
Mathematics 2210 Fall 2019

PRACTICE EXAM III SOLUTIONS

1. Evaluate the integral ∫∫
R

(x+ y)dA,

where R is the triangle with vertices (0, 0), (0, 4) and (1, 4).

Solution. The only difficulty is in determining the limits of integration. The triangle
can be described by x going from 0 to 4 and y going from 0 to 1/4x. So,

∫∫
R

(x+ y)dA =

∫ 4

0

∫ x/4

0
(x+ y)dydx

=

∫ 4

0
(xy + y2/2)

x/4
0 dx =

∫ 4

0
x2/4 + x2/32dx

= (1/3)(9x3/32)40 = 6

2. Evaluate the iterated integral,∫ 2

0

∫ √4−x2
0

(x+ y)dydx.

Solution. ∫ 2

0

∫ √4−x2
0

(x+ y)dydx =

∫ 2

0
(xy + y2)

√
4−x2

0 dx

=

∫ 2

0
x
√

4− x2 + 2− x2/2dx = (−(1/2)(2/3)(4− x2)3/2 + 2x− x3/6)20

= 16/3

3. Evaluate the following integral by changing to polar coordinates,∫ √2
0

∫ √4−y2

y
xdxdy.

Solution. By drawing the line x = y and circle x =
√

4− y2 you can see that the
region we are integrating over is the wedge of the circle of radius 2 in between angle
0 and π/4. Thus, changing the limits and integrand appropriately,



∫ √2
0

∫ √4−y2

y
xdxdy =

∫ π/4

0

∫ 2

0
r cos θrdrdθ

=

∫ π/4

0
(r3/3 cos θ)20dθ =

∫ π/4

0
(8/3 cos θ)dθ

= (8/3 sin θ)
π/4
0 = 4

√
2/3

4. Compute the surface area of the bottom part of the paraboloid
z = x2 + y2 that is cut off by the plane z = 9.

Solution. The region over which we are integrating is the circle x2 +y2 = 9 of radius
3, denoted by R. We begin with the formula for the surface area integral:∫ ∫

R

√
(2x)2 + (2y)2 + 1dA

The numbers and region suggest using polar coordinates:

∫ 2π

0

∫ 3

0
r
√

4r2 + 1drdθ

=

∫ 2π

0
(2/3)(1/8)(4r2 + 1)3/2|30dθ =

∫ 2π

0
(1/12)(373/2 − 1)dθ

= π/6(373/2 − 1)

5. Compute the surface area of the part of the sphere x2+y2+z2 = a2 inside the circular
cylinder x2 + y2 = b2, where 0 < b ≤ a.

Solution. The region R that we integrate over is a circle of radius b. Solving the
surface equation for z, we get z =

√
a2 − x2 − y2. The partials we will need for the

surface area formula are

∂z

∂x
=

−x√
a2 − x2 − y2

∂z

∂y
=

−y√
a2 − x2 − y2

Now the surface area is

SA =

∫ ∫
R

√
x2

a2 − x2 − y2
+

y2

a2 − x2 − y2
+ 1dA

=

∫ ∫
R

√
a2

a2 − x2 − y2
dA

Converting now to polar coordinates,



=

∫ 2π

0

∫ b

0

√
a2

a2 − r2
rdrdθ

=

∫ 2π

0

∫ b

0
a(a2 − r2)−1/2rdrdθ

=

∫ 2π

0
−a(a2 − r2)1/2|b0dθ

=

∫ 2π

0
−a(a2 − b2)1/2 + a(a)dθ = 2π(a2 − a

√
a2 − b2)

Since this only gives us one of the two caps, multiply the answer by 2 to achieve the
final answer.

SA = 4π(a2 − a
√
a2 − b2)

6. Compute the volume of the solid in the first octant bounded by y = 2x2 and y+4z = 8.

Solution. The region in the xy plane that we are integrating over is defined by
y = 2x2, the y-axis, and the line y = 8 (since z must be positive in the second
equation). Thus, solving the second equation for z, we integrate this ”height” function
over our region. The x-values run from 0 to 2.

