s),5,) = s
parameterized in the H-plane by

P2 (6.15)
H(t, 1)) = i +

H

L—z hL—n
where, analogous to (6.11), we have

b (6.16)
Zz.=% Z|+<1_az_’lf (1—a1)>'

1

i inly lies in the
Now the admissible region analogous to Z in (zy, zz)-spa?etfori :Ito c;r(tglg;ygl > which
unit square. In terms of H, the condition F(1,1) < 1 tramsh a ecs,ndition t}’lat 000
is automatically satisfied since 0 < z;,2, < 1. I.-Io‘wcver, t e ct o pee or i
translates into H(1,1) <1, so that the admissible region ﬁn egtién (o) that
identical to Z. When the line (6.16) passes through Z, the s O o Alegots
corresponds to the line segment in Zis attained by the following g
to (6.14), (6.15) may be written as

_E—- —Zy)g1TZ 3)]
(e B B[ A
+[< P2 )/((1—22)82+Z233)])' (617)
1—Z2

o ted by 90°. A
The material corresponding to (6.17) is the composit® 10 t(56 01: 2;:;?:31(;]/) can be
similar analysis to that above can be given to show m.altlpti;:’ host material being &.
attained by the same type of slab geon}etry %L:)tu:éts areeattainable under certain
; ts of our to

We remark here that since only par be improved. (In fact, subsequent

; ect that the bounds can be mmp ; logous to
Egcumsﬁling;c:;i;x?w%) has improved these bounds by ﬁndlni a:;fdaél? g

S N . y Uy .

d ;n\g(:: which are in the interior of the region enclosed by arcs a
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An interesting feature that seems to distinguish the complex Wiener bounds for three-

component media from those for two-component media is as follows. For two-component
media, the slab geometries corresponding

to 6* = p &+ p»&; and e* = 1/(p,e, 4+ p.¢,) have values
fgr &* that form the vertices of the complex bound. Fpor three-compjc()‘fllerllt ézeél)ia, however,
E = Piei+ oty tpagy and &% = 1/(p, /e, + p,fe, , psfe,), which are depicted as points A and B in
Fig. 1, lie 1n51d§ .the complex bound. Only in the very special case when the line (6.11) passes
thl.ro'ugh the origin dpes point A lie on the bound, and only when (6.16) passes through the
origin does point B lie on the bound. Even though our new bounds in their present form do
not reduce to the bounds (5.14) when the parameters become real, we still call them complex

?;(t;:)nsmns of the Wiener bounds because they rely on the same amount of information, namely

If we now further assume that the material is statistically isotropic, then Fis known

to ciecond order as in (5.15). The function G then has a diagonal expansion to second
order,

PP, p P, O
G(s;,s) =242 £ P2
(51,52) statmtmt s T (6.18)

To obtain complex versions of the Hashin-Shtrikman bounds we state

HyroTHESIS 5. If K(s,, 5,) in

: (5.4) is.known to have the following second order expansion
for fixed oy, a5, B, B, > 0,

o o 0
K(S1,82)=——‘+_3+£2'+E§+—+..., 6.19)
8 82 85 5152

then for fixed (Spsz)E U? the values of K(s,,s,) lie inside the region generated by the
sum of the two circles that contain the values of K\(s,) and K,(s;) in (5.6) subject to

o

Kl(sl)=;1‘+ﬁ—zl+ caay K2(32)=%+E22+.... (6.20)
P Sy 08

To incorporate the constraints (6.20) into K, = G, and K, = G, we again use the

transformation procedure develo i i i i
: ped for a single complex variable. With J, as in (5.21
and (5.22), its values lie inside the circle i l o

1/d
J1(31)=S/ ’;1
12

Equivalently, the values of G (sy) lie inside the circle

y — <z < oo. (6.21)

Gi(s) = M,
s1(s1—2,—1/d)
Then the values of G lie inside the region R, generated by

—0 <z < o, (6.22)

Glsps) =—2E=2) ps—z)
SI(SI_ZI"'-l/d) Sz(Sz—Zg-—l/d)’

The outer circular boundary of Rg is obtained by setting

oG G
arg (g) = arg (52—) (6.24)

— Q0 <21,22<w. (6.23)
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which implies that

: )i (5)-en (2)
-1 2 }=tan!| ———— )+ | tan”!| —)—tan™{ — | |.
an (az—zz—l/d) tan (al“zl_l/d +2 a ay

