Mathematics $2210 \quad$ Practice Exam II SOLUTIONS Fall 2019

1. Suppose you have a function $z=f(x, y)$ whose graph is a surface in \mathbb{R}^{3}. Describe how the level sets of the function relate geometrically to the surface. What is the relationship between the level sets and the gradient of $f, \nabla f$?

Solution. The level sets of a function $f(x, y)$ will be curves in a plane. They can be thought of as points (x, y) in the plane that have the same z-value. They also form contour lines. The directional derivative in the direction of the line is always 0 .
The level sets are related to the gradient in that a vector perpendicular to the level set curve at a point is in the direction of the gradient at that point. One can think of contour lines on a map, and that the steepest direction at a point is the one perpendicular to the contour line at that point.
2. Consider the paraboloid defined by $z=f(x, y)=(x-2)^{2}+(y-2)^{2}$.
(a) Sketch the paraboloid.
(b) On a separate set of $x y$ axes, sketch the level curves $z=1$ and $z=\sqrt{2}$.
(c) On the same axes as above, draw the gradient vector at the point $(2,0)$.
(d) Find the global extrema of f on \mathbb{R}^{2} and verify your results using the second partial derivative test.

Figure 1: The circles depicted in the diagram for (b) have radii $1, \sqrt[4]{2}$, and 2 respectively.
(d) Take the gradient of f and set it equal to 0 to find possible locations of extrema. $\nabla f=(2(x-2), 2(y-2))$ is 0 when $(x, y)=(2,2)$. From the picture in (a), it seems f has a global minimum at $(2,2)$. We need to check this result with the second partial derivative test. $f_{x x}=2, f_{y y}=2, f_{x y}=0=f_{y x}$. So the Hessian matrix looks like $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. The determinant of the Hessian is $4>0$, and $f_{x x}=2>0$. Thus, by the second partial derivative test, $(2,2)$ is a minimum point.
3. Suppose that the temperature in \mathbb{R}^{3} is given by

$$
T(x, y, z)=\frac{1}{1+x^{2}+y^{2}+z^{2}},
$$

and further suppose that your position is given by the curve:

$$
\mathbf{r}(t)=(x(t), y(t), z(t))=\left(2 t, 4 t^{2}, 1\right) .
$$

(a) Use the chain rule to find the rate of change $\frac{d T}{d t}$ of the temperature T with respect to time t, as you travel along the curve given above. Express your answer in terms of t only and simplify it.

Solution.

$\frac{d T}{d t}=\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t}+\frac{\partial T}{\partial z} \frac{d z}{d t}$
$\frac{d T}{d t}=(-1)(2 x)\left(1+x^{2}+y^{2}+z^{2}\right)^{-2}(2)+(-1)(2 y)\left(1+x^{2}+y^{2}+z^{2}\right)^{-2}(8 t)+(-1)(2 z)(1+$ $\left.x^{2}+y^{2}+z^{2}\right)^{-2}(0)$
$\frac{d T}{d t}=-8 t\left(2+4 t^{2}+16 t^{4}\right)^{-2}-64 t^{3}\left(2+4 t^{2}+16 t^{4}\right)^{-2}$
(b) Find the direction in which the temperature is increasing the fastest at time $t=2$.

Solution. The position at $t=2$ is $r(2)=(4,16,1)$. The gradient of T is $\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right)$
$=\left((-1)(2 x)\left(1+x^{2}+y^{2}+z^{2}\right)^{-2},(-1)(2 y)\left(1+x^{2}+y^{2}+z^{2}\right)^{-2},(-1)(2 z)\left(1+x^{2}+y^{2}+z^{2}\right)^{-2}\right)$
$\nabla T(4,16,1)=\left(\frac{-8}{274^{2}}, \frac{-32}{274^{2}}, \frac{-2}{274^{2}}\right)$
We are interested in the direction of this vector, which is the same as the direction of $(-8,-32,-2)$.
Direction $=1 / \sqrt{1092}(-8,-32,-2)$
4. Consider the function $f(x, y)=x^{2}-x y^{3}$.
(a) If $x=\cos (t)$ and $y=\sin (t)$, find $\frac{d f}{d t}$.

Solution. By the Chain Rule,
$\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$
$\frac{d f}{d t}=\left(2 x-y^{3}\right)(-\sin (t))+\left(-3 x y^{2}\right)(\cos (t))$
$\frac{d f}{d t}=\left(2(\cos (t))-(\sin (t))^{3}\right)(-\sin (t))+\left(-3(\cos (t))(\sin (t))^{2}\right)(\cos (t))$
(b) Find the differential $d f$ at the point $(1,1)$ if x increases by 0.1 and y decreases by 0.2 .

