1. For $\ln (1+x)$, substitute in $-x$ for x in the geometric series and integrate term by term to see that,
$\ln (1+x)=x-x^{2} / 2+x^{3} / 3-x^{4} / 4+\ldots$, radius $=1$.
For $1 /(1+x)^{2}$, substitute in $-x$ for x in the geometric series, take the derivative term by term, and multiply by -1 to see that,
$1 /(1+x)^{2}=1-2 x+3 x^{2}-4 x^{3}+\ldots$, radius $=1$.
2. $\frac{1}{4+x^{2}}=\frac{1}{4} \frac{1}{1+\left(\frac{x}{2}\right)^{2}}=\frac{1}{4}\left(1-\left(\frac{x}{2}\right)^{2}+\left(\frac{x}{2}\right)^{4}+\ldots\right)$, radius $=2$
3. $e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1+0 i=-1$,
$2 e^{i \pi / 2}=2 \cos (\pi / 2)+2 i \sin (\pi / 2)=0+2(1) i=2 i$,
$2 e^{-i 3 \pi / 2}=2 \cos (-3 \pi / 2)+2 i \sin (-3 \pi / 2)=0+2(1) i=2 i$,
$\pi e^{i 2 \pi}=\pi \cos (2 \pi)+\pi i \sin (2 \pi)=\pi 1+0 i=\pi$
4. $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$
$e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+x^{4} / 4!+\cdots$
and $e^{-x}=1-x+x^{2} / 2!-x^{3} / 3!+x^{4} / 4!+\cdots$.
Plugging these into the definition of $\cosh (x)$ and simplifying we obtain:
$\cosh x=1+x^{2} / 2!+x^{4} / 4!+x^{6} / 6!+\cdots$. The radius of convergence is infinite since that is the case for the series for e^{x}
5. Apply the ratio test and set the result to be less than 1 , which would imply convergence, and solve for the x values that fit that condition. Next plug in the endpoints of the interval you find into the series and determine convergence at those points. Note that for part $\mathrm{b}, \lim _{n \rightarrow \infty}\left|\frac{f_{n+1}}{f_{n}}\right|=\phi=(1+\sqrt{5}) / 2, \phi$ is the golden ratio!
(a) $(-1,1 / 3)$, conditionally convergent at -1 , divergent at $1 / 3$
(b) $(-1 / \phi, 1 / \phi), \phi=(1+\sqrt{5}) / 2$
6. (a) $-e^{-n} \leq e^{-n} \sin n \leq e^{-n}$ and $\lim _{n \rightarrow \infty} e^{-n}=0$. Thus, $\lim _{n \rightarrow \infty} e^{-n} \sin (n)=0$ by the squeeze theorem.
(b) Let $L=\lim _{n \rightarrow \infty}(2 n)^{1 / 2 n}$ so that, $\ln (L)=\lim _{n \rightarrow \infty}(1 / 2 n) \ln (2 n)$. Apply L'Hospital's rule to see that $\ln (L)=0$ thus $L=1$
(c) $\lim _{n \rightarrow \infty}(1-1 / n) \cos (n \pi)=\lim _{n \rightarrow \infty}(1-1 / n) \lim _{n \rightarrow \infty} \cos (n \pi)=1 \lim _{n \rightarrow \infty} \cos (n \pi)$, however $\lim _{n \rightarrow \infty} \cos (n \pi)$ does not exist due to oscillation.
(d) Note that,

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \exp \left(\frac{k}{n}\right)^{2} \frac{1}{n}
$$

is just the limit of the Riemann sum for $\int_{0}^{1} e^{x^{2}} d x$. This is an integral that is non-trival. To find the value we use the Taylor Series for $e^{x^{2}}=1+x^{2}+x^{4} / 2!+$ $x^{6} / 3!+x^{8} / 4!+\cdots$ and integrate it term by term, then we can plug in our bounds to find that, $\int_{0}^{1} e^{x^{2}} d x=1+\frac{1}{3}+\frac{1}{5 \cdot 2!}+\frac{1}{7 \cdot 3!}+\ldots$
7. The sum of the distances of each jump is $1+3 / 4+(3 / 4)^{2}+(3 / 4)^{3}+\cdots$ This is just a geometric series with $r=3 / 4$ thus, $1+3 / 4+(3 / 4)^{2}+(3 / 4)^{3}+\cdots=\frac{1}{1-3 / 4}=4$ meters
8. (a) Diverges in absolute value, but converges conditionally (Alternating Series Test)
(b) $\sqrt{1-\cos \left(\frac{1}{n}\right)} \sim \frac{1}{n} \Longrightarrow$ divergence
(c) converges absolutely (ratio test)
(d) diverges ($n^{\text {th }}$ term test)
(e) converges absolutely (integral test)
(f) converges absolutely (ratio test)
9. $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots, \frac{d^{2} y}{d x^{2}}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\ldots$, and we have $\frac{d^{2} y}{d x^{2}}=-y$ and the initial conditions $y(0)=a_{0}=0$ and $y^{\prime}(0)=a_{1}=1$, so we find

$$
\begin{array}{lc}
a_{2}=\frac{-a_{0}}{2}=0 & a_{3}=\frac{-a_{1}}{6}=\frac{-1}{3!} \\
a_{4}=\frac{-a_{2}}{12}=0 & a_{5}=\frac{-a_{3}}{20}=\frac{1}{5!}
\end{array}
$$

and so on, so $y=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots=\sin x$.
10. Finding the first four terms. $f(x)=\sqrt{x-2}, f^{\prime}(x)=\frac{1}{2 \sqrt{x-2}}, f^{\prime \prime}(x)=\frac{-1}{4(x-2)^{3 / 2}} f^{\prime \prime \prime}(x)=$ $\frac{3}{8(x-2)^{5 / 2}}$ Thus $f(3)=1, f^{\prime}(3)=\frac{1}{2}, f^{\prime \prime}(3)=-\frac{1}{4}, f^{\prime \prime \prime}(3)=\frac{3}{8}$. Using taylor's theroem $f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots$ With $f(x)=\sqrt{x-2}$ and $a=3$ we get $\sqrt{x-2}=1+\frac{1}{2}(x-3)-\frac{1}{8}(x-3)^{2}+\frac{3}{48}(x-3)^{3}+\ldots$
The radius of convergence is $[2,4]$ since we require $|x-3|<1$ and we have an alternating series with limit 0 as $n \rightarrow \infty$ at each end point on $[2,4]$

