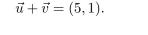
Mathematics 2210–1,2

Fall 2019

PRACTICE EXAM I SOLUTIONS

1. Let $\vec{u} = (2,2)$ and $\vec{v} = (3,-1)$. Find $\vec{u} + \vec{v}$ and illustrate this vector addition with a diagram in the plane, showing \vec{u} , \vec{v} and the resultant vector. Illustrate multiplication by a scalar with a diagram showing \vec{u} , $3\vec{u}$, and $-\vec{u}$.

SOLUTION.



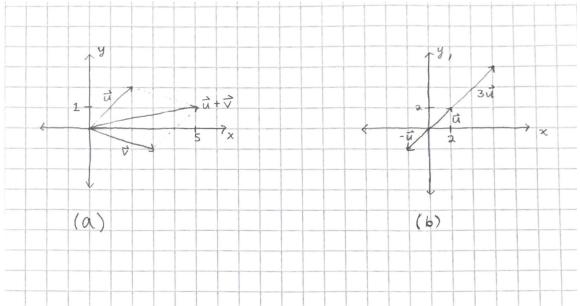


Figure 1: (a) illustrates $\vec{u} + \vec{v}$ and (b) illustrates $3\vec{u}$ and $-\vec{u}$.

- 2. Consider the vectors $\vec{u} = \mathbf{i} 2\mathbf{j} + \mathbf{k}$ and $\vec{v} = 3\mathbf{i} 4\mathbf{j} + \mathbf{k}$.
 - (a) Find the length of \vec{u} .
 - (b) Find $\vec{N} = \vec{u} \times \vec{v}$.
 - (c) Find the cartesian equation of the plane with normal \vec{N} through the point $P_0 = (1, 0, -1)$.
 - (d) Find the vector projection of \vec{v} onto \vec{u} .

SOLUTION.

a) $||\vec{u}|| = \sqrt{1+4+1} = \sqrt{6}.$

b)
$$\vec{u} \times \vec{v} = -2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k} - (-6\mathbf{k} - 4\mathbf{i} + \mathbf{j}) = 2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$$

c) $2x + 2y + 2z = C$
 $2(1) + 0 + 2(-1) = C = 0$
 $2x + 2y + 2z = 0$
d) $\frac{\vec{v} \cdot \vec{u}}{||u||^2} \vec{u} =$
 $\frac{3+8+1}{1+4+1}(1, -2, 1) = (2, -4, 2)$

3. Determine the area of the triangle with vertices $\vec{P} = (0,0), \vec{Q} = (3,2), \vec{R} = (1,4).$

SOLUTION.

Use $\vec{PQ} = \vec{Q} - \vec{P} = (3, 2)$ as the base of the triangle, with length $\sqrt{13}$. Find the height of the triangle by finding the length of the orthogonal projection of $\vec{PR} = (1, 4)$ onto \vec{PQ} . First find the vector projection:

$$\frac{(1,4)\cdot(3,2)}{||(3,2)||}(3,2) = \frac{3+8}{4+9}(3,2)$$
$$= (33/13,22/13)$$

The orthogonal projection is (1, 4) minus this vector:

$$(1,4) - (33/13,22/13) = (-20/13,30/13)$$
$$||(-20/13,30/13)|| = \sqrt{400/169 + 900/169} = \sqrt{1300/169} = 10/13\sqrt{13}$$

Thus the triangle's area is $\frac{1}{2}\sqrt{13}\frac{10}{13}\sqrt{13} = 5$.

4. Consider $\vec{e_1} = (\sqrt{3}/2, 1/2)$ and $\vec{e_2} = (-1/2, \sqrt{3}/2)$. Show that $\vec{e_1}$ and $\vec{e_2}$ each have unit length and that they are orthogonal. Rewrite the vector $\vec{v} = 4\mathbf{i} + 5\mathbf{j}$ in the orthonormal basis $\vec{e_1} = (\sqrt{3}/2, 1/2), \vec{e_2} = (-1/2, \sqrt{3}/2)$. In other words, expand or write \vec{v} as $\vec{v} = a\vec{e_1} + b\vec{e_2}$ where a and b are scalar values.

SOLUTION.