=

∫ 2

0

∫ 8

2x2
(2− y/4)dydx

=

∫ 2

0
(2y − y2/8)82x2dx

=

∫ 2

0
(16− 82/8)− (4x2 − 4x4/8)dx

= (16x− 8x− 4x3/3− x5/10)20 = 16− 32/3 + 16/5 = 128/3

7. Compute the Jacobian J(r, θ) of the transformation from polar coordinates to Carte-
sian coordinates given below:

x =r cos θ

y =r sin θ.

Solution.

J(r, θ) =

( ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
= r(cos2 θ + sin2 θ) = r



8. Compute the Jacobian J(x, y) of the transformation from Cartesian coordinates to
polar coordinates given below:

r =
√
x2 + y2

θ = tan−1
(y
x

)
Recall: Dx tan−1 x = 1

1+x2
. What is the relationship between J(r, θ) and J(x, y)?

Solution.

J(x, y) =

(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)
=

(
2x(1/2)(x2 + y2)−1/2 2y(1/2)(x2 + y2)−1/2

1
1+(y/x)2

(− y
x2

) 1
1+(y/x)2

(1/x)

)
= (x2 + y2)−1/2( 1

1+(y/x)2
)(1 + (y/x)2) = (x2 + y2)−1/2.

This is the inverse transformation of the previous problem, so the Jacobian should be
the inverse. Indeed, (x2 + y2)−1/2 = 1/r.

9. Let u(x, y) = log
√
x2 + y2 = log r.

(a) Find the vector field associated with this scalar field, by computing gradu = ∇u.

Solution.
∂u

∂x
=

1√
x2 + y2

(x)(x2 + y2)−1/2 =
x

x2 + y2

∂u

∂y
=

y

x2 + y2

So ∇u = ( x
x2+y2

, y
x2+y2

)

(b) Compute curl(gradu) = ∇× (∇u).

Solution. Using the formula for curl and a constant k-value of 0,

curl(gradu) = (
∂N

∂x
− ∂M

∂y
)k

curl(gradu) = (
−2xy

(x2 + y2)2
− −2xy

(x2 + y2)2
)k = 0

Since this was a conservative vector field (the gradient of a scalar field), this
computation was actually unnecessary. The curl of a conservative vector field
is always 0 (Theorem D, 14.3). On this test, you should still show the above
computation since we have not covered this yet.

(c) What are the level sets?

Solution. Note that the direction of each vector is the same as the direction of
(x, y). Thus at a point (x, y), the vector is pointing directly away from the origin.



The vectors are thus perpendicular to circles centered at the origin. These circles
are the level curves.

10. Let ϕ(x, y) = x2 − y2.

(a) Compute ~F = − gradϕ = −∇ϕ.

Solution. −∇ϕ = (−2x, 2y).

(b) Sketch a diagram in the plane of the vector field ~F .

Solution.

(c) Compute div(gradϕ) = ∇ · (∇ϕ).

Solution. ∇ · (∇ϕ) = 2− 2 = 0.

(d) Based on your findings, what kind of function is ϕ?

Solution. The divergence of the vector field is the same as the Laplacian of the
function ϕ. As such, the divergence being 0 means ϕ is harmonic.

11. Find divF and curlF, where F(x, y, z) = x2i− 2xyj + yz2k.

Solution.

divF = 2x− 2x+ 2yz = 2yz.

curlF = (z2 − 0)i + (0− 0)j + (−2y − 0)k = z2i− 2yk



12. Find the volume of a spherical ball of radius a using a triple integral.

Solution.

13. Find the mass of a cylinder of radius a and height h if its mass density is proportional
to the distance to its base.

Solution. We know the area of each circle slice is πa2. We have that the mass is
proportional to the height. So, each slice mass is going to be kzπa2dz for some
proportionality constant k and we integrate from 0 to h. Finally, for the mass M of
the cylinder we have,

M =

∫ h

0
kzπa2dz =

kπa2h2

2
.

Or,

M =

∫ h

0

∫ 2π

0

∫ a

0
kz r dr dθ dz =

kπa2h2

2
.


