## ANSWER KEY

1. Calculate the following:
a. $\frac{d^{2} x}{d t^{2}}, \quad x(t)=A \sin (\omega t-\phi)$

Solution: Using the chain rule, we have

$$
\begin{aligned}
x^{\prime}(t) & =A \cos (\omega t-\phi) \omega=\omega A \cos (\omega t-\phi) \\
x^{\prime \prime}(t) & =-\omega^{2} A \sin (\omega t-\phi)=-\omega^{2} x(t)
\end{aligned}
$$

b. $\frac{d f}{d x}, \quad f(x)=\left(\frac{x-2}{x-\pi}\right)^{3}$

Solution: Using the chain rule and the quotient rule, we habe

$$
\begin{aligned}
f^{\prime}(x) & =3\left(\frac{x-2}{x-\pi}\right)^{2}\left(\frac{(x-\pi) \frac{d}{d x}(x-2)-(x-2) \frac{d}{d x}(x-\pi)}{(x-\pi)^{2}}\right) \\
& =3\left(\frac{x-2}{x-\pi}\right)^{2} \frac{(2-\pi)}{(x-\pi)^{2}}
\end{aligned}
$$

c. $\frac{d y}{d x}, \quad \cos x y=y^{2}+2 x$

Solution: The implicit derivative will be used in this problem. Implicit differentiation treats $y$ as a function of $x$ even though it is not known explicitly. First differentiate the equation defining the relationship between $x$ and $y$ with respect to $x$ and apply the usual differentiation rules (chain rule and product rule in the first term) to obtain

$$
-\sin (x y)\left(y+x y^{\prime}\right)=2 y y^{\prime}+2
$$

Then, collect terms which include a factor of $y^{\prime}$ from the chain rule and factor it out.

$$
-y \sin (x y)-2=(2 y+x \sin (x y)) y^{\prime}
$$

Finally, divide to solve for $y^{\prime}$ :

$$
\frac{d y}{d t}=y^{\prime}=\frac{-(2+y \sin x y)}{(2 y+x \sin x y)}
$$

d. $\lim _{x \rightarrow 0} \frac{\sin x \tan x}{1-\cos x}$

Solution: Since

$$
\lim _{x \rightarrow 0} \frac{\sin x \tan x}{1-\cos x}=\frac{0}{0}
$$

which tells us that we can apply l'Hopital's Rule. Hence, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x \tan x}{1-\cos x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin x \tan x)}{\frac{d}{d x}(1-\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\left(\sin x \sec ^{2} x\right)+\tan x \cos x}{(\sin x)} \\
& =\lim _{x \rightarrow 0} \frac{(\tan x / \cos x)+\tan x \cos x}{(\sin x)}=\frac{0}{0}
\end{aligned}
$$

which once again tells us that we can apply l'Hopital's Rule. So, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x \tan x}{1-\cos x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin x \tan x)}{\frac{d}{d x}(1-\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\frac{d}{d t}[(\tan x / \cos x)+\tan x \cos x]}{\frac{d}{d t}(\sin x)} \\
& =\lim _{x \rightarrow 0} \frac{\left.\frac{\cos x \sec ^{x}-\tan x(-\sin x)}{\cos ^{2} x}+\tan x(-\sin x)+\cos x \sec ^{2} x\right]}{\cos x}=2 .
\end{aligned}
$$

