PRACTICE EXAM III
 Fall 2018 ANSWER KEY

1. Calculate the following integrals:
(a) $\int_{0}^{4} \sqrt{x} d x$

Solution:

$$
\int_{0}^{4} \sqrt{x} d x=\int_{0}^{4} x^{\frac{1}{2}} d x=\left.\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right|_{0} ^{4}=\left.\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right|_{0} ^{4}=\frac{2}{3}\left(4^{\frac{3}{2}}\right)-0=\frac{16}{3} .
$$

(b) $\int_{0}^{\pi / 2} \sin x d x$

Solution:

$$
\int_{0}^{\pi / 2} \sin x d x=-\left.\cos x\right|_{0} ^{\pi / 2}=-\cos \left(\frac{\pi}{2}\right)-(-\cos (0))=1 .
$$

(c) $\int_{1}^{3} \frac{1-3 x^{3}}{x^{2}} d x$

Solution:

$$
\int_{1}^{3} \frac{1-3 x^{3}}{x^{2}} d x=\int_{1}^{3} \frac{1}{x^{2}}-3 x d x=\left.\left(-\frac{1}{x}-\frac{3 x^{2}}{2}\right)\right|_{1} ^{3}=\left(-\frac{1}{3}-\frac{27}{2}\right)-\left(-1-\frac{3}{2}\right)=-\frac{34}{3}
$$

(d) $\int_{0}^{\pi} \sin ^{2} x d x$

Solution: Notice that

$$
\int_{0}^{\pi} \sin ^{2} x d x=\frac{1}{2} \int_{0}^{\pi} \cos ^{2} x+\sin ^{2} x d x=\frac{1}{2} \int_{0}^{\pi} 1 d x=\frac{\pi}{2} .
$$

Or subtract $\cos 2 x=\cos ^{2} x-\sin ^{2} x$ from $1=\cos ^{2} x+\sin ^{2} x$ to get

$$
\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x
$$

and integrate to get

$$
\left.\left(\frac{1}{2} x-\frac{1}{2} \sin 2 x\right)\right|_{0} ^{\pi}=\frac{\pi}{2}
$$

which may be about as involved as showing

$$
\int_{0}^{\pi} \sin ^{2} x d x=\frac{1}{2} \int_{0}^{\pi} \cos ^{2} x+\sin ^{2} x d x .
$$

(e) $\quad \int_{0}^{\pi} x \cos \left(x^{2}+\pi\right) d x$

Solution: Use $u=x^{2}+\pi$ so $d u=2 x d x$ to get

$$
\int_{u=\pi}^{u=\pi^{2}+\pi} \frac{\cos u}{2} d u=\left.\frac{1}{2} \sin u\right|_{\pi} ^{\pi^{2}+\pi}=\frac{1}{2}\left(\sin \left(\pi^{2}+\pi\right)\right) .
$$

(f) $\int_{-3}^{3} x^{3} d x$

Solution: Notice that the integral of any odd function over an interval which is symmetric about the origin is zero. In this problem, we see that x^{3} is odd function and the interval $(-3,3)$ is symmetric about the origin. Hence,

$$
\int_{-3}^{3} x^{3} d x=0
$$

2. Find the general solutions to the following differential equations.
a. $\frac{d y}{d x}=\sqrt[3]{\frac{x}{y}}$

Solution: Separating variables,

$$
y^{1 / 3} d y=x^{1 / 3} d x
$$

and integrating

$$
\begin{gathered}
\int y^{1 / 3} d y=\int x^{1 / 3} d x \\
y^{4 / 3}=\left(x^{4 / 3}+C\right) \\
y=\left(x^{4 / 3}+C\right)^{3 / 4} .
\end{gathered}
$$

(b) $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$

Solution: Recall from the previous practice exam that if $x(t)=A \sin (\omega t-\phi)$, then

$$
\begin{aligned}
x^{\prime}(t) & =A \cos (\omega t-\phi) \omega=\omega A \cos (\omega t-\phi) \\
x^{\prime \prime}(t) & =-\omega^{2} A \sin (\omega t-\phi)=-\omega^{2} x(t)
\end{aligned}
$$

Hence, we can conclude that the solution of this differential equations is

$$
x(t)=A \sin (\omega t-\phi) \text {. }
$$

Alternatively, we can observe that $x_{1}(t)=\sin \omega t$ and $x_{2}(t)=\cos \omega t$ are both solutions, and that any linear combination of the form $x(t)=A x_{1}(t)+B x_{2}(t)$, for real numbers A and B is also a solution, written in its most general form.
(c) $\frac{d^{2} x}{d t^{2}}=-g$

