1. Solve the following differential equations.
(a) $y^{\prime \prime}+y=0$
(b) $y^{\prime \prime}+5 y^{\prime}-6 y=0$
(c) $y^{\prime \prime}-4 y^{\prime}+4 y=0$
(d) $y^{\prime \prime}+4 y=0, \quad y(0)=0$ and $y^{\prime}(0)=1$
(e) $y^{\prime \prime}+y^{\prime}+y=0$
(f) $y^{\prime \prime}+y^{\prime}-6 y=2 x^{2}$
(g) $y^{\prime \prime}+4 y^{\prime}=\cos x$
2. Consider a mass $m$ on a spring with constant $k$. The position $x(t)$ of the mass at time $t$ satisfies the second order constant coefficient differential equation $m \frac{d^{2} x}{d t^{2}}=-k x$, or

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0, \quad \omega=\sqrt{\frac{k}{m}} \tag{1}
\end{equation*}
$$

Use the characteristic polynomial of (1) to find its general solution, and then from your general solution find the particular solution with initial position $x(0)=0$ and initial velocity $\frac{d x}{d t}(0)=1$.
3. Consider a pendulum of length $\ell$. The angle $\theta(t)$ that the pendulum makes with respect to vertical at time $t$ satisfies the second order nonlinear differential equation $\ell \frac{d^{2} \theta}{d t^{2}}=-g \sin \theta$, where $g$ is the acceleration due to gravity. For small oscillations (small $\theta$ ), $\sin \theta$ can be approximated by $\theta$, which yields the linearized equation

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \theta=0, \quad \omega=\sqrt{\frac{g}{\ell}} . \tag{2}
\end{equation*}
$$

Use the characteristic polynomial of (3) to find its general solution, and then from your general solution find the particular solution with initial angle $\theta(0)=\pi / 16$ and initial angular velocity $\frac{d \theta}{d t}(0)=0$.
4. Consider a microwave (or radar wave) propagating vertically with electric field in the $x$-direction at time $t$ given by $E(x, t)$. Assuming the wave is time harmonic with one angular frequency $\omega$, then $E(x, t)=e^{i \omega t} E(x)$. If the wave propagates through a medium (such as a turkey or the atmosphere) described by the permittivity, or dielectric constant, $\epsilon(x)$ (related to the index of refraction $n(x)$ by $n=\sqrt{\epsilon}$ ), then $E(x)$ satisfies the second order non-constant coefficient differential equation

$$
\frac{d^{2} E}{d x^{2}}+k_{0}^{2} \epsilon(x) E(x)=0
$$

where $k_{0}=\omega / c$ is the free space wave number, and $c$ is the speed of light. For a homogeneous medium, such as free space where $\epsilon(x)=1, E$ satisfies

$$
\begin{equation*}
\frac{d^{2} E}{d x^{2}}+k_{0}^{2} E=0 \tag{3}
\end{equation*}
$$

Use the characteristic polynomial of (2) to find its general solution, and then from your general solution find the particular solution satisfying $E(0)=0$ and $\frac{d E}{d x}(0)=1$.