Hence, we can conclude that

$$
\lim _{x \rightarrow 0} \frac{\sin x \tan x}{1-\cos x}=2
$$

e. $\frac{d f}{d x}, f(x)=\sin \sqrt{\frac{\tan x}{1+x^{2}}}$

Solution: This is of the form $f\left(g\left(\frac{u(x)}{v(x)}\right)\right.$, where $f(x)=\sin x, g(x)=x^{1 / 2}, u(x)=$ $\tan x$, and $v(x)=1+x^{2}$. So, using the chain rule (twice) and quotient rule, we will have

$$
f^{\prime}(x)=\cos \sqrt{\frac{\tan x}{1+x^{2}}} \frac{1}{2}\left(\frac{\tan x}{1+x^{2}}\right)^{-1 / 2} \frac{\left(1+x^{2}\right) \sec ^{2} x-2 x \tan x}{\left(1+x^{2}\right)^{2}}
$$

f. $\frac{d f}{d x}, \quad f(x)=x^{2} \sin ^{2}\left(x^{3}\right)$

Solution: This is of the form $p(x) q(r(s(x)))$ where $p(x)=x^{2}, q(x)=x^{2}, r(x)=$ $\sin x, s(x)=x^{3}$. So, using the product rule and the chain rule (twice) gives

$$
f^{\prime}(x)=2 x \sin ^{2}\left(x^{3}\right)+6 x^{4} \sin \left(x^{3}\right) \cos \left(x^{3}\right) .
$$

g. $\frac{d m}{d v}, m(v)=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}, m_{0}$ is rest mass, and $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Solution: Notice that $m_{0}$ is constant, and we can rewrite $m(v)$ as

$$
m(v)=m_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}
$$

Now, we have the function in the form $f(g(v))$, wo we can use the power rule and chain rule, which gives

$$
\frac{d m}{d v}=-\frac{1}{2} m_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{3}{2}} \cdot\left(-\frac{2 v}{c^{2}}\right)=\frac{m_{0} v}{c^{2}}\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{3}{2}}
$$

h. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$

Solution: Notice that

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\frac{0}{0}
$$

which implies that we can use l' Hopital's Rule. Hence, we have

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(1-\cos x)}{\frac{d}{d x}(x)}=\lim _{x \rightarrow 0} \frac{\sin x}{1}=0 .
$$

i. $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$

Solution: Notice that this is the definition of derivative, it follows that

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}=\frac{d}{d x} x^{3}=3 x^{3}
$$

j. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$

Solution: Using LHopital rule 3 times, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\cos x-1}{3 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{-\sin x}{6 x} \\
& =\lim _{x \rightarrow 0} \frac{-\cos x}{6}=-\frac{1}{6} .
\end{aligned}
$$

2. A circular oil slick spreads so that its radius increases at the rate of 1.5 feet/second. How fast is the area of the enclosed oil increasing at the end of two hours?

Solution: The area and the radius are related statically by

$$
A=\pi r^{2}
$$

In this situation they are related dynamically by

$$
A(t)=\pi r(t)^{2}
$$

Taking derivatives with respect to time using implicit derivative, we get

$$
A^{\prime}(t)=2 \pi r(t) r^{\prime}(t)
$$

Given $r^{\prime}(t)=1.5$ feet/second and $t=2$ hours $=7200$ seconds. Hence, after 2 hours the area increasing at rate We get

$$
A^{\prime}(t)=2 \pi(1.5)(1.5)(7200)=32400 \pi .
$$

Alternatively, we can directly substitute $r(t)=1.5 t$ into the area formula, $A(t)=$ $2.25 \pi t^{2}$ and $A^{\prime}(t)=4.5 \pi t$ so at $t=2$ hours or 7200 seconds, $A^{\prime}=32400$.
3. A balloon initially on the ground 150 feet away from an observer is released and rises at a rate of $8 \mathrm{f} / \mathrm{s}$. How fast is the distance between the observer and the balloon changing when the balloon is 50 feet above the ground?

