
Mathematics 1210−4,10 Prof. Ken Golden
PRACTICE FINAL EXAM ANSWER KEY Fall 2018
Problems From Varberg, Purcell, Rigdon (Chapter.Section.Number)

1. (5.1.6.) Use the three step procedure (slice, approximate, integrate) to set up an integral or
integrals for the area of the indicated region. The region lies above the parabola y = x2 − 2
and below the line y = x+ 4, and is enclosed by these two graphs.

Solution:

The boundary curves intersect when

x2 − 2 = x+ 4 or x2 − x− 6 = (x− 3)(x+ 2) = 0,

which is at x = −2 and x = 3. We integrate the vertical slices (shading area in the above
figure) whose height at x is the (positive) distance from the lower boundary to the upper
boundary there, (x+ 4)− (x2 − 2), and whose width is dx.

∫ 3

−2
(−x2 + x+ 6) dx = (−x

3

3
+
x2

2
+ 6x)

∣∣∣∣3
−2

=
27

2
− (−22

3
) =

103

6
= 17

1

6
.
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2. (5.2.17.) Find the volume of the solid generated by revolving about the x-axis the region
bounded by the upper half of the ellipse

x2

a2
+
y2

b2
= 1

and the x-axis, and thus find the volume of a prolate spheroid. Here a and b are positive
constants, with a > b.

Solution: Consider the following figure,

The upper and lower boundary curves intersect when

y = 0 and
x2

a2
+
y2

b2
= 1,

which is occure when x = ±a.

If we slice vertically, the long direction of the slices is perpendicular to the axis of revolution
and they sweep out circular discs. The volume of the disc at x is its thickness, dx, times its

area πr2. The radius is just y = b(1− x2

a2
)1/2, the height of the region being revolved about

its lower boundary curve.

So we integrate

V =

∫ a

−a
πb2(1− x2

a2
)dx = πb2

∫ a

−a
1− x2

a2
dx = πb2(x− x3

3a2
)

∣∣∣∣a
−a

=
4

3
πab2.

The prolate spheroid has a circular cross section with radius b in the y−z−plane, and extends
a distance a from the origin in either direction in the x−direction. When a = b = r, it becomes
a sphere of radius r and the formula gives its volume, V = 4

3πr
3. �
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3. (5.3.2.) Find the volume of the solid generated when the region R bounded by the curves
y = x2, x = 1, y = 0 is revolved about the y-axis. Do this by performing the following steps:
(a) Sketch the region R. (b) Show a typical rectangular slice properly labeled. (c) Write
a formula for the approximate volume of the shell generated by this slice. (d) Set up the
corresponding integral. (e) Evaluate this integral.

Solution: The region R is the shading area in the following graph,

The upper and lower boundary curves intersect when x2 = 0, so when x = 0 so the region
extends from x = 0 to x = 1. If we slice vertically, the long direction of the slices is parallel
to the axis of revolution and they sweep out cylindrical shells. The volume of the slice at x is
its thickness, dx times its height, the distance from the lower to the upper boundary x2 − 0,
times its circumference, 2π times x, the ‘radius’ of that shell, given by the distance of the
generating slice from the axis of revolution. So we integrate

V =

∫ 1

0
2πx(x2)dx = 2π

x4

4

∣∣∣∣1
0

=
π

2
.

If we slice horizontally, the long direction of each slice is perpendicular to the axis of revolution
and they sweep out circular annuli or ‘washers’. The volume of the washer at height y is its
thickness, dy, times the difference of the area of the outer disc and the cut-out inner disc,
πr2o − πr2i . The height of the slices extends from the lowest point of the lower boundary, 0
everywhere, to the highest point of the upper boundary, y = 1 at x = 1. At height y, the
inner radius is the x corresponding to y = x2 which is both the upper and inner boundary,
so x = y1/2, and the outer radius is 1 at every y. So we integrate

V =

∫ 1

0
π(12 − (

√
y)2dy = π

∫ 1

0
1− ydy = π (y − y2

2
)

∣∣∣∣1
0

=
π

2
.

