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Abstract

Utilizing the theory of thin shell structures, a failure criterion is presented which one may use to predict, analytically, catastrophic failures,
or unzipping, in cylindrical pressurized vessels, based on the fracture toughness profileK obtained from tests carried out on flat plates of the
same material and thickness. These test results are plotted as a function of the characteristic ratio�h=c�, whereh represents the specimen
thickness andc one-half of the crack length. Comparison with carefully controlled experimental data substantiates its validity and its
potential use. The advantage of such an approach is that considerable amount of time and money can be saved.q 1999 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In nature, shells are the rule than the exception. The list of
natural shell-like structures is long, and the strength proper-
ties of some of them are remarkable. It is logical, therefore,
for man to utilize them in man-made structures. But to do
this safely, we must understand the fundamental laws that
govern the strength and displacement behavior of such
structures for they are not immune to failures, particularly
in the fracture mode.

The engineering community has long recognized that
large, thin-walled, pressurized cylindrical vessels resemble
balloons and like balloons are subject to puncture and explo-
sive loss. For a given material, under a specified stress field
due to an internal pressureq0, there will be a crack length in
the material which will be self-propagating. Crack lengths
less than the critical value will cause leakage but not
destruction. However, if the critical crack length is ever
reached, either by penetration or by the growth of a small
fatigue crack, explosion and complete loss of the structure
may occur. Therefore, to ensure the integrity of the struc-
ture, the designer must be cognizant of the relationship that
exists between fracture load, flaw shape and size, material
properties, and global cylindrical geometry. A relationship
of this kind is referred to as a fracture criterion and can be
derived by the application of the theory of fracture
mechanics.

2. General theory

Let us consider a portion of a thin, shallow cylindrical
vessel, of constant thicknessh, which is subjected to a
uniform internal pressureq0 and contains a through-the-
thickness crack of length 2c. In this paper, we shall limit
our considerations to elastic, isotropic and homogeneous
segments of cylindrical vessels that are subjected to small
deformations.

The basic variables in the theory of cylindrical pressur-
ized vessels are, the displacement functionW�x; y� in the
direction of thez-axis, and the stress functionF�x; y� which
represents the stress resultants tangent to the middle surface
of the shell. Following Marguerre (1938), the differential
equations governingW andF, with x andy the rectangular
Cartesian coordinates of the base plane (see Fig. 1) are given
by:
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where74 is the biharmonic operator,E the Young’s modu-
lus,h the thickness of the vessel,D the flexural rigidity, and
q0 the internal pressure.

For a cylindrical vessel, three observations are worth
noting. First, the coupled nature of the differential equations
clearly suggests that there exists an interaction between
bending and stretching. That is, a bending load will
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generally induce both bending and extensional stresses, and
similarly a stretching load will also induce both bending and
extensional stresses. Second, the radius of curvature varies
all the way from zero to a constant as one sweeps from the
axial to the peripheral direction. Third, if one lets the cylin-
der radiusR to tend to infinity, the special case of a flat plate
is recovered.

Theoretical investigations of the above equations in the
presence of discontinuities such as cracks have been carried
out by Folias (1964,1974), Copley and Sanders (1969),
Erdogan and Kibler (1969). Moreover, Folias [1,2] was
able to show that there exists a correlation function between
a cylindrical pressure vessel and the corresponding case of a
flat plate, i.e.

scylinder� {1 1 f } 21=2splate �3�
where the functionf represents a geometrical correction
factor

f � 0:317l2 �4�
and

l2 � {12�1 2 v2�} 1=2 c2

Rh
: �5�

Although this correlation function was derived on the
basis of a homogeneous and isotropic material, the author
believes that it reflects the dominant term of a geometrical

inherent property that exists between shallow cylindrical
shell structures and similarly loaded flat plates of the same
material. Such a property is of great practical value for it
may now be used to predict failing stresses in pressurized
cylinders by simply performing experiments on flat plates.
This represents a great advantage because (i) it is relatively
easy to carry out experiments on flat plates and (ii) it is less
expensive.