First compute the magnitude of each vector.

$$||\vec{e_1}|| = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$$
$$||\vec{e_2}|| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$

To show orthogonality, let's use the fact that if two vectors are perpendicular, cosine of the angle θ angle between them must be 0. $\cos(\theta) = \frac{\vec{e_1} \cdot \vec{e_2}}{||\vec{e_1}||||\vec{e_2}||} = \frac{\frac{-\sqrt{3}}{4} + \frac{\sqrt{3}}{4}}{||\vec{e_1}||||\vec{e_2}||} = 0.$

Now, the scalars a and b are determined by projecting \vec{v} onto each of the basis vectors $\vec{e_1}$ and $\vec{e_2}$. We showed that both $\vec{e_1}$ and $\vec{e_2}$ are unit vectors, so have length 1. This simplifies the vector projection formula:

$$a = \frac{\vec{v} \cdot \vec{e_1}}{||\vec{e_1}||^2} = \vec{v} \cdot \vec{e_1} = (4,5) \cdot (\sqrt{3}/2,1/2) = 2\sqrt{3} + 5/2$$
$$b = \vec{v} \cdot \vec{e_2} = (4,5) \cdot (-1/2,\sqrt{3}/2) = -2 + \frac{5\sqrt{3}}{2}$$

5. Let $\vec{u} = (4, 1)$ and $\vec{v} = (2, 3)$. Calculate $\vec{u} \times \vec{v}$. Use your result to find the angle θ between \vec{u} and \vec{v} .

SOLUTION.

For the purposes of taking the cross product, let's write $\vec{u} = (4, 1, 0)$ and $\vec{v} = (2, 3, 0)$. $\vec{u} \times \vec{v} = \mathbf{i} \det \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix} - \mathbf{j} \det \begin{bmatrix} 4 & 0 \\ 2 & 0 \end{bmatrix} + \mathbf{k} \det \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} = 10\mathbf{k} = (0, 0, 10)$. Recall that $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$ where θ is the angle between the two vectors. $||\vec{u}|| = \sqrt{17}$ and $||\vec{v}|| = \sqrt{13}$. Plugging in these values, we obtain $\sin \theta = \frac{10}{\sqrt{17}\sqrt{13}}$, which implies $\theta = \arcsin(\frac{10}{\sqrt{221}}) \approx 42.27^{\circ}$.

6. Find the work done by the force $\vec{F} = 6\mathbf{i} + 8\mathbf{j}$ pounds in moving an object from (1,0) to (6,8) where distance is in feet.

SOLUTION.

The formula for work done is Work = Force \cdot Displacement. The displacement vector is from (1, 0) to (6, 8), or (5, 8).

Work = $(6, 8) \cdot (5, 8) = 30 + 64 = 94$ lb-ft.

7. Find how much work you would do against the force of gravity $(\vec{F} = -mg\mathbf{j})$ to move an object of mass 5 kg from (0,0) to $(0,\sqrt{2})$, in units of meters. Do the same in moving it from (0,0) to (1,1), and compare your answer. How much work would you do in moving it from (0,0) to (8,0)?

SOLUTION.

Since the mass of the object is 5 kg, $\vec{F} = -(5)(9.8)\mathbf{j} = -49\mathbf{j}$. The displacement vector from (0,0) to $(0,\sqrt{2})$ is $\vec{D_1} = 0\mathbf{i} + \sqrt{2}\mathbf{j}$. So the work done by the force of gravity to move the object is $(0, -49) \cdot (0, \sqrt{2}) = 0 - 49\sqrt{2} = -49\sqrt{2}$ Joules, so the work done by you against the force of gravity is $49\sqrt{2}$ Joules. The displacement vector from (0,0) to (1,1) is $\vec{D_2} = 1\mathbf{i} + 1\mathbf{j}$. So the work required in this case is $(0, -49) \cdot (1, 1) = -49$ Joules, or 49 Joules done by you. In both of these cases, the work seemed to be 49 multiplied by the **j** component of the displacement vector.

Based on this, we might conjecture that the work done in moving the object from (0,0) to (8,0) will be (-49)(0) = 0. Let's compute to see if we are right. The displacement vector is $\vec{D}_3 = 8\mathbf{i} + 0\mathbf{j}$. The work required is therefore $(0, -49) \cdot (8, 0) = 0 + 0 = 0$.

- 8. Given three points: $\vec{A} = (0, 5, 3), \vec{B} = (2, 7, 0), \vec{C} = (-5, -3, 7)$
 - (a) Which point is closest to the *xz*-plane? Explain your reasoning.
 - (b) Which point lies on the xy-plane? Explain your reasoning.

