- 1. Calculate the following:
 - (a) $\frac{d^2x}{dt^2}$, $x(t) = A\sin(\omega t \phi)$ (b) $\frac{df}{dx}$, $f(x) = \left(\frac{x-2}{x-\pi}\right)^3$ (c) $\frac{dy}{dx}$, $\cos xy = y^2 + 2x$ (d) $\lim_{x \to 0} \frac{\sin x \tan x}{1 - \cos x}$ (e) $\frac{df}{dx}$, $f(x) = \sin\sqrt{\frac{\tan x}{1 + x^2}}$ (f) $\frac{df}{dx}$, $f(x) = x^2 \sin^2(x^3)$ (g) $\frac{dm}{dv}$, $m(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}}$, m_0 is rest mass, and $c = 3.0 \times 10^8$ m/s. (h) $\lim_{x \to 0} \frac{1 - \cos x}{x}$ (i) $\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$ (j) $\lim_{x \to 0} \frac{\sin x - x}{x^3}$
- 2. A circular oil slick spreads so that its radius increases at the rate of 1.5 feet/second. How fast is the area of the enclosed oil increasing at the end of two hours?
- 3. A balloon initially on the ground 150 feet away from an observer is released and rises at a rate of 8 f/s. How fast is the distance between the observer and the balloon changing when the balloon is 50 feet above the ground ?
- 4. Approximate $\sqrt{66}$ and $\sin\left(\frac{\pi}{100}\right)$ using linear approximation (i.e., the differential).
- 5. Use the differential to approximate the increase in volume of a spherical bubble as its radius increases from 3 to 3.025 inches.
- 6. Consider the following functions f(x). In each case, find all local maxima and minima of f, where f is increasing and decreasing, where f is concave up and concave down, and all inflection points. Does f have a global maximum or a global minimum? Sketch the graph of f(x).
 - (a) $f(x) = x^3 12x + 1$
 - (b) $f(x) = \frac{1}{1+x^2}$
- 7. Consider $f(x) = 2\sin(x \frac{\pi}{4})$ on the interval $\left[\frac{\pi}{2}, \frac{5\pi}{4}\right]$. Find where f is increasing and decreasing. Find the maximum and minimum values of f on the interval.
- 8. A rectangle has two corners on the x-axis and the other two on the parabola $y = 12 x^2$, with $y \ge 0$. What are the dimensions of the rectangle of this type with maximum area?
- 9. An object is propelled upward from the ground with initial velocity $v_0 = 32$ m/s. After time t, the height x(t) of the object is given by $x(t) = -16t^2 + v_0t + x_0$, where x_0 is the initial position, which is assumed to be $x_0 = 0$.
 - (a) What is the velocity of the object when it reaches its maximum height?
 - (b) At what time does the object reach its maximum height?
 - (c) What is the maximum height reached by the object?