3. Analysis of tests carried out on flat plates

Recent tests data carried out by Royce Foreman and his
group (NASA) on cracked plates may be found in Appen-
dices A and B. These tests were carried out on flat plates,
made of aluminum 2219-T87, in order to establish the frac-
ture toughness curve,K. The material is to be used in the
construction of the US space station Manned Module. These
experimental data may now be used, in conjunction with the
theory developed by Folias [2], to predict catastrophic fail-
ures in pressurized vessels of the same material. However,
to accomplish this, one must examine the above experimen-
tal data from a slightly different point of view.

It has long been recognized by the fracture mechanics
community that the fracture toughness curve is not really
a material constant, and that its true value depends strongly
on the specimen thickness. Its expected behavior may be
seen schematically in Fig. 2. The reader may note that
beyond a certain thicknesshs, a state of plane strain prevails
whereby the toughness reaches the value ofKIc. Alterna-
tively, there exists an optimum thicknessho, where the
toughness reaches its highest value. This value is referred
to as plane stress fracture toughness and its failure is char-
acterized asshearor slant fracture. Moreover, for a thick-
ness smaller thanho there has, in the past, been some
uncertainty about the toughness. In some cases, a horizontal
level was found [3,4], while in other cases a decreasing
toughness was observed [5–7]. It may also be noted that
for a thicknessh , ho; the plastic zone is approximately
equal to the specimen thickness and yielding in the thick-
ness direction is unconstrained. As a result, a state of plane
stress can fully develop in such regions. Presently, it is
widely accepted that forh , ho the fracture toughness
decreases almost linearly to the value of zero. Experimental
evidence of this, for 7075-T6 aluminum alloy, is shown in
Fig. 3 (see Ref. [8, p. 136]).

Additionally, recent 3D analytical studies on flat plates
carried out by Folias and co-workers reveal that the stress
concentration factor [9,10,15], as well as the stress intensity
factor [11], are indeed functions of the radius to half-thick-
ness ratio�a=h�; and half-crack size to half-thickness ratio
�c=h�; respectively. Thus, motivated by these findings, we
tabulate in Appendix C Foreman’s experimental fracture
toughness data as a function of the parameter�h=c�; i.e.
the thickness to half-crack size ratio.
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Fig. 1. Geometry and coordinates of an axially cracked cylindrical vessel.

Fig. 2. Fracture toughness versus specimen thickness.



A careful examination of Appendices A–C reveal the
following observations to be worth noting:

1. For the ratio of �h=c� � 0:047; the variation of the
fracture toughness reported was approximately 12%!
(This is interesting particularly when the thickness,
crack sizes and specimen widths were almost the same
(see Appendix A, tests A). The variation suggests,
perhaps, the presence of some sort of local material
instability.)

2. Tests E, G and H do not appear to follow the expected
trend. Apparently, something was different in this set of
experiments that the author cannot speculate on and for
this reason we will ignore (see Fig. 4).

3. Tests 2J, 2K and 2L were carried out on flat plates with a
0.08 in. thickness and appear to be in line with the
expected trend.

4. Comparison between tests A and 2K show that, even
though the ratioh=c is the same, and the ratioc=w is
approximately the same, the values of the fracture tough-
ness vary by 9%, which is in line with observation (1).

In view of the above, we conclude that an experimental
scatter of approximately 10–12% is to be expected for this
material.

4. The fracture toughness curve

Utilizing the data of the table in Appendix C, we now plot
the experimental values of the fracture toughnessK, as a
function of the parameter�h=c� (see Fig. 4). The profile of
the fracture toughness appears to follow the theoretically
expected trend. Perhaps it is appropriate here to note that,
this procedure works best if the experiments are carried out
on flat plates of the same thickness. Unfortunately, the tests
reported in Appendices A and B were carried out on flat

plates with different thicknesses. Consequently, the reader
may notice that tests A show a slightly higher rise than those
of tests 2K. This occurs in the region that is characterized
with a 458 plane fracture or more commonly referred to as
shear fracture.

The reader may also notice that the thickness for the tests
#A is h� 0:191 in: (see Appendix A), while the thickness
for the test 2K ish� 0:083 in: (see Appendix B). This
observation brings the following two questions to mind.
Why is there a need for the presence of two different
paths? Moreover, at what value of�h=c� does this bifurcation
take place?

