Mathematics 2210 Practice Exam II SOLUTIONS Fall 2019

1. Suppose you have a function z = f(x, y) whose graph is a surface in \mathbb{R}^3 . Describe how the level sets of the function relate geometrically to the surface. What is the relationship between the level sets and the gradient of f, ∇f ?

Solution. The level sets of a function f(x, y) will be curves in a plane. They can be thought of as points (x, y) in the plane that have the same z-value. They also form contour lines. The directional derivative in the direction of the line is always 0.

The level sets are related to the gradient in that a vector perpendicular to the level set curve at a point is in the direction of the gradient at that point. One can think of contour lines on a map, and that the steepest direction at a point is the one perpendicular to the contour line at that point.

- 2. Consider the paraboloid defined by $z = f(x, y) = (x 2)^2 + (y 2)^2$.
 - (a) Sketch the paraboloid.
 - (b) On a separate set of xy axes, sketch the level curves z = 1 and $z = \sqrt{2}$.
 - (c) On the same axes as above, draw the gradient vector at the point (2,0).
 - (d) Find the global extrema of f on \mathbb{R}^2 and verify your results using the second partial derivative test.

Figure 1: The circles depicted in the diagram for (b) have radii 1, $\sqrt[4]{2}$, and 2 respectively.

(d) Take the gradient of f and set it equal to 0 to find possible locations of extrema. $\nabla f = (2(x-2), 2(y-2))$ is 0 when (x, y) = (2, 2). From the picture in (a), it seems f has a global minimum at (2, 2). We need to check this result with the second partial derivative test. $f_{xx} = 2, f_{yy} = 2, f_{xy} = 0 = f_{yx}$. So the Hessian matrix looks like $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. The determinant of the Hessian is 4 > 0, and $f_{xx} = 2 > 0$. Thus, by the second partial derivative test, (2, 2) is a minimum point.

3. Suppose that the temperature in \mathbb{R}^3 is given by

$$T(x, y, z) = \frac{1}{1 + x^2 + y^2 + z^2},$$

and further suppose that your position is given by the curve:

$$\mathbf{r}(t) = (x(t), y(t), z(t)) = (2t, 4t^2, 1).$$

(a) Use the chain rule to find the rate of change $\frac{dT}{dt}$ of the temperature T with respect to time t, as you travel along the curve given above. Express your answer in terms of t only and simplify it.

Solution.

$$\begin{aligned} \frac{dT}{dt} &= \frac{\partial T}{\partial x}\frac{dx}{dt} + \frac{\partial T}{\partial y}\frac{dy}{dt} + \frac{\partial T}{\partial z}\frac{dz}{dt} \\ \frac{dT}{dt} &= (-1)(2x)(1+x^2+y^2+z^2)^{-2}(2) + (-1)(2y)(1+x^2+y^2+z^2)^{-2}(8t) + (-1)(2z)(1+x^2+y^2+z^2)^{-2}(8t) + (-1)(2z)(1+x^2+y^2+z^2)^{-2}(8t) \\ x^2 + y^2 + z^2)^{-2}(0) \\ \frac{dT}{dt} &= -8t(2+4t^2+16t^4)^{-2} - 64t^3(2+4t^2+16t^4)^{-2} \end{aligned}$$

(b) Find the direction in which the temperature is increasing the fastest at time t = 2.

Solution. The position at t = 2 is r(2) = (4, 16, 1). The gradient of T is $\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right)$ = $((-1)(2x)(1+x^2+y^2+z^2)^{-2}, (-1)(2y)(1+x^2+y^2+z^2)^{-2}, (-1)(2z)(1+x^2+y^2+z^2)^{-2})$ $\nabla T(4, 16, 1) = \left(\frac{-8}{274^2}, \frac{-32}{274^2}, \frac{-2}{274^2}\right)$ We are interested in the direction of this vector, which is the same as the direction of (-8, -32, -2). Direction = $1/\sqrt{1092}(-8, -32, -2)$

- 4. Consider the function $f(x, y) = x^2 xy^3$.
 - (a) If $x = \cos(t)$ and $y = \sin(t)$, find $\frac{df}{dt}$.

Solution. By the Chain Rule,

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$\frac{df}{dt} = (2x - y^3)(-\sin(t)) + (-3xy^2)(\cos(t))$$

$$\frac{df}{dt} = (2(\cos(t)) - (\sin(t))^3)(-\sin(t)) + (-3(\cos(t))(\sin(t))^2)(\cos(t))$$

(b) Find the differential df at the point (1,1) if x increases by 0.1 and y decreases by 0.2.

