Mathematics 2210-2,4 PRACTICE EXAM I

1. Consider the vectors $\vec{u}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\vec{v}=3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$.
(a) Find the length of \vec{u}.
(b) Find $\vec{N}=\vec{u} \times \vec{v}$.
(c) Find the cartesian equation of the plane with normal \vec{N} through the point $P_{0}=$ $(1,0,-1)$.
(d) Find the vector projection of \vec{v} onto \vec{u}.
2. Determine the area of the triangle with vertices $P=(0,0), Q=(3,2), R=(1,4)$.
3. Rewrite the vector $\vec{v}=4 \mathbf{i}+5 \mathbf{j}$, in the orthonormal basis $\overrightarrow{e_{1}}=(\sqrt{3} / 2,1 / 2), \overrightarrow{e_{2}}=$ $(-1 / 2, \sqrt{3} / 2)$. In other words, expand or write \vec{v} as $\vec{v}=a \overrightarrow{e_{1}}+b \overrightarrow{e_{2}}$ where a and b are scalar values.
4. Find the work done by the force $\vec{F}=6 \mathbf{i}+8 \mathbf{j}$ pounds in moving an object from $(1,0)$ to $(6,8)$ where distance is in feet.
5. Given three points: $A=(0,5,3), B=(2,7,0), C=(-5,-3,7)$
(a) Which point is closest to the $x z$-plane? Explain your reasoning.
(b) Which point lies on the $x y$-plane? Explain your reasoning.
6. Determine the equation of the plane spanned by the vectors:

$$
\begin{aligned}
\vec{u} & =1 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k} \\
\vec{v} & =2 \mathbf{i}+6 \mathbf{j}+4 \mathbf{k}
\end{aligned}
$$

and which contains the origin.
7. Find the curvature of the line parameterized by $\vec{r}(t)=(1,1,1)+(2,3,4) t$.
8. Find the arc length of the helix

$$
\vec{r}(t)=a \sin (t) \mathbf{i}+a \cos (t) \mathbf{j}+c t \mathbf{k}
$$

for $0 \leq t \leq 2 \pi$.
9. Find the equation of the plane orthogonal to the curve

$$
\vec{r}(t)=\left(8 t^{2}-4 t+3\right) \mathbf{i}+(\sin (t)-4 t) \mathbf{j}-\cos (t) \mathbf{k}
$$

at the point $t=\pi / 3$.
10. Determine the curvature κ of the helical curve parametrized by:

$$
\vec{r}(t)=7 \sin (3 t) \mathbf{i}+7 \cos (3 t) \mathbf{j}+14 t \mathbf{k}
$$

at $t=\pi / 9$.
11. Given that the acceleration of a particle's motion is

$$
\vec{a}(t)=-9 \cos (3 t) \mathbf{i}+-9 \sin (3 t) \mathbf{j}+2 t \mathbf{k} .
$$

And the particle has initial velocity $\vec{v}_{0}=\mathbf{i}+\mathbf{k}$ and intial position $\vec{x}_{0}=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
(a) Determine the velocity function $\vec{v}(t)$.
(b) Determine the position function $\vec{x}(t)$.
12. Let $\vec{u}=(2,2)$ and $\vec{v}=(3,-1)$. Find $\vec{u}+\vec{v}$ and illustrate this vector addition with a diagram in the plane, showing \vec{u}, \vec{v} and the resultant vector.

