1. Calculate the following limits. If a particular limit does not exist, state this clearly and tell why.
(a) $\lim _{x \rightarrow \sqrt{2}} 3 x^{2}$
(b) $\lim _{\theta \rightarrow \pi / 2} \tan \theta$
(c) $\lim _{x \rightarrow-1} \frac{x^{2}-x+2}{x+1}$
(d) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \sin \left(\frac{1}{x^{2}}\right)$
(e) $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x}$
(f) $\lim _{x \rightarrow+\infty} \frac{\sin x}{x}$
(g) $\lim _{x \rightarrow 2} f(x)$, where $f(x)= \begin{cases}x^{3}, & x \leq 2 \\ x, & x>2\end{cases}$
(h) $\lim _{x \rightarrow \pi} f(x)$, where $f(x)= \begin{cases}0, & x \text { irrational } \\ \sin \left(\frac{1}{q}\right), & x=\frac{p}{q} \text { rational }\end{cases}$
(i) $\lim _{x \rightarrow+\infty} \sqrt[3]{\frac{8 x^{7}+3 x^{5}}{x^{7}+6 x^{2}}}$
(j) $\lim _{x \rightarrow 0} \frac{\sin x}{x^{3}}$
2. (a) Let $f(x)=\sqrt{x}$. Using the definition of the derivative, calculate $f^{\prime}(x)$. Do the same for $g(x)=x^{2}$.
(b) Using your result from (a), find the equation of the line tangent to the graph of $f(x)=\sqrt{x}$ at $x=1$. Do the same for $g(x)=x^{2}$.
3. Let $f(x)=-x$ when $x \leq 0, x \neq-1 ; \quad 2$ when $x=-1 ; \quad \sqrt{x}$ when $0<x<1 ; \quad \sqrt[3]{3-x}$ when $x \geq 1$. Sketch the graph of $f(x)$.
(a) For which points c does $\lim _{x \rightarrow c} f(x)$ exist?
(b) For which points is f continuous?
(c) For which points is f differentiable?
4. Let $f(x)=x+2$ when $x \leq 0 ; \quad-\frac{1}{2} x+2$ when $0<x \leq 2 ; \quad \sqrt{x-2}+1$ when $x>2$. Sketch the graph of $f(x)$, and then using your result sketch the graph of $f^{\prime}(x)$.
5. Find the derivative and of
(a) $f(x)=12 x^{5}+5 x^{4}+x^{2}+2 x+1$
(b) $f(x)=\tan x$
(c) $f(x)=\left(3 x^{2}-2 x+1\right)(x-1)$
(d) $f(x)=x \cos x$
(e) $f(x)=\frac{x^{2}+1}{x+\pi}$
6. Let the position $x(t)$ of a particle at time t be given by $x(t)=3 t^{2}-2 t+1$. Find the instantaneous velocity $v(t)$ of the particle for any time t. Where is the particle when its velocity is zero?
7. (a) Find the equation of the line containing the two points $P=(-1,2)$ and $Q=(1,1)$ in the form $y=m x+b$.
(b) Find the derivative $\frac{d y}{d x}$ of the expression for $y(x)$ you found in (a).