You can also see from the graph of 1− y that the final integral is just the area of a triangle
with base and height 1, so the area is 1/2, recalling something we did at the very beginning
of the class. �

3



4. (5.4.10.) Sketch the graph of the parametric equation

x =
√

5 sin 2t− 2 y =
√

5 cos 2t−
√

3; 0 ≤ t ≤ π

4
,

and find its length.

Solution: We can sketch the graph of parametric equation as

The arclength of a section of a parametric curve, (x(t), y(t)) is computed by integrating the
infinitesimal hypotenuse lengths,

√
dx2 + dy2 =

√
dx

dt

2

+
dy

dt

2

dt

between the t-values of interest.

x =
√

5 sin 2t− 2 y =
√

5 cos 2t−
√

3; 0 ≤ t ≤ π

4
,

In this case, using dx
dt = 2

√
5 cos 2t and dy

dt = −2
√

5 sin 2t, we can calulate length of arclength
(S) as

S =

∫ π
4

0

√
dx

dt

2

+
dy

dt

2

dt =

∫ π
4

0

√
20(cos2 2t+ sin2 2t dt = 2

√
5

∫ π
4

0
dt =

√
5π

2
.
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5. (5.4.21a.) Find the length of the curve

y =

∫ x

1

√
u3 − 1 du, 1 ≤ x ≤ 2.

Solution: The arclength of a section of a graph, y = f(x) is computed by integrating the
infinitesimal hypotenuse lengths,

√
dx2 + dy2 =

√
1 +

dy

dx

2

dx =
√

1 + f ′(x)2dx

between the x-values of interest.

In this case, since f itself is given as an integral between 1 and x, we use the Fundamental
Theorem of Calculus to compute f ′(x) =

√
x3 − 1 so that

√
1 + f ′(x)2 = x3/2 and

S =

∫ 2

1

√
1 + f ′(x)2dx =

∫ 2

1
x3/2dx = (

2

5
x5/2)

∣∣∣∣2
1

=
2

5
(25/2 − 1).

�

6. (5.5.6.) For a certain type of nonlinear spring, the force required to keep the spring stretched
a distance s is given by the formula F = ks4/3. If the force required to keep it stretched 8
inches is 2 pounds, how much work is done in stretching this spring 27 inches?

Solution: Since F = ks4/3 and F = 2 pounds when s = 8 inches, k = 1
8 = 0.125 when

units of F are in pounds and s are in inches. Integrating the force of the spring times the
infinitesimal displacement, F (s)ds, while stretching it from s = 0 (equilibrium) to 27 inches
from equilibrium,

W =

∫ 27

0

1

8
s4/3ds = (

3

56
s7/3)

∣∣∣∣27
0

=
38

56
∼ 117.16

where the answer is in inch-pounds, and can be converted to the more common foot-pounds
by dividing by 12. �

7. (5.5.22.) According to Coulomb’s Law, two like electrical charges repel each other with a
force that is inversely proportional to the square of the distance between them. If the force
of repulsion is 10 dynes (1 dyne = 10−5 newton) when they are 2 centimeters apart, find the
work done in bringing the charges from 5 centimeters apart to 1 centimeter apart.

Solution: Coulomb’s Law may be written F = K q1q2
r2

where here q1 = q2 = q and 10 dynes

= K q2

4 . The work done bringing the charges from a distance r1 = 5 centimeters apart to a
distance r2 = 1 centimeter apart is

W = −
∫ r2

r1

F (r)dr = −
∫ 1

5
Kq2r−2dr,

where the minus sign is because the force you must apply to move the charge in closer is equal
and opposite at each point to the repulsive force which is in the positive direction. Doing the
integration, we get

W = −Kq2 (−r−1)
∣∣1
5

= Kq2(1− 1

5
).

