PRACTICE EXAM I SOLUTIONS

1. Let $\vec{u}=(2,2)$ and $\vec{v}=(3,-1)$. Find $\vec{u}+\vec{v}$ and illustrate this vector addition with a diagram in the plane, showing \vec{u}, \vec{v} and the resultant vector. Illustrate multiplication by a scalar with a diagram showing $\vec{u}, 3 \vec{u}$, and $-\vec{u}$.

SOLUTION.

$\vec{u}+\vec{v}=(5,1)$.

Figure 1: (a) illustrates $\vec{u}+\vec{v}$ and (b) illustrates $3 \vec{u}$ and $-\vec{u}$.
2. Consider the vectors $\vec{u}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\vec{v}=3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$.
(a) Find the length of \vec{u}.
(b) Find $\vec{N}=\vec{u} \times \vec{v}$.
(c) Find the cartesian equation of the plane with normal \vec{N} through the point $P_{0}=$ $(1,0,-1)$.
(d) Find the vector projection of \vec{v} onto \vec{u}.

SOLUTION.

a) $\|\vec{u}\|=\sqrt{1+4+1}=\sqrt{6}$.
b) $\vec{u} \times \vec{v}=-2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}-(-6 \mathbf{k}-4 \mathbf{i}+\mathbf{j})=2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$
c) $2 x+2 y+2 z=C$
$2(1)+0+2(-1)=C=0$
$2 x+2 y+2 z=0$
d) $\frac{\vec{v} \cdot \vec{u}}{\|u\|^{2}} \vec{u}=$
$\frac{3+8+1}{1+4+1}(1,-2,1)=(2,-4,2)$
3. Determine the area of the triangle with vertices $\vec{P}=(0,0), \vec{Q}=(3,2), \vec{R}=(1,4)$.

SOLUTION.

Use $\overrightarrow{P Q}=\vec{Q}-\vec{P}=(3,2)$ as the base of the triangle, with length $\sqrt{13}$. Find the height of the triangle by finding the length of the orthogonal projection of $\overrightarrow{P R}=(1,4)$ onto $\overrightarrow{P Q}$. First find the vector projection:

$$
\begin{gathered}
\frac{(1,4) \cdot(3,2)}{\|(3,2)\|}(3,2)=\frac{3+8}{4+9}(3,2) \\
=(33 / 13,22 / 13)
\end{gathered}
$$

The orthogonal projection is $(1,4)$ minus this vector:

$$
\begin{gathered}
(1,4)-(33 / 13,22 / 13)=(-20 / 13,30 / 13) \\
\|(-20 / 13,30 / 13)\|=\sqrt{400 / 169+900 / 169}=\sqrt{1300 / 169}=10 / 13 \sqrt{13}
\end{gathered}
$$

Thus the triangle's area is $\frac{1}{2} \sqrt{13} \frac{10}{13} \sqrt{13}=5$.
4. Consider $\overrightarrow{e_{1}}=(\sqrt{3} / 2,1 / 2)$ and $\overrightarrow{e_{2}}=(-1 / 2, \sqrt{3} / 2)$. Show that $\overrightarrow{e_{1}}$ and $\overrightarrow{e_{2}}$ each have unit length and that they are orthogonal. Rewrite the vector $\vec{v}=4 \mathbf{i}+5 \mathbf{j}$ in the orthonormal basis $\overrightarrow{e_{1}}=(\sqrt{3} / 2,1 / 2), \overrightarrow{e_{2}}=(-1 / 2, \sqrt{3} / 2)$. In other words, expand or write \vec{v} as $\vec{v}=a \overrightarrow{e_{1}}+b \overrightarrow{e_{2}}$ where a and b are scalar values.

SOLUTION.

First compute the magnitude of each vector.

$$
\begin{aligned}
& \left\|\overrightarrow{e_{1}}\right\|=\sqrt{\frac{3}{4}+\frac{1}{4}}=1 \\
& \left\|\overrightarrow{e_{2}}\right\|=\sqrt{\frac{1}{4}+\frac{3}{4}}=1
\end{aligned}
$$

To show orthogonality, let's use the fact that if two vectors are perpendicular, cosine of the angle θ angle between them must be $0 \cdot \cos (\theta)=\frac{\overrightarrow{e_{1}} \cdot \overrightarrow{e_{2}}}{\left\|\overrightarrow{e_{1}}\right\|\left\|\overrightarrow{e_{2}^{2}}\right\|}=\frac{-\sqrt{3}}{4}+\frac{\sqrt{3}}{4}=0$.