Solution: Let $r$ be the distance between observer and balloon and $h$ is the distance of balloon above the ground. Consider the following figure,


The Pythagorean Theorem tells us that

$$
r^{2}=h^{2}+150^{2} .
$$

Calculating the rate of change of distance between the observer and balloon using implicit derivative and power rule, we get

$$
\begin{aligned}
2 r \frac{d r}{d t} & =2 h \frac{d h}{d t}+0 \\
\frac{d r}{d t} & =\frac{h}{r} \frac{d h}{d t}
\end{aligned}
$$

Hence, at $h=50$, we have $r=\sqrt{50^{2}+150^{2}}=\sqrt{25000}$. It follows that

$$
\frac{d r}{d t}=\frac{50(8)}{\sqrt{25000}}=\frac{400}{\sqrt{25000}}
$$

4. Approximate $\sqrt{66}$ and $\sin \frac{\pi}{100}$ using linear approximation (i.e., the differential).

Solution: Using the approximation of derivative,

$$
\frac{d y}{d x} \approx \frac{y(x+\Delta x)-y(x)}{\Delta x}
$$

or

$$
y(x+\Delta x)=y(x)+\frac{d y}{d x} \Delta x .
$$

Considering function,

$$
y(x)=\sqrt{x}, y^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

We have

$$
\begin{aligned}
y(66) & =y(64+2) \\
& =y(64)+y^{\prime}(64)(2) \\
& =8+\frac{2}{16} .
\end{aligned}
$$

So The approximation of $\sqrt{66}$ is $8 \frac{2}{16}$.
In the second one, consider the function

$$
y(x)=\sin x, y^{\prime}(x)=\cos x .
$$

We have

$$
\begin{aligned}
\sin (\pi / 100) & =\sin 0+\frac{\pi}{100} \\
& =\sin 0+\cos 0\left(\frac{\pi}{100}\right) \\
& =0+\frac{\pi}{100}=\frac{\pi}{100} .
\end{aligned}
$$

Hence, the approximation of $\sin \frac{\pi}{100}$ is given by $\frac{\pi}{100}$.
5. Use the differential to approximate the increase in volume of a spherical bubble as its radius increases from 3 to 3.025 inches.
Solution: Similar to the previous problems, using the approximation of derivative

$$
y(x+\Delta x)=y(x)+y^{\prime}(x) \Delta x
$$

over function $v=y(r)=\frac{4}{3} \pi r^{3}$ with $y(r)=4 / 3 \pi r^{3}, y^{\prime}(r)=4 \pi r^{2}$ and $y(3)=36 \pi$, and coincidentally, $y^{\prime}(3)=36 \pi$. So, we get

$$
\begin{aligned}
y(0.025) & =y(3.025)-y(3) \\
& =y(3+0.025)-y(3) \\
& =y(3)+y^{\prime}(3)(0.025)-y(3) \\
& =36 \pi(0.025)
\end{aligned}
$$

Hence, the volume of spherical bubble in crease approximately $0.9 \pi$ cubic inches.
6. Consider the following functions. In each cases, find all local maxima and minima of $f$, where $f$ is increasing and decreasing, where $f$ is concave up and concave down, and all inflection points. Does $f$ have a global maximum or a global minimum? Sketch the graph of $f(x)$.
(a) $f(x)=x^{3}-12 x+1$.

Solution: For $f(x)=x^{3}-12 x+1, f^{\prime}(x)=3 x^{2}-12$ and $f^{\prime \prime}(x)=6 x$. Then $f^{\prime}=0$ when $x^{2}=4$ or $x= \pm 2$.
We have $f$ is increasing for $x<-2, f$ is decreasing for $-2<x<2$ and $f$ is increasing for $x>2$. Moreover,

$$
\begin{aligned}
f(-2) & =-8+24+1=17 \\
f(2) & =8-24+1=-15
\end{aligned}
$$

So $f$ has a local maximum at $x=-2$ and a local minimum at $x=2$. There is no global maximum or minimum. $f$ is concave up where $f^{\prime \prime}>0$, i.e., for $x>0$, and concave down for $x<0$. There is one inflection point where $f$ changes concavity, at $x=0$ since $f^{\prime \prime}(0)=0$. From the information, which we obtained we can sketch the graph as following,

