## Mathematics 1210 <br> PRACTICE EXAM I ANSWER KEY

1. Calculate the following limits. If a particular limit does not exist, state this clearly and tell why.
(a) $\lim _{x \rightarrow \sqrt{2}} 3 x^{2}=6$
(b) $\lim _{\theta \rightarrow \pi / 2} \tan \theta$ does not exist since the limit going to $\pm \infty$ as shown in graph,

(c) $\lim _{x \rightarrow-1} \frac{x^{2}-x+2}{x+1}$ doesn't exist(DNE) because $\frac{x^{2}-x+2}{x+1}$ goes to $\pm \infty$ at $x=-1$.

(d) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \sin \left(\frac{1}{x^{2}}\right)=0$
(e) $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x}=0$.
(f) $\lim _{x \rightarrow+\infty} \frac{\sin x}{x}=0$
(g) $\lim _{x \rightarrow 2} f(x)$, where $f(x)=\left\{\begin{array}{ll}x^{3}, & x \leq 2 \\ x, & x>2\end{array}\right.$ does not exist (DNE) since LHL is 8 and RHL is 2.
(h) $\lim _{x \rightarrow \pi} f(x)$, where $f(x)= \begin{cases}0, & x \text { irrational } \\ \sin \left(\frac{1}{q}\right), & x=\frac{p}{q} \text { rational }=0 .\end{cases}$
(i) $\lim _{x \rightarrow+\infty} \sqrt[3]{\frac{8 x^{7}+3 x^{5}}{x^{7}+6 x^{2}}}=2$.
(j) $\lim _{x \rightarrow 0} \frac{\sin x}{x^{3}}$ does not exist.

2. (a) Let $f(x)=\sqrt{x}$. Using the definition of the derivative, calculate $f^{\prime}(x)$. Do the same for $g(x)=x^{2}$.
SOLUTION

$$
\begin{aligned}
f(x) & =\sqrt{x} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)}-\sqrt{x}}{h} \cdot \frac{\sqrt{(x+h)}+\sqrt{x}}{\sqrt{(x+h)}+\sqrt{x}} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{(x+h)}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{(x+h)}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =x^{2} \\
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h \\
& =2 x
\end{aligned}
$$

(b) Using your result from (a), find the equation of the line tangent to the graph of $f(x)=\sqrt{x}$ at $x=1$. Do the same for $g(x)=x^{2}$. SOLUTION The slope for $f(x)$ for $x=1$ is given by

$$
f^{\prime}(1)=\frac{1}{2 \sqrt{1}}=\frac{1}{2},
$$

which is the same as slop of tangent line of $f(x)$ at $x=1$. The tangent to the graph of $f(x)$ for $x=1$ is given by

$$
\begin{aligned}
y-f(1) & =f^{\prime}(1)(x-1) \\
y-\sqrt{1} & =\frac{1}{2}(x-1) \\
y & =\frac{1}{2} x+\frac{1}{2} .
\end{aligned}
$$

Similar, the tangent line of $g(x)$ at $x=1$ is given by

$$
\begin{aligned}
y-g(1) & =g^{\prime}(1)(x-1) \\
y-1 & =2 x-2 \\
y & =2 x-1
\end{aligned}
$$

3. Let $f(x)=-x$ when $x \leq 0, x \neq-1 ; \quad 2$ when $x=-1 ; \quad \sqrt{x}$ when $0<x<1 ; \quad \sqrt[3]{3-x}$ when $x \geq 1$. Sketch the graph of $f(x)$. Solution

(a) For which points $c$ does $\lim _{x \rightarrow c} f(x)$ exist? Solution : All points except $x=1$.
(b) For which points is $f$ continuous?
$\underline{\text { Solution : All points except } x=-1,1}$
(c) For which points is $f$ differentiable?
$\underline{\text { Solution : all points except } x=-1,0,1,3}$
4. Let $f(x)=x+2$ when $x \leq 0 ; \quad-\frac{1}{2} x+2$ when $0<x \leq 2 ; \quad \sqrt{x-2}+1$ when $x>2$. Sketch the graph of $f(x)$, and then using your result sketch the graph of $f^{\prime}(x)$. Solution :


