PRACTICE EXAM I SOLUTIONS

1. Consider the vectors $\vec{u}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\vec{v}=3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$.
(a) Find the length of \vec{u}.
(b) Find $\vec{N}=\vec{u} \times \vec{v}$.
(c) Find the cartesian equation of the plane with normal \vec{N} through the point $P_{0}=$ $(1,0,-1)$.
(d) Find the vector projection of \vec{v} onto \vec{u}.

SOLUTION.

a) $\|\vec{u}\|=\sqrt{1+4+1}=\sqrt{6}$.
b) $\vec{u} \times \vec{v}=-2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}-(-6 \mathbf{k}-4 \mathbf{i}+\mathbf{j})=2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$
c) $2 x+2 y+2 z=C$
$2(1)+0+2(-1)=C=0$
$2 x+2 y+2 z=0$
d) $\frac{\vec{v} \cdot \vec{u}}{\|u\|^{2}} \vec{u}=$
$\frac{3+8+1}{1+4+1}(1,-2,1)=(2,-4,2)$
2. Determine the area of the triangle with vertices $P=(0,0), Q=(3,2), R=(1,4)$.

SOLUTION.

Use $P Q=<3,2>$ as the base of the triangle, with length $\sqrt{13}$. Find the height of the triangle by finding the length of the orthogonal projection of $P R=<1,4>$ onto $P Q$. First find the vector projection:

$$
\begin{gathered}
\frac{(1,4) \cdot(3,2)}{\|(3,2)\|}<3,2>=\frac{3+8}{4+9}<3,2> \\
=<33 / 13,22 / 13>
\end{gathered}
$$

The orthogonal projection is $\langle 1,4\rangle$ minus this vector:

$$
\begin{gathered}
<1,4>-<33 / 13,22 / 13>=<-20 / 13,30 / 13> \\
\|<-20 / 13,30 / 13>\|=\sqrt{400 / 169+900 / 169}=\sqrt{1300 / 169}=10 / 13 \sqrt{13}
\end{gathered}
$$

Thus the triangle's area is $\frac{1}{2} \sqrt{13} \frac{10}{13} \sqrt{13}=5$.
3. Rewrite the vector $\vec{v}=4 \mathbf{i}+5 \mathbf{j}$, in the orthonormal basis $e_{1}=(\sqrt{3} / 2,1 / 2), e_{2}=$ $(-1 / 2, \sqrt{3} / 2)$. In other words, expand or write \vec{v} as $\vec{v}=a e_{1}+b e_{2}$ where a and b are scalar values.

SOLUTION.

The scalars a and b are determined by projecting \vec{v} onto each of the basis vectors e_{1} and e_{2}. Note that both e_{1} and e_{2} are unit vectors, so have length 1 . This simplifies the vector projection formula:

$$
\begin{gathered}
a=\frac{\vec{v} \cdot e_{1}}{\left\|e_{1}\right\|^{2}}=\vec{v} \cdot e_{1}=(4,5) \cdot(\sqrt{3} / 2,1 / 2)=2 \sqrt{3}+5 / 2 \\
b=\vec{v} \cdot e_{2}=(4,5) \cdot(-1 / 2, \sqrt{3} / 2)=-2+\frac{5 \sqrt{3}}{2}
\end{gathered}
$$

4. Find the work done by the force $\vec{F}=6 \mathbf{i}+8 \mathbf{j}$ pounds in moving an object from $(1,0)$ to $(6,8)$ where distance is in feet.

SOLUTION.

The formula for work done is Work $=$ Force x Distance. The distance vector is from $(1,0)$ to $(6,8)$, or a total of $\langle 5,8\rangle$.
Work $=(6,8) \cdot(5,8)=30+64=94 \mathrm{lb}-\mathrm{ft}$.
5. Given three points: $A=(0,5,3), B=(2,7,0), C=(-5,-3,7)$
(a) Which point is closest to the $x z$-plane? Explain your reasoning.
(b) Which point lies on the $x y$-plane? Explain your reasoning.