(6.25)

Using the rule for the tangent of a sum gives after some manipulation

l)2(Cb1 —a + I/d) +b2Zi
(b, +ca,—cld)—cz,

b
¢ = tan ll:tan“ (él)—tan”‘ (—2>] (6.27)
2 a, a,

Hypothesis 5 can be applied to G(g,, g4), which restricts its values toa circular region
Rg in the G-plane. Then a similar analysis to that above is applied to get the outer

circular boundary. ' .
Next we consider H(, ;) = 1 —e&,/¢* which to second order gives a different bound

than F = 1 —g*/e;. The expansion of H to second order is

P ((d—D)/d) (0, —p1D) I G 1)/d) (p—pY)

(6.26)

Zq = a2—‘1/d+

where

H, ) =B+

1t 1 1
_ 2((d_ 1)/d)P 1P2 + L (6.28)
Then the transformation
H (6.29)
Lt t) = 1@ njaa
has to second order the expansion
d-1)/d (d—1)/dp, , 0
L(tl,tz)=1%+1;—22+(( t%)/ P + t% +_t—lt—2_+.”“ (630)
1

Hypothesis 5 can then be applied to L(t1, %), yielding a region R, 1n the L-plane.
Finally we consider H(vy, v;) = 1 —é&y/e%, where vy = 1/(1—8)/e)) and o5 = 1/(1 ng'l/ga).e{
Hypothesis 5 can be appilied to I, which is the analc?gue of (6.29) for H, yj% mfn 2
region R; in the F-plane. In the g*-plane, the four regions Rg, R@., R, at{lthLHe:ﬁi me
the four circular regions R¥, R, R} and R} A complex*vcrs12n 0 *t eR*;l hin
Shirikman bounds (5.28) is then the intersection of _(RG n REN RLl N d]:b vith
the complex Wiener bounds described above. In Fig. 1 this region 1s enc osef I};l s
fand g. Arc f comes from the circular boundary of R% and arc g_cozlnetsh ergounds
circular boundary of R%. For the values of the parameters~used 1111l Flg.th, e b nen
induced by L and L are outside those induced by G and G, and have the

omitted. . :h is the

Note that when z, =z, = 0 in (6.23), &* = &3+ 1/(1/ 45— 1/de3) ﬁl u; (f(;;?ﬁ);:slg I;t;\el; the
permittivity of an actual composite, as mentioned before. Only in t ‘?t po ¢ this composite lie
curve defined by (6.26) runs through (2, 22) = (0,0) does the permithivity
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on the circle which bounds Rg. A similar statement can be made for &% = & -+ 1/(1 A~ t/de)
and Rg. These two points, denoted by C and D in Fig. 1, lie inside the complex Hashin-
Shtrikman bounds in Fig. 1. An indication that these bounds are quite crude is that points A
and B lie inside them. Presumably these second order bounds can be improved.
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APPENDIX

HIGHER ORDER BOUNDS FOR Two-COMPONENT MEDIA

If F(s) in Sect. 3 is known to nth order via (3.4), then the t.ransformatlon (3.13) cSan be
iterated to obtain bounds on &* which incorporate this information. BAKER (1969, 1975) \Zﬁs
the first to use such an iteration procedure in a slightly different form to obtain nthf(g gg
complex bounds on half plane functions like F. His work was done in the cont:ai)gt 1(\)4 : TaON
approximants to Stieltjes series. Independently, in the context of hetcrogenequ}i me(:i 1ae oo
(1981a) used another method to obtain nth order cqm_plex bognds on &*, which re leg ) ves
component parameters to those obtained from variational prmmples. ’FELDERHOF E’ f e
another formulation of Milton’s nth order bounds. Baker's, Milton’s, Fe,:lderho 5, anneral
following bounds all solve essentially the same problem, except that Baker’s are mo;{: ge oral
in the sense that his were derived without reference to a pgrt{culqr physical pIrv(I) en; The
relationship of Milton’s bounds to bounds on Stiel_tjes series is dlsgussqd b_y Hi;;(}){  and
GoLpen (1985), where a slightly different formulation of the 1terat101;l is glvenéous o
(1982b, 1983) introduced the transformation (3..13) into the _theory of .eterogc‘:in eous mec
and it is in fact equivalent to Baker’s transformation. He used it and a variant to t’e )
order bounds on &*. Subsequently, KANTOR and BERGMAN (1984) Sl,lggCSth iteration 13).