Now, the scalars a and b are determined by projecting \vec{v} onto each of the basis vectors $\overrightarrow{e_{1}}$ and $\overrightarrow{e_{2}}$. We showed that both $\overrightarrow{e_{1}}$ and $\overrightarrow{e_{2}}$ are unit vectors, so have length 1 . This simplifies the vector projection formula:

$$
\begin{gathered}
a=\frac{\vec{v} \cdot \overrightarrow{e_{1}}}{\left\|\overrightarrow{e_{1}}\right\|^{2}}=\vec{v} \cdot \overrightarrow{e_{1}}=(4,5) \cdot(\sqrt{3} / 2,1 / 2)=2 \sqrt{3}+5 / 2 \\
b=\vec{v} \cdot \overrightarrow{e_{2}}=(4,5) \cdot(-1 / 2, \sqrt{3} / 2)=-2+\frac{5 \sqrt{3}}{2}
\end{gathered}
$$

5. Let $\vec{u}=(4,1)$ and $\vec{v}=(2,3)$. Calculate $\vec{u} \times \vec{v}$. Use your result to find the angle θ between \vec{u} and \vec{v}.

SOLUTION.

For the purposes of taking the cross product, let's write $\vec{u}=(4,1,0)$ and $\vec{v}=(2,3,0)$.
$\vec{u} \times \vec{v}=\mathbf{i} \operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 3 & 0\end{array}\right]-\mathbf{j} \operatorname{det}\left[\begin{array}{ll}4 & 0 \\ 2 & 0\end{array}\right]+\mathbf{k} \operatorname{det}\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]=10 \mathbf{k}=(0,0,10)$. Recall that $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$ where θ is the angle between the two vectors. $\|\vec{u}\|=\sqrt{17}$ and $\|\vec{v}\|=\sqrt{13}$. Plugging in these values, we obtain $\sin \theta=\frac{10}{\sqrt{17} \sqrt{13}}$, which implies $\theta=\arcsin \left(\frac{10}{\sqrt{221}}\right) \approx 42.27^{\circ}$.
6. Find the work done by the force $\vec{F}=6 \mathbf{i}+8 \mathbf{j}$ pounds in moving an object from $(1,0)$ to $(6,8)$ where distance is in feet.

SOLUTION.

The formula for work done is Work = Force \cdot Displacement. The displacement vector is from $(1,0)$ to $(6,8)$, or $(5,8)$.
Work $=(6,8) \cdot(5,8)=30+64=94 \mathrm{lb}-\mathrm{ft}$.
7. Find how much work you would do against the force of gravity $(\vec{F}=-m g \mathbf{j})$ to move an object of mass 5 kg from $(0,0)$ to $(0, \sqrt{2})$, in units of meters. Do the same in moving it from $(0,0)$ to $(1,1)$, and compare your answer. How much work would you do in moving it from $(0,0)$ to $(8,0)$?

SOLUTION.

Since the mass of the object is $5 \mathrm{~kg}, \vec{F}=-(5)(9.8) \mathbf{j}=-49 \mathbf{j}$. The displacement vector from $(0,0)$ to $(0, \sqrt{2})$ is $\overrightarrow{D_{1}}=0 \mathbf{i}+\sqrt{2} \mathbf{j}$. So the work done by the force of gravity to move the object is $(0,-49) \cdot(0, \sqrt{2})=0-49 \sqrt{2}=-49 \sqrt{2}$ Joules, so the work done by you against the force of gravity is $49 \sqrt{2}$ Joules. The displacement vector from $(0,0)$ to $(1,1)$ is $\overrightarrow{D_{2}}=1 \mathbf{i}+1 \mathbf{j}$. So the work required in this case is $(0,-49) \cdot(1,1)=-49$

Joules, or 49 Joules done by you. In both of these cases, the work seemed to be 49 multiplied by the \mathbf{j} component of the displacement vector.

Based on this, we might conjecture that the work done in moving the object from $(0,0)$ to $(8,0)$ will be $(-49)(0)=0$. Let's compute to see if we are right. The displacement vector is $\overrightarrow{D_{3}}=8 \mathbf{i}+0 \mathbf{j}$. The work required is therefore $(0,-49) \cdot(8,0)=0+0=0$.
8. Given three points: $\vec{A}=(0,5,3), \vec{B}=(2,7,0), \vec{C}=(-5,-3,7)$
(a) Which point is closest to the $x z$-plane? Explain your reasoning.
(b) Which point lies on the $x y$-plane? Explain your reasoning.

SOLUTION.

a) The distance of a point from the $x z$-plane is simply the absolute value of the y coordinate. You should try to draw a picture to visualize this. Thus, \vec{C} is the closest with a y-value of -3 .
b) A point is on the $x y$-plane if its z-coordinate is 0 . Thus, point \vec{B} is the point we're looking for.
9. Determine the equation of the plane spanned by the vectors:

$$
\begin{aligned}
\vec{u} & =1 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k} \\
\vec{v} & =2 \mathbf{i}+6 \mathbf{j}+4 \mathbf{k}
\end{aligned}
$$

and which contains the origin.