Solution. The formula we need is

$$
\begin{aligned}
& d f=\left(\frac{\partial f}{\partial x}\right) d x+\left(\frac{\partial f}{\partial y}\right) d y \\
& d f=\left(2 x-y^{3}\right) d x+\left(-3 x y^{2}\right) d y \\
& d f(1,1)=(2-1) 0.1+(-3)(-0.2) \\
& d f(1,1)=0.7
\end{aligned}
$$

5. Find the following limit. If it does not exist, demonstrate why not.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x-7 y}{x+y}
$$

Solution. Approaching (0,0) along the line $y=0$, the limit is

$$
\lim _{x \rightarrow 0} \frac{x}{x}=1
$$

Approaching $(0,0)$ along the line $x=0$, the limit is

$$
\lim _{y \rightarrow 0} \frac{-7 y}{y}=-7
$$

The two limits do not agree so the original limit does not exist.
6. Find the following limit. If it does not exist, demonstrate why not.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{y}
$$

Solution. Along the line $x=y$, the limit is

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{x}=0
$$

Along the curve $x=\sqrt{y}$, the limit is

$$
\lim _{y \rightarrow 0} \frac{y}{y}=1
$$

The two limits do not agree so the original limit does not exist.
7. Find the following limit. If it does not exist, demonstrate why not.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{1-\cos \sqrt{x^{2}+y^{2}}}{x^{2}+y^{2}}
$$

Solution. Convert to polar coordinates to simplify the computation. Set $x=r \cos \theta, y=$ $r \sin \theta$. Using this and L'Hopital's Rule, we arrive at

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{1-\cos \sqrt{x^{2}+y^{2}}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{1-\cos r}{r^{2}}=\lim _{r \rightarrow 0} \frac{\sin r}{2 r}=\lim _{r \rightarrow 0} \frac{\cos r}{2}=\frac{1}{2} .
$$

8. Find the directional derivative of $f(x, y, z)=\left(x^{2}-y^{2}\right) e^{2 z}$,
(a) at the point $P=(1,2,0)$ in the direction $2 \mathbf{i}+\mathbf{j}+\mathbf{k}$.

Solution. The unit direction is $\vec{u}=\frac{1}{\sqrt{6}}(2 \mathbf{i}+\mathbf{j}+\mathbf{k})$.
The gradient of f is $\nabla f=2 x e^{2 z} \mathbf{i}-2 y e^{2 z} \mathbf{j}+2\left(x^{2}-y^{2}\right) e^{2 z} \mathbf{k}$.
The directional derivative is
$D_{\vec{u}} f=\nabla f(1,2,0) \cdot \vec{u}$
$D_{\vec{u}} f=(2 \mathbf{i}-4 \mathbf{j}-6 \mathbf{k}) \cdot \frac{1}{\sqrt{6}}(2 \mathbf{i}+\mathbf{j}+\mathbf{k})$
$D_{\vec{u}} f=\frac{1}{\sqrt{6}}(4-4-6)=-\frac{6}{\sqrt{6}}$.
(b) At the point P, find the direction of maximal increase of f.

Solution. The direction of maximal increase is the direction of the gradient.
$\|\nabla f(1,2,0)\|=\sqrt{4+16+36}=2 \sqrt{14}$.
Unit Vector $=\frac{1}{2 \sqrt{14}}(2 \mathbf{i}-4 \mathbf{j}-6 \mathbf{k})$
9. Consider the surface defined by $f(x, y, z)=x e^{y}+y e^{z}+z e^{x}=0$.
(a) Find the gradient of f.

Solution. $\nabla f(x, y, z)=\left(e^{y}+z e^{x}\right) \mathbf{i}+\left(x e^{y}+e^{z}\right) \mathbf{j}+\left(y e^{z}+e^{x}\right) \mathbf{k}$
(b) Find the equation for the tangent plane at the point $(0,0,0)$.

Solution. The equation for the tangent plane has coefficients equal to the components of the gradient at $(0,0,0)$.
$\nabla f(0,0,0)=(1) \mathbf{i}+(1) \mathbf{j}+(1) \mathbf{k}$
Thus the tangent plane has the form $x+y+z=C$. Since $(0,0,0)$ is on the plane, $C=0$. Thus the tangent plane is $x+y+z=0$.
(c) Find the directional derivative of f in the direction $\mathbf{i}+\mathbf{j}$ at the point $(0,0,0)$.