Solution. The formula we need is $df = \left(\frac{\partial f}{\partial x}\right)dx + \left(\frac{\partial f}{\partial y}\right)dy$ $df = (2x - y^3)dx + (-3xy^2)dy$ df(1, 1) = (2 - 1)0.1 + (-3)(-0.2) df(1, 1) = 0.7

5. Find the following limit. If it does not exist, demonstrate why not.

$$\lim_{(x,y)\to(0,0)}\frac{x-7y}{x+y}$$

Solution. Approaching (0, 0) along the line y = 0, the limit is

$$\lim_{x \to 0} \frac{x}{x} = 1$$

Approaching (0, 0) along the line x = 0, the limit is

$$\lim_{y \to 0} \frac{-7y}{y} = -7$$

The two limits do not agree so the original limit does not exist.

6. Find the following limit. If it does not exist, demonstrate why not.

$$\lim_{(x,y)\to(0,0)}\frac{x^2}{y}$$

Solution. Along the line x = y, the limit is

$$\lim_{x \to 0} \frac{x^2}{x} = 0$$

Along the curve $x = \sqrt{y}$, the limit is

$$\lim_{y \to 0} \frac{y}{y} = 1$$

The two limits do not agree so the original limit does not exist.

7. Find the following limit. If it does not exist, demonstrate why not.

$$\lim_{(x,y)\to(0,0)} \frac{1-\cos\sqrt{x^2+y^2}}{x^2+y^2}$$

Solution. Convert to polar coordinates to simplify the computation. Set $x = r \cos \theta$, $y = r \sin \theta$. Using this and L'Hopital's Rule, we arrive at

$$\lim_{(x,y)\to(0,0)}\frac{1-\cos\sqrt{x^2+y^2}}{x^2+y^2} = \lim_{r\to 0}\frac{1-\cos r}{r^2} = \lim_{r\to 0}\frac{\sin r}{2r} = \lim_{r\to 0}\frac{\cos r}{2} = \frac{1}{2}$$

8. Find the directional derivative of $f(x, y, z) = (x^2 - y^2)e^{2z}$,

(a) at the point P = (1, 2, 0) in the direction $2\mathbf{i} + \mathbf{j} + \mathbf{k}$.

Solution. The unit direction is $\vec{u} = \frac{1}{\sqrt{6}}(2\mathbf{i} + \mathbf{j} + \mathbf{k})$. The gradient of f is $\nabla f = 2xe^{2z}\mathbf{i} - 2ye^{2z}\mathbf{j} + 2(x^2 - y^2)e^{2z}\mathbf{k}$. The directional derivative is $D_{\vec{u}}f = \nabla f(1, 2, 0) \cdot \vec{u}$ $D_{\vec{u}}f = (2\mathbf{i} - 4\mathbf{j} - 6\mathbf{k}) \cdot \frac{1}{\sqrt{6}}(2\mathbf{i} + \mathbf{j} + \mathbf{k})$ $D_{\vec{u}}f = \frac{1}{\sqrt{6}}(4 - 4 - 6) = -\frac{6}{\sqrt{6}}.$

(b) At the point P, find the direction of maximal increase of f.

Solution. The direction of maximal increase is the direction of the gradient. $||\nabla f(1,2,0)|| = \sqrt{4+16+36} = 2\sqrt{14}.$ Unit Vector $= \frac{1}{2\sqrt{14}}(2\mathbf{i} - 4\mathbf{j} - 6\mathbf{k})$

- 9. Consider the surface defined by $f(x, y, z) = xe^y + ye^z + ze^x = 0$.
 - (a) Find the gradient of f.

Solution.
$$\nabla f(x, y, z) = (e^y + ze^x)\mathbf{i} + (xe^y + e^z)\mathbf{j} + (ye^z + e^x)\mathbf{k}$$

(b) Find the equation for the tangent plane at the point (0, 0, 0).

Solution. The equation for the tangent plane has coefficients equal to the components of the gradient at (0, 0, 0). $\nabla f(0, 0, 0) = (1)\mathbf{i} + (1)\mathbf{j} + (1)\mathbf{k}$ Thus the tangent plane has the form x + y + z = C. Since (0, 0, 0) is on the plane, C = 0. Thus the tangent plane is x + y + z = 0.

(c) Find the directional derivative of f in the direction $\mathbf{i} + \mathbf{j}$ at the point (0, 0, 0).

Solution. The unit direction is $\vec{u} = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j})$. The directional derivative is $D_{\vec{u}}f = \nabla f(0, 0, 0) \cdot \vec{u}$ $D_{\vec{u}}f = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j})$ $D_{\vec{u}}f = \frac{1}{\sqrt{2}}(1+1) = \sqrt{2}$.