5. Find the derivative and of
(a) $f(x)=12 x^{5}+5 x^{4}+x^{2}+2 x+1$

SOLUTION :

$$
\begin{aligned}
f^{\prime}(x) & =12(5) x^{5-1}+5(4) x^{4-1}+2 x^{2-1}+2 \\
& =60 x^{4}+20 x^{3}+2 x+2 .
\end{aligned}
$$

(b) $f(x)=\tan x$

Solution :

$$
\begin{aligned}
f(x) & =\tan x=\frac{\sin x}{\cos x} \\
f^{\prime}(x) & =\frac{(\cos x) \frac{d}{d x} \sin x-(\sin x) \frac{d}{d x} \cos x}{(\cos x)^{2}} \\
& =\frac{\cos x \cos x+\sin x \sin x}{\cos x^{2}} \\
& =\frac{1}{(\cos x)^{2}}=\sec ^{2} x
\end{aligned}
$$

(c) $f(x)=\left(3 x^{2}-2 x+1\right)(x-1)$

Solution :

$$
\begin{aligned}
f^{\prime}(x) & =\left(3 x^{2}-2 x+1\right) \frac{d}{d x}(x-1)+(x-1) \frac{d}{d x}\left(3 x^{2}-2 x+1\right) \\
& =\left(3 x^{2}-2 x+1\right)+(x-1)(6 x-2) \\
& =3 x^{2}-2 x+1+6 x^{2}-6 x-2 x+2 \\
& =9 x^{2}-10 x+3
\end{aligned}
$$

(d) $f(x)=x \cos x$

SOLUTION :

$$
\begin{aligned}
f^{\prime}(x) & =x \frac{d}{d x} \cos x+\cos x \frac{d}{d x} x \\
& =-x \sin x+\cos x
\end{aligned}
$$

(e) $f(x)=\frac{x^{2}+1}{x+\pi}$

Solution :

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x+\pi) \frac{d}{d x}\left(x^{2}+1\right)-\left(x^{2}+1\right) \frac{d}{d x}(x+\pi)}{(x+\pi)^{2}} \\
& =\frac{(x+\pi)(2 x)-\left(x^{2}+1\right)}{(x+\pi)^{2}} \\
& =\frac{x^{2}+2 \pi x-1}{x^{2}+2 \pi x+\pi^{2}}
\end{aligned}
$$

6. Let the position $x(t)$ of a particle at time $t$ be given by $x(t)=3 t^{2}-2 t+1$. Find the instantaneous velocity $v(t)$ of the particle for any time $t$. Where is the particle when its velocity is zero?
SOLUTION : The instantaneous velocity $v(t)$ of the particle for any time $t$ is given by

$$
v(t)=x^{\prime}(t)=6 t-2
$$

Taking $v=0$ gives

$$
0=6 t-3,
$$

which implies that $t=\frac{1}{3}$ and

$$
x\left(\frac{1}{3}\right)=3\left(\frac{1}{3}\right)^{2}-2\left(\frac{1}{3}\right)+1=\frac{2}{3} .
$$

Hence, $v=0$ when $t=\frac{1}{3}$ and $x=\frac{2}{3}$
7. (a) Find the equation of the line containing the two points $P=(-1,2)$ and $Q=(1,1)$ in the form $y=m x+b$.
Solution : The slop of this line is given by

$$
m=\frac{2-1}{-1-1}=-\frac{1}{2}
$$

Then, the equation of the line can be calculated as

$$
\begin{aligned}
y-2 & =-\frac{1}{2}(x+1) \\
y & =-\frac{1}{2} x+\frac{3}{2}
\end{aligned}
$$

(b) Find the derivative $\frac{d y}{d x}$ of the expression for $y(x)$ you found in (a).

Solution: We have

$$
\frac{d y}{d x}=-\frac{1}{2}
$$