SOLUTION.

a) The distance of a point from the $x z$-plane is simply the absolute value of the y coordinate. You should try to draw a picture to visualize this. Thus, C is the closest with a y-value of -3 .
b) A point is on the $x y$-plane if its z-coordinate is 0 . Thus, point B is the point we're looking for.
6. Determine the equation of the plane spanned by the vectors:

$$
\begin{aligned}
\vec{u} & =1 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k} \\
\vec{v} & =2 \mathbf{i}+6 \mathbf{j}+4 \mathbf{k}
\end{aligned}
$$

and which contains the origin.

SOLUTION.

Since both \vec{u} and \vec{v} lie in the plane and are in different directions, we may take their cross product to find the Normal vector to the plane and determine its equation:

$$
\vec{u} \times \vec{v}=(12 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k})-(6 \mathbf{k}-12 \mathbf{i}+4 \mathbf{j})=24 \mathbf{i}-8 \mathbf{j}
$$

Thus the equation for the plane is $24 x-8 y=C$. The plane contains the origin, so $24(0)-8(0)=0=C$. So the solution is $24 x-8 y=0$.
7. Find the curvature of the line parameterized by $\vec{r}(t)=(1,1,1)+(2,3,4) t$.

SOLUTION.

$r(t)=(1+2 t, 1+3 t, 1+4 t)$
$r^{\prime}(t)=(2,3,4)$
$T(t)=r^{\prime}(t) / \sqrt{4+9+16}=1 / \sqrt{29}(2,3,4)$
$T^{\prime}(t)=0$
$\kappa=\left\|T^{\prime}(t)\right\| /\left\|r^{\prime}(t)\right\|=0 / \sqrt{29}=0$
NOTE: Straight lines always have 0 curvature!
8. Find the arc length of the helix

$$
\vec{r}(t)=a \sin (t) \mathbf{i}+a \cos (t) \mathbf{j}+c t \mathbf{k}
$$

for $0 \leq t \leq 2 \pi$.

SOLUTION.

$r^{\prime}(t)=a \cos (t) \mathbf{i}-a \sin (t) \mathbf{j}+c \mathbf{k}$
Arc Length $=\int_{0}^{2 \pi}\left\|r^{\prime}(t)\right\| d t=\int_{0}^{2 \pi} \sqrt{a^{2} \cos ^{2}(t)+a^{2} \sin ^{2}(t)+c^{2}} d t$
$=\int_{0}^{2 \pi} \sqrt{a^{2}+c^{2}} d t=2 \pi \sqrt{a^{2}+c^{2}}$
9. Find the equation of the plane orthogonal to the curve

$$
\vec{r}(t)=\left(8 t^{2}-4 t+3\right) \mathbf{i}+(\sin (t)-4 t) \mathbf{j}-\cos (t) \mathbf{k}
$$

at the point $t=\pi / 3$.

SOLUTION.

The Normal vector for the plane will be the tangent vector to the curve at $t=\pi / 3$. We will also need to know $r(\pi / 3)$.

$$
\begin{gathered}
r(\pi / 3)=\left(8 \pi^{2} / 9-4 \pi / 3+3, \sqrt{3} / 2-4 \pi / 3,-1 / 2\right) \\
r^{\prime}(t)=(16 t-4) \mathbf{i}+(\cos (t)-4) \mathbf{j}+\sin (t) \mathbf{k} \\
r^{\prime}(\pi / 3)=(16 \pi / 3-4,1 / 2-4, \sqrt{3} / 2)
\end{gathered}
$$

Thus the equation for the plane is

$$
(16 \pi / 3-4) x+(-7 / 2) y+(\sqrt{3} / 2) z=C
$$

Using the point from above,

$$
(16 \pi / 3-4)\left(8 \pi^{2} / 9-4 \pi / 3+3\right)+(-7 / 2)(\sqrt{3} / 2-4 \pi / 3)+(\sqrt{3} / 2)(-1 / 2)=C
$$