10. Find the local maxima, minima, and saddle points of the function $f(x,y) = x^2 + y^2 - 3xy$.

Solution. First find the critical points, for which both f_x and f_y must be 0 at the same time. $f_x = 2x - 3y$ $f_y = 2y - 3x$ Setting both equal to 0 and solving gives a system with a single solution, at (0, 0). Now to use the Second Partial Derivative test we need to find the second partial derivates:

$$f_{xx} = 2, f_{xy} = -3, f_{yy} = 2$$

$$D = f_{xx}((0,0))f_{yy}((0,0)) - (f_{xy}((0,0)))^2$$

$$D = (2)(2) - (-3)^2 = -5$$

Since this is negative, the point is a saddle point.

11. Show that $u(x,t) = \cos(x-ct) + \sin(x-ct)$ solves the wave equation:

$$c^2 u_{xx} = u_{tt}$$
 OR $c^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$

Solution. We find u_{xx} and u_{tt} and make sure they solve the equation above.

$$u_x = -\sin(x - ct) + \cos(x - ct)$$
$$u_{xx} = -\cos(x - ct) - \sin(x - ct)$$

$$u_t = c \sin(x - ct) - c \cos(x - ct)$$
$$u_{tt} = -c^2 \cos(x - ct) - c^2 \sin(x - ct)$$

Plugging into the wave equation,

 $c^{2}(-\cos(x-ct) - \sin(x-ct)) = -c^{2}\cos(x-ct) - c^{2}\sin(x-ct)$

The equation holds so u satisfies the wave equation.

- 12. Consider the saddle function $f(x, y) = x^2 y^2$.
 - (a) Show that this function is harmonic.

Solution. A harmonic function must sastify Laplace's equation, $\nabla^2 f = 0$, or rewritten, $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$ $\frac{\partial^2 f}{\partial x^2} = 2$ $\frac{\partial^2 f}{\partial y^2} = -2$ 2-2 = 0.

(b) Now consider this function on the unit disk $D = \{(x, y) : x^2 + y^2 \le 1\}$. Find the global extrema of f on the disk D.

Solution. A harmonic function on a closed, bounded set always achieves its extrema on the boundary, in the case the unit circle $x^2 + y^2 = 1$. Changing f to polar coordinates, $f = (r \cos \theta)^2 - (r \sin \theta)^2$

 $f = r^2(\cos^2\theta - \sin^2\theta)$ $f = r^2(2\cos^2\theta - 1)$

The unit circle in polar coordinates is the equation r = 1, thus we want to find the extrema of f over all values of θ .

$$f = 2\cos^2\theta - 1$$

This is maximized when $\cos \theta = 1$ or -1, so when $\theta = 0$ or π . The maximum attained at these points (the points (-1, 0) and (1, 0)) is 1.

This is minimized when $\cos \theta = 0$, so when $\theta = \pi/2$ or $3\pi/2$. The minimum attained at these points (the points (0, 1) and (0, -1)) is -1.

13. Let φ(x, y) be the electric potential due to a point charge in two dimensions, that is, φ(x, y) = k ln r, where r = √x² + y² and you may take k = -1. (a) Find the level curves of φ and its gradient E = -∇φ. Sketch E at the points (1,0), (0,1), (-1,0), (0,-1) and interpret its meaning. (b) Find the level sets for φ(x, y, z) = mgz in three dimensions, find F = -∇φ, and interpret the meaning of F.

Solution. (a) To find the level curves of ϕ , we set $\phi(x, y) = k \ln r = c$, for some constant $c \in \mathbb{R}$; thus, $r = e^{c/k}$, so r is constant for the level curves of ϕ , that is, the level curves are circles. Further,

$$\begin{split} \vec{E} &= -\nabla\phi = -\left(\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}\right) \\ &= -\left(k\frac{1}{\sqrt{x^2 + y^2}}\frac{x}{\sqrt{x^2 + y^2}}, k\frac{1}{\sqrt{x^2 + y^2}}\frac{y}{\sqrt{x^2 + y^2}}\right) \\ &= -\frac{k}{x^2 + y^2}(x, y). \end{split}$$

For k = -1, \vec{E} is pointing outward, perpendicular to the unit circle, at (1,0), (0,1), (-1,0), (0,-1). Since the negative gradient of the electric potential is the electric field due to the point charge, the interpretation is that a second point charge in the plane would be driven outward by the point charge at the origin.

(b) We set $\phi(x, y, z) = mgz = c$, for a constant $c \in \mathbb{R}$; thus $z = \frac{c}{mg}$, that is, z is a constant. We conclude that the level sets are the planes where z is constant, that is those planes parallel to z = 0.

$$ec{F} = -
abla \phi = -\left(rac{\partial \phi}{\partial x}, rac{\partial \phi}{\partial y}, rac{\partial \phi}{\partial z}
ight)$$

= (0, 0, -mg).

So \vec{F} is a constant vector pointing downward, which is orthogonal to the level curves. Note that ϕ is the gravitational potential energy, so \vec{F} is the gravitational field, the force on an object of mass m due to gravity.