1. Evaluate the integral

$$\iint_R (x+y)dA$$

where R is the triangle with vertices (0,0), (0,4) and (1,4).

2. Evaluate the iterated integral,

$$\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} (x+y) dy dx.$$

3. Evaluate the following integral by changing to polar coordinates,

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} x dx dy.$$

- 4. Compute the surface area of the bottom part of the paraboloid $z = x^2 + y^2$ that is cut off by the plane z = 9.
- 5. Compute the surface area of the part of the sphere $x^2 + y^2 + z^2 = a^2$ inside the circular cylinder $x^2 + y^2 = b^2$, where $0 < b \le a$.
- 6. Compute the volume of the solid in the first octant bounded by $y = 2x^2$ and y+4z = 8.
- 7. Compute the Jacobian $J(r, \theta)$ of the transformation from polar coordinates to Cartesian coordinates given below:

$$\begin{aligned} x = r\cos\theta\\ y = r\sin\theta. \end{aligned}$$

8. Compute the Jacobian J(x, y) of the transformation from Cartesian coordinates to polar coordinates given below:

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Recall: $D_x \tan^{-1} x = \frac{1}{1+x^2}$. What is the relationship between $J(r, \theta)$ and J(x, y)? 9. Let $u(x, y) = \log \sqrt{x^2 + y^2} = \log r$.

- (a) Find the vector field associated with this scalar field, by computing grad $u = \nabla u$.
- (b) Compute $\operatorname{curl}(\operatorname{grad} u) = \nabla \times (\nabla u)$.
- (c) What are the level sets?

10. Let
$$\varphi(x, y) = x^2 - y^2$$
.

(a) Compute grad $\varphi = \nabla \varphi$.

- (b) Compute div $(\operatorname{grad} \varphi) = \nabla \cdot (\nabla \varphi)$.
- (c) Based on your findings, what kind of function is φ ?
- 11. Find div **F** and curl **F**, where $\mathbf{F}(x, y, z) = x^2 \mathbf{i} 2xy\mathbf{j} + yz^2\mathbf{k}$.
- 12. Evaluate the following line integral, where C is the curve $x = 3t, y = t^3, 0 \le t \le 1$.

$$\int_C (x^3 + y)ds$$

13. Evaluate the following line integral, where C is the line segment from (0,0) to $(\pi, 2\pi)$.

$$\int_C (\sin x + \cos y) ds$$