A partial answer to the above two questions may be
obtained from the results of the work on the 3D stress
field of a plate weakened by the presence of a circular
hole [9]. Recently, utilizing a more sophisticated numerical
analysis, these results have further been sharpened (Folias,
1997) and the maximum, 3D, stress concentration factor
versus the radius to half-thickness ratio is shown in Fig. 5.
The results of this figure provide us with a definite answer,
at least for the case of a circular hole, of the regions in which
a plate is considered to be in a state of plane stress, i.e.
a=h . 10; or in a state of plane strain, i.e. fora=h , 0:10:
Moreover, the transition region occurs between the values
of 0:10 , a=h , 10; whereby the 3D effects become more
pronounced. Thus, if one assumes that similar trends also
prevails in the case of a, 3D, cracked plate, one may conjec-
ture that a state of plane stress exists for ratios ofh=c , 0:1:
This result appears to be in line with the experimental
curves of Figs. 2 and 3. Further, it is also known that
for h , ho; the fracture toughness is proportional to

����
h1f
p

:

As a result, it is not unusual to have a fan, or a series of
paths, for different thicknesses that fan out to the left of the
critical ratio h=c� 0:1: Such conjecture, may also explain
the experimental uncertainty noted by researchers in the
past (see discussion of Fig. 2).
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Fig. 3. Strain-energy release rate versus specimen thickness for 7075-T6 aluminum alloy.



5. Failure prediction in pressurized vessels

The fracture toughness curve, as given by Fig. 4, may
now be used to predictthe staticfailing pressures in cylind-
rical vessels made of Al 2219-T87. For static considera-
tions, the results by Folias [2] should be applicable. More
specifically, under the assumption that bending and bulging
effects are negligible, Folias’s general failure criterion [2]
may then be approximated by the simple relationship

q0

1000
R
h

����
pc
p ���������������

1 1 0:317l2
p

� K; �6�

whereq0 is expressed in psi. Alternatively, if the effects of

bending and bulging are sufficiently large, then the approx-
imate equation (6) can no longer be used and the general
failure criterion must be utilized.

Recently, two very carefully controlled experiments on
pressurized vessels were carried out by Nemat Nasser and
his group at UCSD. The work was done in order to assess
the structural characteristics of the United States Manned
Module of the International Space Station. The tests were
carried out on cylindrical pressurized vessels, of 20.75 in.
diameter and for two different values of thickness,h�
0:05 and 0:086 in; respectively. The cylinders were made
out of Al 2219-T87.

A crack length of 2c� 5:5 in: was very cleverly
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Fig. 4. Fracture toughness versus thickness to half crack length ratio for 2219-T87 aluminum alloy plates.



introduced by the rapid impact of a knife-edge. The crack
resembled a very sharp ellipse with crack tips sharp enough
to represent a crack. Subsequently, the vessels were sealed
internally with a thick hard rubber sheet, in the area of the
crack, and were then pressurized incrementally with pres-
sure differentials of 5 psi. This incremental ‘pressure step-
ping’ clearly suggests that the bending and bulging effects
may no longer be neglected since they represent a cumula-
tive effect.

Let us examine next, how well can one predict the failing
pressures for the UCSD static tests #1 and #2. A closer
examination of the geometrical and loading characteristics
of test #1 reveals that, becausel is greater than 5.5 and
because the bending effects present are not negligible, one
must use the general failure criterion by including the

pertinent bending terms which in this case are significant.
In view of this, Eq. (6) now becomes

q0

1000
R
h

����
pc
p

F�l� � K �7�

where

F�l� � fe�l�1 fb�l�
sappl:bend

sappl:hoop

( )
�8�

andfe�l�; fb�l� are given numerically in the above reference.
Without going into the numerical details (Appendix D), the
predicted results for tests #1 and #2 become, respectively:

General data: 2R� 20:75 in:; 2c� 5:5 in:

UCSD static test #1: For test #1,h� 0:05 in: andh=c�
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Fig. 5. Maximum stress concentration factor versus diameter to thickness ratio.



0:02; and from Fig. 4 one reads a value ofK that is closest
to that thickness. In this test usingK � Klower � 62 ksi in:
and q0 � 31:2 psi: The failing pressure reported was
34.4 psi.