So the equation for the plane is
$(16 \pi / 3-4) x+(-7 / 2) y+(\sqrt{3} / 2) z=$
$(16 \pi / 3-4)\left(8 \pi^{2} / 9-4 \pi / 3+3\right)+(-7 / 2)(\sqrt{3} / 2-4 \pi / 3)+(\sqrt{3} / 2)(-1 / 2)$
10. Determine the curvature κ of the helical curve parametrized by:

$$
\vec{r}(t)=7 \sin (3 t) \mathbf{i}+7 \cos (3 t) \mathbf{j}+14 t \mathbf{k}
$$

at $t=\pi / 9$.

SOLUTION.

$r^{\prime}(t)=21 \cos (3 t) \mathbf{i}-21 \sin (3 t) \mathbf{j}+14 \mathbf{k}$
$\left\|r^{\prime}(t)\right\|=\sqrt{21^{2} \cos ^{2}(3 t)+21^{2} \sin ^{2}(3 t)+14^{2}}=\sqrt{441+196}=\sqrt{637}$
$T(t)=1 / \sqrt{637}(21 \cos (3 t) \mathbf{i}-21 \sin (3 t) \mathbf{j}+14)$
$T^{\prime}(t)=1 / \sqrt{637}(-63 \sin (3 t) \mathbf{i}-63 \cos (3 t) \mathbf{j})$
$\left\|T^{\prime}(t)\right\|=1 / \sqrt{637}\left(\sqrt{63^{2} \sin ^{2}(3 t)+63^{2} \cos ^{2}(3 t)}\right)=63 / \sqrt{637}$
$\kappa=\frac{\left\|T^{\prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|}=\frac{63}{637}$
Note that the curvature is constant for all t, in particular for $t=\pi / 9$.
11. Given that the acceleration of a particle's motion is

$$
\vec{a}(t)=-9 \cos (3 t) \mathbf{i}+-9 \sin (3 t) \mathbf{j}+2 t \mathbf{k} .
$$

And the particle has initial velocity $\vec{v}_{0}=\mathbf{i}+\mathbf{k}$ and intial position $\vec{x}_{0}=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
(a) Determine the velocity function $\vec{v}(t)$.
(b) Determine the position function $\vec{x}(t)$.

SOLUTION.

$$
\begin{gathered}
\vec{v}(t)=-3 \sin (3 t) \mathbf{i}+3 \cos (3 t) \mathbf{j}+t^{2} \mathbf{k}+\vec{C} \\
\vec{v}(0)=\mathbf{i}+\mathbf{k}=(0,3,0)+\vec{C} \\
\vec{C}=(1,-3,1) \\
\vec{v}(t)=(-3 \sin (3 t)+1) \mathbf{i}+(3 \cos (3 t)-3) \mathbf{j}+\left(t^{2}+1\right) \mathbf{k} \\
\vec{x}(t)=(\cos (3 t)+t) \mathbf{i}+(\sin (3 t)-3 t) \mathbf{j}+\left(t^{3} / 3+t\right) \mathbf{k}+\vec{D} \\
\vec{x}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}=(1,0,0)+\vec{D} \\
\vec{D}=(0,1,1) \\
\vec{x}(t)=(\cos (3 t)+t) \mathbf{i}+(\sin (3 t)-3 t+1) \mathbf{j}+\left(t^{3} / 3+t+1\right) \mathbf{k}
\end{gathered}
$$

12. Let $\vec{u}=(2,2)$ and $\vec{v}=(3,-1)$. Find $\vec{u}+\vec{v}$ and illustrate this vector addition with a diagram in the plane, showing \vec{u}, \vec{v} and the resultant vector.

SOLUTION.

$\vec{u}+\vec{v}=(2,2)+(3,-1)=5,1)$
Note that the resultant vector points from the origin to the head of \vec{v}, after translating \vec{v} so that its tail is located at the head of \vec{u}.