SOLUTION.

a) The distance of a point from the xz-plane is simply the absolute value of the ycoordinate. You should try to draw a picture to visualize this. Thus, \vec{C} is the closest with a y-value of -3.

b) A point is on the xy-plane if its z-coordinate is 0. Thus, point \vec{B} is the point we're looking for.

9. Determine the equation of the plane spanned by the vectors:

$$\vec{u} = 1\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$$
$$\vec{v} = 2\mathbf{i} + 6\mathbf{j} + 4\mathbf{k}$$

and which contains the origin.

SOLUTION.

Since both \vec{u} and \vec{v} lie in the plane and are in different directions, we may take their cross product to find the Normal vector to the plane and determine its equation:

$$\vec{u} \times \vec{v} = (12\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}) - (6\mathbf{k} - 12\mathbf{i} + 4\mathbf{j}) = 24\mathbf{i} - 8\mathbf{j}$$

Thus the equation for the plane is 24x - 8y = C. The plane contains the origin, so 24(0) - 8(0) = 0 = C. So the solution is 24x - 8y = 0.

10. Find the curvature of the line parameterized by $\vec{r}(t) = (1, 1, 1) + (2, 3, 4)t$.

SOLUTION.

$$\vec{r}(t) = (1+2t, 1+3t, 1+4t)$$

 $\vec{r'}(t) = (2, 3, 4)$

$$\vec{T}(t) = \vec{r}'(t)/\sqrt{4+9+16} = 1/\sqrt{29}(2,3,4)$$

$$\vec{T}'(t) = 0$$

$$\kappa = ||\vec{T}'(t)||/||\vec{r}'(t)|| = 0/\sqrt{29} = 0$$

NOTE: Straight lines always have 0 curvature!

11. Find the arc length of the helix

$$\vec{r}(t) = a\sin(t)\mathbf{i} + a\cos(t)\mathbf{j} + ct\mathbf{k}$$

for $0 \leq t \leq 2\pi$.

SOLUTION.

$$\vec{r'}(t) = a\cos(t)\mathbf{i} - a\sin(t)\mathbf{j} + c\mathbf{k}$$

Arc Length = $\int_0^{2\pi} ||\vec{r'}(t)|| dt = \int_0^{2\pi} \sqrt{a^2 \cos^2(t) + a^2 \sin^2(t) + c^2} dt$
= $\int_0^{2\pi} \sqrt{a^2 + c^2} dt = 2\pi\sqrt{a^2 + c^2}$

12. Find the equation of the plane orthogonal to the curve

$$\vec{r}(t) = (8t^2 - 4t + 3)\mathbf{i} + (\sin(t) - 4t)\mathbf{j} - \cos(t)\mathbf{k}$$

at the point $t = \pi/3$.

SOLUTION.

The Normal vector for the plane will be the tangent vector to the curve at $t = \pi/3$. We will also need to know $r(\pi/3)$.

$$\vec{r}(\pi/3) = (8\pi^2/9 - 4\pi/3 + 3, \sqrt{3}/2 - 4\pi/3, -1/2)$$
$$\vec{r'}(t) = (16t - 4)\mathbf{i} + (\cos(t) - 4)\mathbf{j} + \sin(t)\mathbf{k}$$
$$\vec{r'}(\pi/3) = (16\pi/3 - 4, 1/2 - 4, \sqrt{3}/2)$$

Thus the equation for the plane is

$$(16\pi/3 - 4)x + (-7/2)y + (\sqrt{3}/2)z = C$$

Using the point from above,

$$(16\pi/3 - 4)(8\pi^2/9 - 4\pi/3 + 3) + (-7/2)(\sqrt{3}/2 - 4\pi/3) + (\sqrt{3}/2)(-1/2) = C$$

So the equation for the plane is

$$(16\pi/3 - 4)x + (-7/2)y + (\sqrt{3}/2)z = (16\pi/3 - 4)(8\pi^2/9 - 4\pi/3 + 3) + (-7/2)(\sqrt{3}/2 - 4\pi/3) + (\sqrt{3}/2)(-1/2)$$

13. Determine the curvature κ of the helical curve parametrized by:

$$\vec{r}(t) = 7\sin(3t)\mathbf{i} + 7\cos(3t)\mathbf{j} + 14t\mathbf{k}$$

at $t = \pi/9$.

