Mathematics 1220

ANSWERS

1. Calculate the following limits.
(a) $\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)^{2 n}=e^{-2}$
(b) $\lim _{x \rightarrow 0}(1+4 x)^{1 / x}=e^{4}$
2. Calculate the following.
(a) $\frac{d}{d x}(\ln (\tanh x))=(\sinh x \cosh x)^{-1}$
(b) $\int \frac{z}{2 z^{2}+8} d z=\frac{1}{4} \ln \left(2 z^{2}+8\right)+C$
(c) $\int \frac{\tan (\ln x)}{x} d x=\ln |\sec (\ln x)|+C$,
(d) $\int \frac{d x}{x(1-x)}=\ln \left|\frac{x}{x-1}\right|+C$,
(e) $\frac{d y}{d x}, \quad y=\frac{\left(x^{2}+3\right)^{2 / 3}(3 x+2)^{2}}{\sqrt{x+1}} \quad \frac{d y}{d x}=\left(\frac{4 x}{3 x^{2}+9}+\frac{6}{3 x+2}-\frac{1}{2 x+2}\right)$
(f) $\int \frac{e^{x}}{1+e^{2 x}}=\arctan \left(e^{x}\right)+C$
3. Experiments show that the rate of change of the atmospheric pressure $P(x)$ with altitude x is proportional to the pressure. Write down the resulting differential equation for $P(x)$, and solve it, assuming that the pressure at 6000 meters is half its value P_{0} at sea level.

$$
\frac{d P}{d x}=-k P, \quad k>0 ; \quad P(x)=P_{0} e^{-k x}, \quad k=(\ln 2) / 6000
$$

4. Section $6.5 \# 18$

5,565 years ago
5. Section 6.3
40. $\ln \left|e^{x}-1\right|+C$
46. $\quad V=2 \pi \int_{0}^{1} x e^{-x^{2}} d x=\pi\left(1-\frac{1}{e}\right)$
6. Section 6.6
2. $y(x)=\frac{\frac{1}{3} x^{3}-x}{x-1}+\frac{C}{x-1}$
4. $y(x)=\sin x+C \cos x$
7. Stewart wants to become a millionaire after 10 years by buying $\$ 5,000$ worth of a company's stock, which he wants to choose carefully. What must the sustained, annualized growth rate of the stock be in order to achieve his goal?
$1,000,000=10,000(1+r)^{20}$ or $r=0.2588 \ldots$, or about 26%
8. Newton's law of cooling states that the rate at which an object cools is proportional to the difference between the temperature $\theta(t)$ of the object and the constant ambient temperature T,

$$
\frac{d \theta}{d t}=-k(\theta-T),
$$

where $k>0$ is a constant depending on the object. A corpse is discovered at 2 pm , and its temperature is found to be $85^{\circ} \mathrm{F}$, with the ambient air temperature being $68^{\circ} \mathrm{F}$. Assuming $k=0.5 \mathrm{hr}^{-1}$, find the time of death.
$\theta(t)=T+\left(\theta_{0}-T\right) e^{-k t}$. The corpse is discovered at $t=0$ (or 2 pm), and has a temperature $\theta_{0}=\theta(0)=85^{\circ} \mathrm{F}$. Assume that t_{d} is the time of death and that $\theta\left(t_{d}\right)=\theta_{d}=98.6^{\circ} \mathrm{F}$. Thus

$$
t_{d}=-\frac{1}{k} \ln \left(\frac{\theta_{d}-T}{\theta_{0}-T}\right)=-1.176
$$

or about 12:49 pm.
9. Section 6.8
45. $x^{2}\left[\frac{x e^{x}}{1+e^{2 x}}+3 \arctan \left(e^{x}\right)\right]$
51. $\frac{3(1+\arcsin (x))^{2}}{\sqrt{1-x^{2}}}$
67. $\frac{1}{3} \arcsin \left(\frac{\sqrt{3}}{2} x\right)+C$
10. Section 6.9
25. $2 \tanh (x) \cosh (2 x)+\sinh (2 x) \operatorname{sech}^{2}(x)$
33. $\frac{1}{\sqrt{x^{2}-1} \cosh (x)}$
41. $2 \cosh \left(2 z^{\frac{1}{4}}\right)+C$
45. $\frac{1}{4}\left[\ln \left(\sinh \left(x^{2}\right)\right)\right]^{2}+C$

