1. Let $\mathbf{v}=\langle 2,1\rangle$.
(a) Rotate $\mathbf{v}$ by $90^{\circ}$ counter-clockwise.
(b) Rotate $\mathbf{v}$ by $90^{\circ}$ clockwise.
2. Let $\mathbf{F}=y \sin x \mathbf{i}-z \cos x \mathbf{j}+x z^{2} \mathbf{k}$, and let $\varphi=2 e^{x y z}$.
(a) Compute $\operatorname{div} \mathbf{F}$.
(b) Compute $\operatorname{grad} \varphi$
(c) Compute curl $\mathbf{F}$ and $\nabla \times \nabla \varphi$.
3. Evaluate the path integral

$$
\oint_{C}(x y+1) d x+\left(x^{2}+y^{2}\right) d y
$$

where $C$ is the triangle with vertices $(0,0),(1,0)$ and $\left(\frac{1}{2}, 1\right)$.
4. Circle " T " for True or " F " for False. In the following assume $\mathbf{F}=\langle M, N, P\rangle$ is a vector field where $M, N$ and $P$ have continuous first-order partial derivatives on an open set $R$, and let $\varphi$ be a potential function on the same region.
(a) T $\quad \mathrm{F} \quad$ If $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path then $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ is zero for every closed path $C$.
(b) $\mathrm{T} \quad \mathrm{F} \quad$ Consider $\varphi$ on the unit disk $D$. If $\nabla^{2} \varphi=0$, then the max of $\varphi$ occurs at the origin $(0,0)$.
(c) T F The shear flow in the figure below has zero curl.

5. Use Green's Theorem to compute the area of any region $S$ in the plane where the boundary of $S, \partial S$ is a simple closed curve. That is show

$$
A(S)=\oint_{\partial S} \mathbf{F} \cdot \mathbf{T} d s
$$

where $\mathbf{F}=-\frac{1}{2} y \mathbf{i}+\frac{1}{2} x \mathbf{j}$. (Hint: See Example 2 and Example 5 in $\S 14.4$ of your textbook)
6. Consider the force field $\mathbf{F}(x, y)=\left\langle 2 x y, x^{2}\right\rangle$. Find

$$
W=\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r},
$$

the work done in moving an object in this field from the origin $(0,0)$ to $(1,1)$ along the parabolic arc $\Gamma$ described by the graph of $y=x^{2}$ connecting these two points. (Hint: Determine whether this force is conservative, and use a potential function to find the integral if it is. Otherwise, parameterize the arc and compute it directly.)
7. Let $\Omega \subset \mathbb{R}^{2}$ be the disk of radius $2, \Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 4\right\}$. Consider the fluid velocity field $\mathbf{v}(x, y)=\left\langle-y^{3}, x^{3}\right\rangle$ on $\Omega$.
(a) Find the curl of the fluid velocity, $\nabla \times \mathbf{v}$.
(b) Use Green's Theorem to evaluate the circulation of $\mathbf{v}$ around the boundary of $\Omega$. That is, find the line integral

$$
\oint_{\partial \Omega} \mathbf{v} \cdot d \mathbf{r} .
$$

around the circle of radius 2 forming the boundary $\partial \Omega$ of the disk $\Omega$, traversed in the counterclockwise direction, by using your result from (a) in the area integral from Green's Theorem.
8. Suppose that an object of mass $m$ is moving along a smooth curve $C$ given by

$$
\mathbf{r}=\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, \quad a \leq t \leq b
$$

under the influence of a conservative force $\mathbf{F}(\mathbf{r})=\nabla f(\mathbf{r})$. From physics, we learn three facts about the object at time $t$
(a) $\mathbf{F}(\mathbf{r}(t))=m \mathbf{r}^{\prime \prime}(t)$
(Newton's Second Law)
(b) $K E=\frac{1}{2} m\left\|\mathbf{r}^{\prime}(t)\right\|^{2}$
(kinetic energy)
(c) $P E=-f(\mathbf{r}) \quad$ (potential energy)

Use the above to prove

$$
\frac{d}{d t}(K E+P E)=0
$$

That is that energy is conserved over time. (Hint: See page 747 of your text.)
9. Use the Divergence Theorem to evaluate the flux integral

$$
\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S
$$

where $\mathbf{F}=(x-2 x y) \mathbf{i}+y^{2} \mathbf{j}+3 z \mathbf{k}$ and $\Omega$ is the solid sphere of radius 3 centered at the origin.
10. Compute the flux through the unit sphere for the vector field $\mathbf{F}(\mathbf{r})=\mathbf{r}$.
11. Solve Laplace's equation explicitly in one dimension,

$$
u_{x x}=\frac{d^{2} u}{d x^{2}}=0 .
$$

Consider a harmonic function $u(x)$ solving the above equation on the interval $[a, b]$. Demonstrate by graphing $u(x)$ that it attains its maximum and minimum values on the boundary of $[a, b]$.
12. Evaluate the surface integral

$$
\iint_{G}\left(x^{2}+y^{2}\right) d S
$$

where $G$ is the part of the paraboloid $z=1-x^{2}-y^{2}$ that projects onto the region $R=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.
13. Let $S$ be the solid determined by $1 \leq x^{2}+y^{2}+z^{2} \leq 4$, and let $\mathbf{F}=x \mathbf{i}+(2 y+z) \mathbf{j}+$ $\left(z+x^{2}\right) \mathbf{k}$. Evaluate

$$
\iint_{\partial S} \mathbf{F} \cdot \mathbf{n} d S
$$

14. Consider the potential energy of a harmonic oscillator in three dimensions given by

$$
\varphi(x, y, z)=\frac{k}{2}\left(x^{2}+y^{2}+z^{2}\right) .
$$

(a) Find the force $\mathbf{F}(x, y, z)=-\nabla \varphi$ at a given position $\mathbf{r}=(x, y, z)$.
(b) What are the equipotential surfaces (level sets)?
(c) Find the divergence and curl of $\mathbf{F}$, that is, find $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$.
(d) Use the divergence theorem for $\mathbf{F}$ over $\Omega=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq a^{2}\right\}$, the ball of radius $a$, and your result from (b), to find the flux

$$
\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S
$$

of $\mathbf{F}$ through the spherical surface $\partial \Omega=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=a^{2}\right\}$.