Finally, using Kq2 = 40 in dyne-cm units, W = 32 dynes. �
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8. (5.6.25.) Use Pappus’ Theorem to find the volume of the solid obtained when the region
bounded by y = x3, y = 0, and x = 1 is revolved about the y-axis (see Problem 11 for the
centroid). Do the same problem by the method of cylindrical shells to check your answer.

Solution: Using the method of cylindrical shells

Recall that slices parallel to the axis of revolution give cylindrical shells, slices perpendicular
to the axis of revolution give discs or washers. Also notice that since the slices are rectan-
gles, every slice is really both parallel AND perpendicular, so that the difference between a
cylindrical shell and a washer is really just a matter of aspect ratio.

Each dx slice parallel to the y-axis at a particular value of x extends from the lower boundary
line y = 0 to the upper boundary at y = x3, and the x values extend from x = 0 where the
upper and lower boundary curves intersect (at the axis of revolution) to x = 1.

The cylindrical shell generated by revolving such a slice about the y-axis is its circumference
times its thickness times its height. (This is just length times width times height if the
cylindrical shell is unrolled like a ‘Ding-dong’ into a rectangular slab.) The circumference is
2π times the radius from the axis to the slice, in this case just x, the height is the distance
from the lower boundary to the upper boundary at x, x3− 0, and the thickness is dx. So the
volume is given by ∫ x=1

x=0
2πx(x3)dx = 2π|10

x5

5
=

2π

5
.

The centroid of the region is obtained by averaging the value of x and y in the region,
weighting each by the fraction of the region having that x or y value.

x̄ =

∫ b

a
x

f(x)∫ b
a f(x)dx

dx

so in this case

x̄ =
1∫ 1

0 x
3dx

∫ 1

0
x4dx =

1/5

1/4
=

4

5
.

For ȳ we can either slice along constant y-values and use

ȳ =
1∫ 1

0 1− y1/3dy

∫ 1

0
y(1− y1/3)dy =

2

7

and notice that the normalization factor is the same area of the region, 1/4, computed with
dy slices instead of dx as before, so we really didn’t need to do it twice.

The other way to compute the y-component of the centroid is to average the average y value
in each dx slice, 1

2y, weighted by the the fraction of the region having that average y value.

The area of the region is 1
4 . The distance swept out by the centroid is 2π times 4

5 , its distance
from the axis of revolution. Multiplying these according to Pappus’ volume theorem (there
is also an area theorem) gives 1

4(2π 4
5 = 2π

5 , confirming Pappus’ Theorem in this case.
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The alternate derivation of the y-coordinate of the centroid is

ȳ =

∫ b

a

1

2
y

f(x)∫ b
a f(x)dx

dx

ȳ = 4

∫ 1

0

1

2
x6dx =

2

7
.

9. Find the temperature profile T (x) on the interval [0, 1] satisfying the steady state heat equa-
tion

d2T

dx2
= 0

and the boundary conditions T (0) = 4 and T (1) = 2.

Solution: To find T (x) we integrate the differential equation twice to get:

dT

dx
= C

T (x) = Cx+D

Based on the initial conditions we get T (0) = D = 4 and T (1) = 2 = 2C + 4 and so C = −2.
Therefore, the temperature function is:

T (x) = −2x+ 4

�

10. A ball is thrown upward from the ground on Earth with initial velocity 32 f/s, so that its
velocity as a function of time is given by v(t) = −32t+ 32. Use this velocity function to find
the net displacement and total distance travel on the time interval [0, 2] seconds.

Solution: The net displacement is given by∫ 2

0
v(t)dt =

∫ 2

0
−32t+ 32 dt = (−16t2 + 32t)

∣∣2
0

= 0.

The total distance travel is given as∫ 2

0
| − 32t+ 32| dt =

∫ 1

0
−32t+ 32 dt+

∫ 2

1
−(−32t+ 32) dt

= (−16t2 + 32t)
∣∣1
0

+ (16t2 − 32t)
∣∣2
1

= (0− (−16 + 32)) + (0− (16− 32) = 16 + 16 = 32.

�

7