Solution: Integrating once gives

$$
\frac{d x}{d t}=-g t+C
$$

and calling $\left.\frac{d x}{d t}\right|_{t=0}=v_{0}$. Integrating again,

$$
x(t)=-\frac{g}{2} t^{2}+v_{0} t+x_{0}
$$

where $x_{0}=x(0)$.
3. Consider the function

$$
f(x)=\sqrt{x}
$$

(a) Find the average slope of this function on the interval $(1,4)$

Solution: The average slope of this function on the interval $(1,4)$ is given by

$$
\frac{f(4)-f(1)}{4-1}=\frac{\sqrt{4}-\sqrt{1}}{3}=\frac{2}{3} .
$$

(b) By the Mean Value Theorem, we know there exists a c in the open interval $(1,4)$ such that $f^{\prime}(c)$ is equal to this mean slope. What is the value of c in the interval which works.
Solution: Notice that

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} .
$$

Then, we know that

$$
\begin{aligned}
f^{\prime}(c) & =\frac{2}{3} \\
\frac{1}{2 \sqrt{c}} & =\frac{2}{3},
\end{aligned}
$$

which gives $c=\frac{9}{16}$.
4. A population of rabbits in a forest is found to grow at a rate proportional to the cube root of the population size. The initial population P is 1000 rabbits, and 5 years later there are 1728 of them.
(a) Write the differential equation for the rabbit population $P(t)$ with the two corresponding conditions.

Solution:

$$
\frac{d P}{d t}=k P^{\frac{1}{3}}
$$

where k is the proportionality constant, $P(0)=1000$ and $P(5)=1728$.
(b) Solve this differential equation, that is, find the particular solution which incorporates both conditions.
Solution: Using the differential equation from part (a),

$$
\int P^{-\frac{1}{3}} d P=\int k d t
$$

so

$$
\frac{3}{2} P^{\frac{2}{3}}=k t+C
$$

where C is the integration constant. Using the initial condition $P(0)=1000$, we see $C=\frac{3}{2}(1000)^{2 / 3}=150$. Then, the second condition $P(5)=1728$ tells us

$$
\frac{3}{2}(1728)^{2 / 3}=5 k+150
$$

So, we solve for k to find $k=\frac{66}{5}$. Therefore, $\frac{3}{2} P^{2 / 3}=\frac{66}{5} t+150$, so the final solution is

$$
P(t)=\left(\frac{44}{5} t+100\right)^{3 / 2} \text {. }
$$

(c) How long does it take for the rabbit population to quadruple (reach 4000) from its initial value of 1000 ?
Solution: When $P=4000$, it follows that

$$
(4000)^{2 / 3}=\frac{66}{5} t+150
$$

so $t=7.73$ years.
5. Calculate $\int_{1}^{2}\left(3 x^{2}-2\right) d x$ from the definition of the integral, that is, using Riemann sums.Hint: Using $x_{i}=1+\frac{i}{n}$ and $\Delta x=\frac{1}{n}$.) Check your result using the Fundamental Theorem of Calculus.
Solution: Recall that

$$
\sum_{i=1}^{n}=\frac{n(n+1)}{2}, \sum_{i=1}^{n}=\frac{n(n+1)(2 n+1)}{6}
$$

Using $x_{i}=1+\frac{i}{n}$ and $\Delta x=\frac{1}{n}$, we have

$$
\begin{aligned}
\int_{1}^{2}\left(3 x^{2}-2\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(3 x_{i}^{2}-2\right) \Delta x \\
& =\lim _{n \rightarrow \infty} 3 \sum_{i=1}^{n}\left(1+2 \frac{i}{n}+\frac{i^{2}}{n^{2}}\right) \Delta x-2 \sum_{i=1}^{n} \Delta x \\
& =\lim _{n \rightarrow \infty} 3 \sum_{i=1}^{n}\left(\frac{1}{n}+2 \frac{i}{n^{2}}+\frac{i^{2}}{n^{3}}\right)-2 \sum_{i=1}^{n} \frac{1}{n} \\
& =\lim _{n \rightarrow \infty} 3\left(\frac{1}{n} \sum_{i=1}^{n} 1+\frac{2}{n^{2}} \sum_{i=1}^{n} i+\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}\right)-2 \sum_{i=1}^{n} \frac{1}{n} \\
& =\lim _{n \rightarrow \infty}\left[3+\frac{3(2)(n+1) n}{2 n^{2}}+\frac{3 n(n+1)(2 n+1)}{6 n^{3}}-2\right] \\
& =3+3+1-2=5 .
\end{aligned}
$$