(b) $f(x)=\frac{1}{1+x^{2}}$

Solution: For $f(x)=\frac{1}{1+x^{2}}, f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$. So $f$ is increasing where $f^{\prime}>0$,
i.e., for $x<0$ (the denominator of $f^{\prime}$ is always positive) and $f$ is decreasing where $f^{\prime}<0$, i.e., for $x>0$. There is one local maximum at $x=0$ where $f$ changes from increasing to decreasing. This is also a global maximum. There are no local or global minima as $f$ approaches zero but remains positive as $x$ tends to infinity in both directions. By the quotient rule, $f^{\prime \prime}(x)=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}}$, so $f^{\prime \prime}=0$ and $f$ has inflection points when $x= \pm \frac{\sqrt{3}}{3}, f^{\prime \prime}<0$ and $f$ is concave down between these points, and $f^{\prime \prime}>0$ and $f$ is concave up outside these points. From the information, which we obtained we can sketch the graph as following,

7. Consider $f(x)=2 \sin \left(x-\frac{\pi}{4}\right)$ on the interval $\left[\frac{\pi}{2}, \frac{5 \pi}{4}\right]$ Find where $f$ is increasing and decreasing. Find maximum and minimum value of $f$ in the given interval.

Solution: Notice that

$$
f^{\prime}(x)=2 \cos \left(x-\frac{\pi}{4}\right),
$$

which is positive for $\frac{\pi}{2}<x<\frac{3 \pi}{4}$ (where $f$ is increasing) and negative for $\frac{3 \pi}{4}<x<\frac{5 \pi}{4}$ (where $f$ is decreasing.) In the interval [pi,5pi], we know that $f^{\prime}(x)=0$ at $x=\frac{3 \pi}{4}$. There is a local maximum at $x=\frac{3 \pi}{4}$ where $f=2, f^{\prime}=0$, and $f^{\prime \prime}<0$, and no other critical points in the interval. Comparing with the endpoints $f\left(\frac{\pi}{2}\right)=\sqrt{2}$ and $f\left(\frac{5 \pi}{4}\right)=0$, the global maximum is 2 and the global minimum is 0 on this interval.
8. A rectangle has two corners on the x -axis and the other two on the parabola $y=$ $12-x^{2}$, with $y \geq 0$. What are the dimensions of the rectangle of this type with maximum area?

Solution: From the problem, we can draew the figure as following,


Since the corners are $(x, 0),(-x, 0)\left(x, 12-x^{2}\right),\left(-x, 12-x^{2}\right)$ the area of rectangle will be given by

$$
A=2 x y=2 x\left(12-x^{2}\right)=-2 x^{3}+24 x .
$$

$$
\frac{d A}{d x}=2\left(12-3 x^{2}\right)
$$

which is zero when $x= \pm 2$. We take $x$ to be the vertex on the right, so $x=2, y=8$, the dimensions are 4 by 8 (and the maximum area is 32 .)
9. An object is propelled upward from the ground with initial velocity $v_{0}=32 \mathrm{f} / \mathrm{s}$. After time $t$, the height $x(t)$ of the object is given by $x(t)=16 t^{2}+v_{0} t+x_{0}$, where $x_{0}$ is the initial position, which is assumed to be $x_{0}=0$.
(a) What is the velocity of the object when it reaches its maximum height?

Solution: The object will reach its maximum height when the rate of change of height or its velocity is $0(v(t)=0 \mathrm{f} / \mathrm{s}$.
(b) At what time does the object reach its maximum height?

Solution: Notice that

$$
v(t)=-32 t+v_{0} .
$$

The object reach its maximum at $v(t)=-32 t+v_{0}=0$ or $t=\frac{v_{0}}{32}=\frac{32}{32}=1 \mathrm{sec}$.
(c) What is the maximum height reached by the object?

Solution: We know that the object will reach its maximum when $t=1$ or at height

$$
x(1)=-16+32=16 \mathrm{f}
$$