Solution. The unit direction is $\vec{u}=\frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{j})$.
The directional derivative is

$$
\begin{aligned}
& D_{\vec{u}} f=\nabla f(0,0,0) \cdot \vec{u} \\
& D_{\vec{u}} f=(\mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot \frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{j}) \\
& D_{\vec{u}} f=\frac{1}{\sqrt{2}}(1+1)=\sqrt{2} .
\end{aligned}
$$

10. Find the local maxima, minima, and saddle points of the function $f(x, y)=x^{2}+y^{2}-3 x y$.

Solution. First find the critical points, for which both f_{x} and f_{y} must be 0 at the same time.
$f_{x}=2 x-3 y$
$f_{y}=2 y-3 x$

Setting both equal to 0 and solving gives a system with a single solution, at $(0,0)$.
Now to use the Second Partial Derivative test we need to find the second partial derivates:
$f_{x x}=2, f_{x y}=-3, f_{y y}=2$
$D=f_{x x}((0,0)) f_{y y}((0,0))-\left(f_{x y}((0,0))\right)^{2}$
$D=(2)(2)-(-3)^{2}=-5$
Since this is negative, the point is a saddle point.
11. Show that $u(x, t)=\cos (x-c t)+\sin (x-c t)$ solves the wave equation:

$$
c^{2} u_{x x}=u_{t t} \quad \text { OR } \quad c^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

Solution. We find $u_{x x}$ and $u_{t t}$ and make sure they solve the equation above.
$u_{x}=-\sin (x-c t)+\cos (x-c t)$
$u_{x x}=-\cos (x-c t)-\sin (x-c t)$
$u_{t}=c \sin (x-c t)-c \cos (x-c t)$
$u_{t t}=-c^{2} \cos (x-c t)-c^{2} \sin (x-c t)$
Plugging into the wave equation,
$c^{2}(-\cos (x-c t)-\sin (x-c t))=-c^{2} \cos (x-c t)-c^{2} \sin (x-c t)$
The equation holds so u satisfies the wave equation.
12. Consider the saddle function $f(x, y)=x^{2}-y^{2}$.
(a) Show that this function is harmonic.

Solution. A harmonic function must sastify Laplace's equation, $\nabla^{2} f=0$, or rewritten, $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$.
$\frac{\partial^{2} f}{\partial x^{2}}=2$
$\frac{\partial^{2} f}{\partial y^{2}}=-2$
$2-2=0$.
(b) Now consider this function on the unit disk $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Find the global extrema of f on the disk D.

Solution. A harmonic function on a closed, bounded set always achieves its extrema on the boundary, in the case the unit circle $x^{2}+y^{2}=1$. Changing f to polar coordinates, $f=(r \cos \theta)^{2}-(r \sin \theta)^{2}$

$$
f=r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

$$
f=r^{2}\left(2 \cos ^{2} \theta-1\right)
$$

The unit circle in polar coordinates is the equation $r=1$, thus we want to find the extrema of f over all values of θ.

$$
f=2 \cos ^{2} \theta-1
$$

This is maximized when $\cos \theta=1$ or -1 , so when $\theta=0$ or π. The maximum attained at these points (the points $(-1,0)$ and $(1,0))$ is 1 .
This is minimized when $\cos \theta=0$, so when $\theta=\pi / 2$ or $3 \pi / 2$. The minimum attained at these points (the points $(0,1)$ and $(0,-1)$) is -1 .
13. Let $\phi(x, y)$ be the electric potential due to a point charge in two dimensions, that is, $\phi(x, y)=$ $k \ln r$, where $r=\sqrt{x^{2}+y^{2}}$ and you may take $k=-1$. (a) Find the level curves of ϕ and its gradient $\vec{E}=-\nabla \phi$. Sketch \vec{E} at the points $(1,0),(0,1),(-1,0),(0,-1)$ and interpret its meaning. (b) Find the level sets for $\phi(x, y, z)=m g z$ in three dimensions, find $\vec{F}=-\nabla \phi$, and interpret the meaning of \vec{F}.
Solution. (a) To find the level curves of ϕ, we set $\phi(x, y)=k \ln r=c$, for some constant $c \in \mathbb{R}$; thus, $r=e^{c / k}$, so r is constant for the level curves of ϕ, that is, the level curves are circles. Further,

$$
\begin{aligned}
\vec{E}=-\nabla \phi & =-\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right) \\
& =-\left(k \frac{1}{\sqrt{x^{2}+y^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}}, k \frac{1}{\sqrt{x^{2}+y^{2}}} \frac{y}{\sqrt{x^{2}+y^{2}}}\right) \\
& =-\frac{k}{x^{2}+y^{2}}(x, y) .
\end{aligned}
$$

For $k=-1, \vec{E}$ is pointing outward, perpendicular to the unit circle, at $(1,0),(0,1),(-1,0),(0,-1)$. Since the negative gradient of the electric potential is the electric field due to the point charge, the interpretation is that a second point charge in the plane would be driven outward by the point charge at the origin.
(b) We set $\phi(x, y, z)=m g z=c$, for a constant $c \in \mathbb{R}$; thus $z=\frac{c}{m g}$, that is, z is a constant. We conclude that the level sets are the planes where z is constant, that is those planes parallel to $z=0$.

$$
\begin{aligned}
\vec{F}=-\nabla \phi & =-\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \\
& =(0,0,-m g)
\end{aligned}
$$

So \vec{F} is a constant vector pointing downward, which is orthogonal to the level curves. Note that ϕ is the gravitational potential energy, so \vec{F} is the gravitational field, the force on an object of mass m due to gravity.