From the Fundamental Theorem of Calculus, we have

$$
\int_{1}^{2} 3 x^{2}-2 d x=x^{3}-\left.2 x\right|_{1} ^{2}=(8-4)-(1-2)=5 .
$$

6. Newton's second law for the position $x(t)$ of an object in Earth's gravitational field. is $F=m \frac{d^{2} x}{d t^{2}}$, where $F=-m g, \mathrm{~m}$ is the object's mass and $g=32 \mathrm{ft} / \mathrm{s}^{2}$ is the acceleration due to the earth gravity..
(a) Find $x(t)$ that satisfies the initial conditions $x(0)=x_{0}$ feet and $v(0)=v_{0} \mathrm{ft} / \mathrm{s}$. (Hints:

First solve $\frac{d v}{d t}=-g$, where $v(0)=v_{0}$ and $v=\frac{d x}{d t}$ where $x(0)=x_{0}$.)
Solution: Since $\frac{d v}{d t}=-g$, we can integrate

$$
\begin{aligned}
& \int d v=\int-g d t \\
& v(t)=-g t+C
\end{aligned}
$$

Using the initial condition $v(0)=v_{0}$, which gives $c=v_{0}$. Hence, we hace

$$
v(t)=-32 t+v_{0} .
$$

Then, using $\frac{d x}{d t}=v=-32 t+v_{0}$ we integrate

$$
\begin{aligned}
& \int d x=\int-32 t+v_{0} d t \\
& x=-32 \frac{t^{2}}{2}+v_{0} t+C
\end{aligned}
$$

Using initial condition $x(0)=x_{0}$, we get $c=x_{0}$. Hence, the $x(t)$ that satisfies the given initial condition is

$$
x(t)=-16 t^{2}+v_{0} t+x_{0} .
$$

(a) An object is thrown down from a height 64 ft with with velocity $v_{0}=-10 \mathrm{ft} / \mathrm{s}$. How long does it take for the object to hit the ground? (Hint: Use your result from part (a)). Solution: Using results from part (a),

$$
x(t)=-16 t^{2}+v_{0} t+x_{0}
$$

An object throw down from height 64 ft with $v_{0}=-10 \mathrm{ft} / \mathrm{s}$, it implies that $x_{0}=64 \mathrm{ft}$. Hence, we get

$$
x(t)=-16 t^{2}-10 t+64
$$

The object hit the when $x(t)=0$, it implies that we want to find t such that

$$
0=-16 t^{2}-10 t+64
$$

which gives $t=-2.34,1.71$. Hence, the object will hit the ground at $t=1.71 \mathrm{~s}$.
7. Find the following: (a) $\frac{d}{d x} \int_{0}^{x^{2}} \tan \theta d \theta$
(b) $\lim _{x \rightarrow 0} \frac{\int_{0}^{x}(1-\cos t) d t}{x^{3}}$

Solution: (a) Use the Fundamental Theorem and the chain rule. You may want to substitute $u=x^{2}$ then compute

$$
\left(\frac{d}{d u} \int_{0}^{u} \tan \theta d \theta\right)\left(\frac{d}{d x} x^{2}\right)=(\tan u)(2 x)=2 x \tan x^{2} .
$$

(b) $\frac{1}{6}$, Use L'Hopital's rule and the Fundamental Theorem.
8. Calculate the following:
(a) $\sum_{k=1}^{10}\left(2^{k}-2^{k+1}\right)$

Solution:

$$
\sum_{k=1}^{10}\left(2^{k}-2^{k+1}\right)=2^{1}-2^{2}+2^{2}-2^{3}+\ldots+2^{10}-2^{11}=2^{1}-2^{11}=-2046 .
$$

(b) $\sum_{k=1}^{100}\left(2 k^{2}+1\right)$

Solution:

$$
\sum_{k=1}^{100}\left(2 k^{2}+1\right)=2 \sum_{k=1}^{100} k^{2}+\sum_{k=1}^{100} 1=2 \frac{100(100+1)(200+1)}{6}+100=676,700 .
$$