SOLUTION.

Since both \vec{u} and \vec{v} lie in the plane and are in different directions, we may take their cross product to find the Normal vector to the plane and determine its equation:

$$
\vec{u} \times \vec{v}=(12 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k})-(6 \mathbf{k}-12 \mathbf{i}+4 \mathbf{j})=24 \mathbf{i}-8 \mathbf{j}
$$

Thus the equation for the plane is $24 x-8 y=C$. The plane contains the origin, so $24(0)-8(0)=0=C$. So the solution is $24 x-8 y=0$.
10. Find the curvature of the line parameterized by $\vec{r}(t)=(1,1,1)+(2,3,4) t$.

SOLUTION.

$\vec{r}(t)=(1+2 t, 1+3 t, 1+4 t)$
$\overrightarrow{r^{\prime}}(t)=(2,3,4)$
$\vec{T}(t)=\vec{r}^{\prime}(t) / \sqrt{4+9+16}=1 / \sqrt{29}(2,3,4)$
$\overrightarrow{T^{\prime}}(t)=0$
$\kappa=\left\|\overrightarrow{T^{\prime}}(t)\right\| /\left\|\overrightarrow{r^{\prime}}(t)\right\|=0 / \sqrt{29}=0$
NOTE: Straight lines always have 0 curvature!
11. Find the arc length of the helix

$$
\vec{r}(t)=a \sin (t) \mathbf{i}+a \cos (t) \mathbf{j}+c t \mathbf{k}
$$

for $0 \leq t \leq 2 \pi$.

SOLUTION.

$\overrightarrow{r^{\prime}}(t)=a \cos (t) \mathbf{i}-a \sin (t) \mathbf{j}+c \mathbf{k}$
Arc Length $=\int_{0}^{2 \pi}\left\|\overrightarrow{r^{\prime}}(t)\right\| d t=\int_{0}^{2 \pi} \sqrt{a^{2} \cos ^{2}(t)+a^{2} \sin ^{2}(t)+c^{2}} d t$
$=\int_{0}^{2 \pi} \sqrt{a^{2}+c^{2}} d t=2 \pi \sqrt{a^{2}+c^{2}}$
12. Find the equation of the plane orthogonal to the curve

$$
\vec{r}(t)=\left(8 t^{2}-4 t+3\right) \mathbf{i}+(\sin (t)-4 t) \mathbf{j}-\cos (t) \mathbf{k}
$$

at the point $t=\pi / 3$.

SOLUTION.

The Normal vector for the plane will be the tangent vector to the curve at $t=\pi / 3$. We will also need to know $r(\pi / 3)$.

$$
\begin{gathered}
\vec{r}(\pi / 3)=\left(8 \pi^{2} / 9-4 \pi / 3+3, \sqrt{3} / 2-4 \pi / 3,-1 / 2\right) \\
\overrightarrow{r^{\prime}}(t)=(16 t-4) \mathbf{i}+(\cos (t)-4) \mathbf{j}+\sin (t) \mathbf{k} \\
\overrightarrow{r^{\prime}}(\pi / 3)=(16 \pi / 3-4,1 / 2-4, \sqrt{3} / 2)
\end{gathered}
$$

Thus the equation for the plane is

$$
(16 \pi / 3-4) x+(-7 / 2) y+(\sqrt{3} / 2) z=C
$$

Using the point from above,

$$
(16 \pi / 3-4)\left(8 \pi^{2} / 9-4 \pi / 3+3\right)+(-7 / 2)(\sqrt{3} / 2-4 \pi / 3)+(\sqrt{3} / 2)(-1 / 2)=C
$$

So the equation for the plane is
$(16 \pi / 3-4) x+(-7 / 2) y+(\sqrt{3} / 2) z=$
$(16 \pi / 3-4)\left(8 \pi^{2} / 9-4 \pi / 3+3\right)+(-7 / 2)(\sqrt{3} / 2-4 \pi / 3)+(\sqrt{3} / 2)(-1 / 2)$
13. Determine the curvature κ of the helical curve parametrized by:

$$
\vec{r}(t)=7 \sin (3 t) \mathbf{i}+7 \cos (3 t) \mathbf{j}+14 t \mathbf{k}
$$

at $t=\pi / 9$.

SOLUTION.