To demonstrate the iteration, we derive third order bounds on &*. Assume

N B A0
F(S)—?+S2+s3‘+
The first iterate F, in (3.13) has the representation

i .
Fl(s)=Jﬁ—(i), | (A.2)

b §—2
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where p, is a positive measure on [0,1]. Under (A.1), F, is known to second order

a ay  a\ 1
Fi(s) = —2 Loy
i) m+@ Qﬁ+“' a9
Now let
at 1
Fols) =—L _
2(s) a, SF,(s) (a4)
S0 that
! d
Fy(s) = f #a (42) (A.5)
n S—Z
Then to first order,
a,a 1
Fz(S)=a|(;223"1>;+-.-, (A6)

which forces the mass of , to be a,(a,a/af — 1). The considerations of Sect. 3 tell us that the
vglues_ of Fy(s) for fixed se C lie inside the circle a, (a,a; /a3 — 1)/(s —2), — 0 < z < 0. Another
%rlcle is gbtamed by applying the same considerations to E,(s), the analog of (A.4) for E(s).

e vertices of the mduced‘ bounds in the g*-plane correspond to z= 0 on the F; circle and
zh= 0 on the E, circle, anc} lic on the arcs induced by (3.16) and (3.18). MILTON (1981a) shows
that these bounds are optimal. In general the materials that attain them are anisotropic.

When ¢, an'd &, are real and positive, the above region collapses to an interval, where the
upper bound is

* 1 ay/a
&g 2+ 1 —— 2/t
: {a /<81 e &2+ [(aq/a))— (asfa.)] (82~—B,)>}’ 815 6 (A7)

The lower bound is

1 1 1 1 e

—<—+e/|1/[—=2) &2 /(e2_e\(1 _1

e S l/[ /(82 81)+el/<e‘ ez)(el—g , B <K &y, (A.8)

e
E(S)=;'—+§2—+—3+.... (A.9)

where

Not . _ . .
(a0/ ae j]{nla/t (15;.7) With a,=p, and a,=pp,/d is a tighter bound than (3.20) since
2T hl h'3 ) < 0, which is the Schwartz inequality, and similarly for (A.8).
e higher order bounds may be described as follows, Assume

=4 & a,
F(S)~S+}7+...+S—"+____ (A.10)
ollowing the iteration procedure indicated above, the last transformation to be used will be
1 1
Fn— S)=—
0=, e (A.11)

with

|
F,,_ — lun~l (dZ)
1(9) J; Yz (A.12)
Then the values of F

»-1(s) for fixed se C lie inside the circle w2 (s—z), —o0 < z < 0. Since
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Fis [ractional linear in F,_,, this circle transforms into a circle in the F-plane,

(0)
core e~ Ll B S o

The @ can be computed from the g, as the iteration proceeds. Within the theory of Padé
approximants there is a literature which covers the determination of such quantities as o
(BAKER, 1969, 1975; WALL, 1948). Analysis of E,_,, the analogue of (A.11) for E(s), gives a
circle €,(2) in the E-plane analogous to (A.13). The intersection of the two induced regions in
the &* plane is bounded by two circular arcs. The arc coming from (A.13) is traced out as z
varies beiween 0 and o, where a is determined by the condition that F(1) € 1, just as in the
first and second order bounds, and similarly for E. The resulting bounds form a nested sequence
of lens-shaped regions, where the vertices of the nth order bound lie on the arcs of the bound
of order 71— 1. When g, and &, are real and positive, these vertices become the upper and loyver
bounds on £*. The real and complex bounds are attained in general by anisotropic composites
(MiLToN, 1981a). The bounds of Baxer (1969) differ only in that we bound E(s) as well as
F(5), so that our bounds are tighter than his. As n — co, the bounds for fixed s converge to a
point in the complex plane. Physically, this means that if one knows all the correlation functions
of the material, then the effective parameter is completely characterized. Mathematically, this
reflects the fact that knowledge of all the moments of a positive measure on a compact sct
serves to completely determine that measure.

