Mathematics 1220 PRACTICE EXAM II Spring 2017 ANSWERS

- 1. (a) Let x = n and note that $\sqrt[x]{x} = x^{1/x} = \exp(\ln x/x)$. Use L'Hôpital's rule to show that $\lim_{x \to \infty} \ln x/x = 0$, hence $\lim_{x \to \infty} x^{1/x} = 1$. Now use L'Hôpital's rule to show that $\lim_{x \to \infty} \frac{x^{1/x} 1}{1/x} = \lim_{x \to \infty} -x^{1/x}(\ln x 1)$ diverges, $\longrightarrow +\infty$.
 - (b) Let $y = (\cos x)^{\csc x}$, and apply L'Hôpital's rule to $\ln y$, giving $y \to 1$.
 - (c) Apply L'Hôpital's rule 25 times to x^{25}/e^x , giving 0.
 - (d) Apply L'Hôpital's rule: $\lim_{x \to \infty} \frac{xe^x}{e^{x^2/2}} = \lim_{x \to \infty} e^{\left(\frac{-x^2}{2} + x\right)} \left(1 + \frac{1}{x}\right).$ Since $\frac{-x^2}{2} + x = \frac{x}{2}(2-x) < 0$ for x > 2, the limit is 0.
 - (e) $\lim_{x \to -\infty} (e^{-x} x) = \lim_{x \to +\infty} (e^x + x) \longrightarrow +\infty.$
 - (f) Apply L'Hôpital's rule, and use the Second Fundamental Theorem of Calculus on the numerator, which gives sin 1 as the limit.
 - (g) Apply L'Hôpital's rule, and use the Second Fundamental Theorem of Calculus on the numerator. Another application of L'Hôpital's rule gives 1/3.
 - (h) Straight forward asymptotics show that the limit is 3
 - (i) Apply L'Hôpital's rule twice to show that the limit is -1/2

2. (a) 0 for
$$m = n$$
 and $m \neq n$, use $\sin mx \cos nx = \frac{1}{2} [\sin (m+n)x + \sin (m-n)x]$.

(b)
$$\pi$$
, use $\sin mx \sin nx = -\frac{1}{2} [\cos 2mx - 1]$ for $m = n$.

(c) $\frac{u^2}{2} + C$, $u = \ln(\cosh x)$. (d) $\frac{1}{2} \tan^{-1}\left(\frac{u+1}{2}\right) + C$, $u = e^x$. Then complete the square.

(e)
$$\int \frac{3x-1}{x^2-4} dx = \int \left(\frac{7}{4}\frac{1}{x+2} + \frac{5}{4}\frac{1}{x-2}\right) dx = \frac{7}{4}\ln|x+2| + \frac{5}{4}\ln|x-2| + C$$

- (f) $\frac{x}{2} [\cos(\ln x) + \sin(\ln x)]$, use two integration by parts, the first with $u = \cos(\ln x)$, dv = dx, and second with $u = \sin(\ln(x)) dv = dx$ to solve for the integral.
- (g) $\frac{1}{2}(A\ln|x|+B\ln|x+3|)+C$, $\frac{1}{x(x+3)} = \frac{A}{x} + \frac{B}{x+3}$, A = 1/3, B = -1/3. (h) $-\frac{e^{-u}}{2} + C$, $u = t^2 + 2t + 5$. (i) $-\frac{1}{3}\sin^2(x)\cos(x) - \frac{2}{3}\cos(x)$ use the identity $\sin^2 x + \cos^2 x = 1$. (j) $xe^x - e^x + C$, do integration by parts with u = x and $dv = e^x dx$. (h) $A \ln |x| + 5| + B \ln |x| + 2| + C = \frac{3x-13}{2} = -\frac{A}{2} + \frac{B}{2} = A - 4, B = -1$

(k)
$$A \ln |x+5| + B \ln |x-2| + C$$
, $\frac{3x-15}{x^2+3x-10} = \frac{A}{x+5} + \frac{B}{x-2}$, $A = 4, B = -1$.

3. Section 7.1

9.
$$2(4+z^2)^{\frac{3}{2}} + C$$
. Use the substitution $u = 4+z^2$.
19. $-\frac{1}{2}\cos(\ln(4x^2)) + C$. Use the substitution $u = \ln 4x^2$.

34.
$$-\frac{1}{2}\cot 2x - \frac{1}{2}\csc 2x + C$$
. Use $D_x \cot x = -\csc^2 x$ and $D_x \csc x = -\csc x \cot x$

- 4. Section 7.2
 - 17. $\frac{2}{9}\left(e^{\frac{3}{2}}+2\right)$. Use $u = \ln t$ and $dv = \sqrt{t} dt$.
 - 39. $z \ln^2 z 2z \ln z + 2z + C$. First use $u = \ln^2 z$ and dv = dz. Then use $u = \ln z$ and dv = dz.
 - 41. $\frac{1}{2}e^t(\sin t + \cos t) + C$. First use $u = e^t$ and $dv = \cos t \, dt$. Then use $u = e^t$ and $dv = \sin t \, dt$.
- 5. Section 7.3
 - 5. $\frac{8}{15}$. Write $\cos^5 \theta = (1 \sin^2 \theta)^2 \cos \theta$, multiply out the quadratic term, and then use the substitution $u = \sin \theta$.
 - 30. 0. Use the identity $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$.
- 6. (a) Let $u = \ln x$, then p = 1/2 for infinite domain \Rightarrow divergence.
 - (b) Bound the integrand above with C/x^p , for any p such that $1 , like <math>p = 5/4 \Rightarrow$ convergence.
 - (c) $|e^{-x}\cos x| \le e^{-x} \Rightarrow$ convergence.
 - (d) Near x = 0, $(e^{-x^2}/x^2) \sim (1/x^2) \Rightarrow$ divergence.
 - (e) 16,000 integration by parts reduces the integral to a purely decaying exponential \Rightarrow convergence; or use comparison $x^{16,000}e^{-x} < e^{-x/2}$ for sufficiently large x, but you must show this!
 - (f) Near x = 0, integrand $\sim 1/x^{2/3} \Rightarrow$ convergence.
- 7. (a) diverges, as $\lim_{2n \to \infty} (-1)^{2n} \frac{2n}{2n+2} = 1$, but $\lim_{2n+1 \to \infty} (-1)^{2n+1} \frac{2n+1}{(2n+1)+2} = -1$.
 - (b) converges to $\frac{1}{2}$ as $\frac{\sqrt{n^2+4}}{2n+1} \sim \frac{n}{2n} = \frac{1}{2}$.
 - (c) converges to 0. Apply the squeeze theorem to $\frac{-1}{n^{1/2}} \leq \frac{\cos(2n)}{n^{1/2}} \leq \frac{1}{n^{1/2}}$.
 - (d) converges to 0 as $\ln\left(\frac{n}{n+1}\right) \sim \ln\left(\frac{n}{n}\right) = 0.$