SOLUTION.

$$\begin{split} \vec{r'}(t) &= 21\cos(3t)\mathbf{i} - 21\sin(3t)\mathbf{j} + 14\mathbf{k} \\ ||\vec{r'}(t)|| &= \sqrt{21^2\cos^2(3t) + 21^2\sin^2(3t) + 14^2} = \sqrt{441 + 196} = \sqrt{637} \\ \vec{T}(t) &= 1/\sqrt{637}(21\cos(3t)\mathbf{i} - 21\sin(3t)\mathbf{j} + 14) \\ \vec{T'}(t) &= 1/\sqrt{637}(-63\sin(3t)\mathbf{i} - 63\cos(3t)\mathbf{j}) \\ ||\vec{T'}(t)|| &= 1/\sqrt{637}(\sqrt{63^2\sin^2(3t) + 63^2\cos^2(3t)}) = 63/\sqrt{637} \\ \kappa &= \frac{||\vec{T'}(t)||}{||\vec{r'}(t)||} = \frac{63}{637} \end{split}$$

Note that the curvature is constant for all t, in particular for $t = \pi/9$.

14. The acceleration of a particle's motion is

$$\vec{a}(t) = -9\cos(3t)\mathbf{i} + -9\sin(3t)\mathbf{j} + 2t\mathbf{k}.$$

The particle has initial velocity $\vec{v}_0 = \mathbf{i} + \mathbf{k}$ and initial position $\vec{x}_0 = \mathbf{i} + \mathbf{j} + \mathbf{k}$.

- (a) Determine the velocity function $\vec{v}(t)$.
- (b) Determine the position function $\vec{x}(t)$.

SOLUTION.

$$\vec{v}(t) = -3\sin(3t)\mathbf{i} + 3\cos(3t)\mathbf{j} + t^{2}\mathbf{k} + \vec{C}$$
$$\vec{v}(0) = \mathbf{i} + \mathbf{k} = (0, 3, 0) + \vec{C}$$
$$\vec{C} = (1, -3, 1)$$
$$\vec{v}(t) = (-3\sin(3t) + 1)\mathbf{i} + (3\cos(3t) - 3)\mathbf{j} + (t^{2} + 1)\mathbf{k}$$
$$\vec{x}(t) = (\cos(3t) + t)\mathbf{i} + (\sin(3t) - 3t)\mathbf{j} + (t^{3}/3 + t)\mathbf{k} + \vec{D}$$

$$\vec{x}(0) = \mathbf{i} + \mathbf{j} + \mathbf{k} = (1, 0, 0) + \vec{D}$$
$$\vec{D} = (0, 1, 1)$$
$$\vec{x}(t) = (\cos(3t) + t)\mathbf{i} + (\sin(3t) - 3t + 1)\mathbf{j} + (t^3/3 + t + 1)\mathbf{k}$$

15. Determine the position $\vec{r}(t) = (x(t), y(t))$ of a projectile fired from the point (8,3) with an initial speed of 20 f/s at an angle of 30°. Be sure to show all your work, not just the final formulas.

SOLUTION.

Start with the fact that the acceleration due to gravity is $\vec{a}(t) = -32 \mathbf{j}$, where $\mathbf{j} = (0, 1)$, then integrate Newton's second law twice. Velocity is $\vec{v}(t) = \int \vec{a}(t)dt = \int -32dt\mathbf{j} = -32t\mathbf{j} + \vec{C_1}$. To find this first constant, consider the initial condition $\vec{v}(0) = 20\cos(30^\circ)\mathbf{i} + 20\sin(30^\circ)\mathbf{j} = 10\sqrt{3}\mathbf{i} + 10\mathbf{j}$. $\vec{v}(0) = -32(0)\mathbf{j} + \vec{C_1} = \vec{C_1} = 10\sqrt{3}\mathbf{i} + 10\mathbf{j}$. Thus, $\vec{v}(t) = -32t\mathbf{j} + 10\sqrt{3}\mathbf{i} + 10\mathbf{j}$.

The position of the projectile is $\vec{r}(t) = \int \vec{v}(t)dt = \int (-32t\mathbf{j}+10\sqrt{3}\mathbf{i}+10\mathbf{j})dt = -16t^2\mathbf{j}+10\sqrt{3}t\mathbf{i}+10t\mathbf{j}+\vec{C_2}$. To find the second constant, consider the initial condition $\vec{r}(0) = (8,3) = 8\mathbf{i}+3\mathbf{j}$. $\vec{r}(0) = \vec{C_2} = 8\mathbf{i}+3\mathbf{j}$. Then $\vec{r}(t) = (10\sqrt{3}t+8)\mathbf{i}+(-16t^2+10t+3)\mathbf{j} = (10\sqrt{3}t+8,-16t^2+10t+3)$.