We will now show that the above iteration procedure gives the same bounds on F as does
the direct procedure discussed in GP1, which goes as follows. Knowledge of F(s) to nth order,

F(s)=(;—'+g23+...+%+..., (A.14)

"

is of course equivalent to knowing the first n moments of x in (3.15) with u® = a), W =a,...,
=Y = q, Then for fixed s, F(s, 1) in (3.5) is a linear mapping from

i
M(;L‘“’,u“),...,;L("“")={ueM:[ 2l (dz) = p¥, j=0,1,--~,n-—1} (A.15)
0

to C. Now the extreme points of M(u®, ™, ..., u"~") are the n-point measures

p(d) = ¥ b, @), (A.16)
¥Zh
where
o, =20, 0<z <1, iakz{;=u"’, j=0,...,n—1. (A17)
k=1

‘Thus extreme points of the image of M(u®™, ..., u®~") under F(s, u) are attained by

% A.18)
F(s) = (A.
(S) k;] §—2Z;

where the @, and z, in (A.18) vary according to the moment equations in (A.17). We will show
how the iteration gives the same extrema. )
We first give the image of M(u®, ..., 1"~ ") under the transformation

L (A.19)
""" a,  sF(s)
where
F, = f H (dZ)_ (A.20)
b §—z

Assuming (A.14) we obtain by expansion of (A.19)
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- b' b2 bn -1

+. (A21)

where for 1 €j < n—1,

Z z(al] ai, Z (al, a,a;,

ftly=j+ i\ +iptiy=j+3
b = a; iy 22 ipipiy 2 + (- 1)“’1{1’5 A 22)4
i +— — ) .
ai aj at alt! (

T(lxms the image of MuO,...,u"0) is  M(uP,..., "), where u=b,,
i To)bz, " ®=b, . How the residues and poles of extreme points of
M@@®, . .., p®=") transform under F, will be made clear in what follows.

To illl}strate the equivalence of the two methods, fix s > 1 and consider the minimization of
F(s) subject to

G &4 a4y ay as
Fl§) = — 4 = 4. 2 4
(s) s+s2+s3+s“+s5+"" (A.23)

The argument that we give immediately extends to complex s and general #. From the above

considerations of the direct procedure, the minimum of F(s) is attained within the class of
measures

5
@)= 3 ad, (A.24)
=1
which satisfy (A.17) with #n = 5 and a4 = pi=Y1 £j<5. Clearly
3
F(s) = 3 = (A25)
k=1 §—2y

is minimized by taking as many of the @y and z, equal to zero as possible. Thus the minimum
is attained by

S T (A.26)

Si—zy §—zZ, 8

F(s) =
where the o, and z, satisfy
oy 0,0y = a,,
02+ 02y = a,,
ozt toy23 = a,, (A.27)
0z 0,23 = a,,
o,z +0,78 = as.
Now we solve the problem via the transformation F,. Under (A.23), F, has by (A.22) the

expansion

b,
Fl=?‘+s—2+s—3+-§;+..., (A.28)

where

(A.29)
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From the above considerations, F,(s) is minimized by

Fy=-tr . b (A.30)
S=y1r S
where
Bi+ By = by,
Biyi+Bryr = by, (A31)
Byt +Bayi = by,
By + B2y = b
We map back to F via
a, 1
r= S T=aFy *-32
which for (A.30) gives
et [f-e ) “s9
or
a,{s—y,) (s—y3) (A.34)

F=S[SZ—(J’l+}’z+a1(ﬂ1+ﬁ2))s+()’1)’2+al(ﬂJJ’2+ﬁzyl))]‘

The rational function in (A.34) has a partial fraction expansion

=t % B (A.35)

== N

§—z, §—2Z; §

where z, and z, are the roots of the second order polynomial in the denominator of (A.33). In
order to relate the u, and z, from (A.35) to those from the direct method, we first expand the
denominator in (A.34),

F=%{1/|:l—a,(ﬂ'-:ﬁz—l—ﬂ'y'+ﬁ2y2 : /5,1}’12';'/32}’22 } ﬂmaj'/))zyz]_*_”.)]}‘ (A.36)

5 s 5

, b
=ﬂ{l/[1-—al(b—l+%—+2:—+—:'+..,):I}. (A.37)
N N ) 5 §

By (A.31),

a c Cs3 Cy Cs
F=?‘+s—j+s—,+s—4+s—5+..., (A38)
where
CQ=a%b1, Cq =a%b2+ﬂ?bf, C4:a%b3+a?2blb2+a?b?’ (A39)