$\overrightarrow{r^{\prime}}(t)=21 \cos (3 t) \mathbf{i}-21 \sin (3 t) \mathbf{j}+14 \mathbf{k}$
$\left\|\overrightarrow{r^{\prime}}(t)\right\|=\sqrt{21^{2} \cos ^{2}(3 t)+21^{2} \sin ^{2}(3 t)+14^{2}}=\sqrt{441+196}=\sqrt{637}$
$\vec{T}(t)=1 / \sqrt{637}(21 \cos (3 t) \mathbf{i}-21 \sin (3 t) \mathbf{j}+14)$
$\vec{T}^{\prime}(t)=1 / \sqrt{637}(-63 \sin (3 t) \mathbf{i}-63 \cos (3 t) \mathbf{j})$
$\left\|\overrightarrow{T^{\prime}}(t)\right\|=1 / \sqrt{637}\left(\sqrt{63^{2} \sin ^{2}(3 t)+63^{2} \cos ^{2}(3 t)}\right)=63 / \sqrt{637}$
$\kappa=\frac{\left\|\overrightarrow{T^{\prime}}(t)\right\|}{\left\|r^{\prime}(t)\right\|}=\frac{63}{637}$
Note that the curvature is constant for all t, in particular for $t=\pi / 9$.
14. The acceleration of a particle's motion is

$$
\vec{a}(t)=-9 \cos (3 t) \mathbf{i}+-9 \sin (3 t) \mathbf{j}+2 t \mathbf{k}
$$

The particle has initial velocity $\vec{v}_{0}=\mathbf{i}+\mathbf{k}$ and intial position $\vec{x}_{0}=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
(a) Determine the velocity function $\vec{v}(t)$.
(b) Determine the position function $\vec{x}(t)$.

SOLUTION.

$$
\begin{gathered}
\vec{v}(t)=-3 \sin (3 t) \mathbf{i}+3 \cos (3 t) \mathbf{j}+t^{2} \mathbf{k}+\vec{C} \\
\vec{v}(0)=\mathbf{i}+\mathbf{k}=(0,3,0)+\vec{C} \\
\vec{C}=(1,-3,1) \\
\vec{v}(t)=(-3 \sin (3 t)+1) \mathbf{i}+(3 \cos (3 t)-3) \mathbf{j}+\left(t^{2}+1\right) \mathbf{k} \\
\vec{x}(t)=(\cos (3 t)+t) \mathbf{i}+(\sin (3 t)-3 t) \mathbf{j}+\left(t^{3} / 3+t\right) \mathbf{k}+\vec{D}
\end{gathered}
$$

$$
\begin{gathered}
\vec{x}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}=(1,0,0)+\vec{D} \\
\vec{D}=(0,1,1) \\
\vec{x}(t)=(\cos (3 t)+t) \mathbf{i}+(\sin (3 t)-3 t+1) \mathbf{j}+\left(t^{3} / 3+t+1\right) \mathbf{k}
\end{gathered}
$$

15. Determine the position $\vec{r}(t)=(x(t), y(t))$ of a projectile fired from the point $(8,3)$ with an initial speed of $20 \mathrm{f} / \mathrm{s}$ at an angle of 30°. Be sure to show all your work, not just the final formulas.

SOLUTION.

Start with the the fact that the acceleration due to gravity is $\vec{a}(t)=-32 \mathbf{j}$, where $\mathbf{j}=(0,1)$, then integrate Newton's second law twice. Velocity is $\vec{v}(t)=\int \vec{a}(t) d t=$ $\int-32 d t \mathbf{j}=-32 t \mathbf{j}+\vec{C}_{1}$. To find this first constant, consider the initial condition $\vec{v}(0)=$ $20 \cos \left(30^{\circ}\right) \mathbf{i}+20 \sin \left(30^{\circ}\right) \mathbf{j}=10 \sqrt{3} \mathbf{i}+10 \mathbf{j} . \vec{v}(0)=-32(0) \mathbf{j}+\vec{C}_{1}=\vec{C}_{1}=10 \sqrt{3} \mathbf{i}+10 \mathbf{j}$. Thus, $\vec{v}(t)=-32 t \mathbf{j}+10 \sqrt{3} \mathbf{i}+10 \mathbf{j}$.

The position of the projectile is $\vec{r}(t)=\int \vec{v}(t) d t=\int(-32 \mathbf{t} \mathbf{j}+10 \sqrt{3} \mathbf{i}+10 \mathbf{j}) d t=-16 t^{2} \mathbf{j}+$ $10 \sqrt{3} t \mathbf{i}+10 \mathbf{t} \mathbf{j}+\overrightarrow{C_{2}}$. To find the second constant, consider the initial condition $\vec{r}(0)=$ $(8,3)=8 \mathbf{i}+3 \mathbf{j} \cdot \vec{r}(0)=\overrightarrow{C_{2}}=8 \mathbf{i}+3 \mathbf{j}$. Then $\vec{r}(t)=(10 \sqrt{3} t+8) \mathbf{i}+\left(-16 t^{2}+10 t+3\right) \mathbf{j}=$ $\left(10 \sqrt{3} t+8,-16 t^{2}+10 t+3\right)$.

