1. Evaluate the integral

$$
\iint_{R}(x+y) d A
$$

where R is the triangle with vertices $(0,0),(0,4)$ and $(1,4)$.
2. Evaluate the iterated integral,

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}}(x+y) d y d x
$$

3. Evaluate the following integral by changing to polar coordinates,

$$
\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} x d x d y
$$

4. Compute the surface area of the bottom part of the paraboloid $z=x^{2}+y^{2}$ that is cut off by the plane $z=9$.
5. Compute the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ inside the circular cylinder $x^{2}+y^{2}=b^{2}$, where $0<b \leq a$.
6. Compute the volume of the solid in the first octant bounded by $y=2 x^{2}$ and $y+4 z=8$.
7. Compute the Jacobian $J(r, \theta)$ of the transformation from polar coordinates to Cartesian coordinates given below:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta .
\end{aligned}
$$

8. Compute the Jacobian $J(x, y)$ of the transformation from Cartesian coordinates to polar coordinates given below:

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}} \\
\theta & =\tan ^{-1}\left(\frac{y}{x}\right)
\end{aligned}
$$

Recall: $D_{x} \tan ^{-1} x=\frac{1}{1+x^{2}}$. What is the relationship between $J(r, \theta)$ and $J(x, y)$?
9. Let $u(x, y)=\log \sqrt{x^{2}+y^{2}}=\log r$.
(a) Find the vector field associated with this scalar field, by computing grad $u=\nabla u$.
(b) Compute curl $(\operatorname{grad} u)=\nabla \times(\nabla u)$.
(c) What are the level sets?
10. Let $\varphi(x, y)=x^{2}-y^{2}$.
(a) Compute $\operatorname{grad} \varphi=\nabla \varphi$.
(b) Compute $\operatorname{div}(\operatorname{grad} \varphi)=\nabla \cdot(\nabla \varphi)$.
(c) Based on your findings, what kind of function is φ ?
11. Find $\operatorname{div} \mathbf{F}$ and $\operatorname{curl} \mathbf{F}$, where $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}-2 x y \mathbf{j}+y z^{2} \mathbf{k}$.
12. Evaluate the following line integral, where C is the curve $x=3 t, y=t^{3}, 0 \leq t \leq 1$.

$$
\int_{C}\left(x^{3}+y\right) d s
$$

13. Evaluate the following line integral, where C is the line segment from $(0,0)$ to $(\pi, 2 \pi)$.

$$
\int_{C}(\sin x+\cos y) d s
$$