¢5 = athy+a}(2b,by+ b +af3bib, +aibl,
and for general n we have when 2 €j < n,

-1
¢ = H%bj_  + (113 z (bilbi;)'l'a;1 z . (bilbizbf3)+ cre +a]' b{ ' (A40)

iAiy=j—1 iythtiy=i-

i ; = = = a,. That this must be the
Using (A.29) in (A.39) shows that ¢; = a,, ¢; = a3, C4 = das and ¢5 = as.
case can also be seen by comparing (A.38) to (A.23). That ¢; = g, for general n can be shown
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Eylll;ltgiuction on j, ie. by assuming ¢; = a,¢; = a5,...,¢;_, = a;_, and showing ¢; = a, The
quations ¢, = ay,..., ¢, = g;_y can be used in (A.40) to write the right hand side as a first

order polynomial in b, b,_, wh ients ar i
by, ... by whose coefficients are powers of the a,. Equation (A.22) can
then be used to obtain ¢, = a, Now we expand the partial fraction (A.3k5),

F=a,+a2+a3+a,z,+(x222 o,z ozt oz oz

2
8 5° 3 s 55

Compar_mg this with (A.38) forces the &, and z, to satisfy (A.27), so that {A.35) with these &,
and.zk gives the same solution as the direct method.
. SIx;‘nce the above argument holds for general n, we have shown that the bound on F induced
y F,_ in (A.‘lz) under the assumption of (A.14) is the same as that obtained from the direct
me(;hod. This is S0 because we can successively apply the argument to F, with F, replacing F,
ggu nt(l}l:r:) l;?aiF} (\im'th F, replacing Fy, and so on. Our argument shows that at cach stage the
hounds of Fisne g.re' F;;tlmgl, ie. they coincide with the direct bounds, so that the induced
pound on ' 0}9?111& - It is interesting to note that t}.le expressions for the o, and z; Torced by
o morner in:;ltzd ionsin (A.17) are much more complicated than' the corresponding expressions
equati’o or s r:ge in IgA. 13). Wherf:as the o, and 7 are solutions of high order polynomial
cauation d,ete " in ( f.13) ‘a.re ratios (‘>f.polynom1als in the a,, which can be expressed as
e, Sel‘mltr)lzmt's of matrices containing the a;. The complicated nature of the oy and z,
fan akso ex? y viewing them as the residues and poles in the partial fraction expansion of
continued [raction (A.13). Then, for example, the z, are the roots of high order polynomials

in 5. We see then that the iteration procedure and its resulting continued fraction solves the
extremization problem in a convenient way.

... (A4D
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ABSTRACT

We stupy diffusionless transformations in solids which involve a sudden change of shape at a certain
temperature, We assume the existence of a free energy which depends on the local change of shape and
the temperature, Properties of this function reflect the underlying symmetry ol the parent and product
phases and an exchange of stability from parent to product phase as the body is cooled through the
transformation temperature §,. We concentrate on two questions: (i) How can loads be applied to cause
the body to transform to a particular variant of the product phase at or above 8,7 (ii) Can the parent phase
be recovered by applying some system of loads at or below 6,?

Theory and experiment are compared for thermoelastic martensitic transformations in shape-memory
materials and for the o~ transformation in quartz.

1. INTRODUCTION

IN THIS paper we study the mechanical behavior of diffusionless transformations
which involve a spontaneous change of shape of a crystal at a certain temperature.
These transformations are termed martensitic in metals and polymorphic in other
substances. Among the diffusionless transformations, “displacive” refers to trans-
formations having a nonzero spontaneous change of shape with little hysteresis as the
crystal is slowly cycled through the transformation temperature. “Reconstructive”
refers to transformations having large hysteresis loops. On the molecular level, dis-
placive transformations involve co-operative movements of atoms or groups of atoms
which are not hindered by large energy barriers. Usually there is a change of symmetry
in a displacive transformation ; the higher symmetry usually occurs in the high tem-
perature phase. While small hysteresis accompanies a displacive transformation, it 13
not necessarily true that the transformation strain or latent heat is small..Also,
transformation temperatures may be altered hundreds of °C by the application of
loads. ‘ :
The aim of this paper is to predict the effects of load and loading device on the
transformation temperature and on the stability and arrangement of the phzfses‘ in
some simple loading devices. In general terms, our stability criterion and const}tutlve
equations come from Gibbs’ (1875-1878) chapter on solids in contac1_: with fluids. In
this chapter Gibbs gives a finite deformation theory for the equilibrium ‘of stressed
solids in contact with fluids. He assumes that the internal energy per unit reference
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