It should, furthermore, be noted that for the UCSD test
#1, the hard rubber sheet used to seal the crack was well
bonded to the interior surface of the vessel. Consequently,
the rubber did carry some load and this was substantiated
after the failure since it fractured along the same direction of
the crack and at a 458 plane through its thickness. In carry-
ing out test #2, however, the rubber sheet was not bonded to
the vessel. We have estimated the load carrying capacity of
the rubber sheet for test #1 to be approximately 1.6 psi.
Thus, accounting for the rubber (see Appendix E), we
predict a failing pressure for test #1 to be, approximately,
32.8 psi.

UCSD static test #2: For test #2,h� 0:086 in: andh=c�
0:03; and from Fig. 3, one reads a value ofK that is closest
to that thickness. In this test usingK � Klower � 65 ksi in:
and q0 � 59:6 psi: The failing pressure reported was
59.9 psi.

Perhaps it is appropriate here to emphasize that in both
UCSD tests the upper and lower faces of the crack were not
touching.

6. Conclusions

Although the correlation function (Eq. (3)) was derived
on the basis of a homogeneous and isotropic material, the
author believes that it reflects the dominant term of a
geometrical inherent property that exists between shell
structures and similarly loaded flat plates of the same mate-
rial. Needless to say that such a property is of great practical

significance to the designer for, it is now possible to
successfully predict catastrophic failures in cylindrical
structures from experimental data accumulated in the
laboratory on flat plates. This is an advantage that has not
only important economic implications but also the experi-
ments that need to be carried out are much simpler.

Comparison between the theoretically predicted values
and the experimental UCSD data shows a very good agree-
ment. Further, in order to verify this hypothesis, we will
apply it to the case of a composite material. Unlike the
fracture of metals, which is well characterized by the prin-
ciple of linear fracture mechanics, the fracture of composite
structures involves a complex interaction of fiber breaks,
matrix cracks and interply delaminations.

Without going into the details, we compare in Fig. 6 the
results of Eq. (3) with the experimental data available in the
literature [12] on pressurized graphite/epoxy cylinders. The
cylinders were slit in the longitudinal direction and were
pressurized. The agreement is fairly good.
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Fig. 6. Comparison between theory and experiment for graphite/epoxy
cylinders with axial slits.

Appendix A

Summary of 2219-T87 Fracture ToughnessK Experimental Test Data by Roy Foreman [13].

Specimen number Thicknessh (in.) Spectral widthW (in.) Initial crack 2c (in.) Failure stress (ksi) K (in.)

1A 0.19 20.05 8.11 18.52 73.69
2A 0.19 20.05 8.11 18.91 75.18
3A 0.19 20.04 8.07 20.04 79.29
4A 0.19 20.05 8.22 17.85 71.72
5A 0.19 20.05 8.11 17.92 71.29
1B 0.19 9.93 1.04 40.24 51.77
2B 0.19 10.03 1.04 39.78 53.68
3B 0.19 9.97 1.11 42.96 57.11
1C 0.19 10.04 2.15 33.11 62.53
2C 0.19 9.98 2.18 32.21 61.49
3C 0.19 9.98 2.17 32.86 62.48
1D 0.19 10.03 3.64 26.71 69.53
2D 0.19 9.98 3.65 25.41 66.41
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(continued)

Specimen number Thicknessh (in.) Spectral widthW (in.) Initial crack 2c (in.) Failure stress (ksi) K (in.)

3D 0.19 10.02 3.59 25.51 65.86
1E 0.19 9.98 5.13 17.96 61.26
2E 0.19 10.02 5.09 18.49 62.59
3E 0.19 10.04 5.12 18.91 64.24
1F 0.19 3.91 0.65 44.96 46.05
2F 0.19 3.91 0.64 46.01 47.01
3F 0.19 3.91 0.65 43.82 45.01
1G 0.19 3.91 1.16 35.01 49.94
2G 0.19 3.91 1.16 35.01 49.94
3G 0.19 3.91 1.18 35.62 51.36
1H 0.19 3.91 2.16 21.23 48.81
2H 0.19 3.91 2.17 21.29 48.95
3H 0.19 3.91 2.11 21.81 48.92

Appendix B

Specimen number Thicknessh (in.) Spectral widthW (in.) Initial crack 2c (in.) Failure stress (ksi) K (in.)

2J 0.08 10.06 2.08 29.71 68.52
2K 0.08 10.01 3.61 21.71 67.58
2L 0.08 10.01 5.08 14.61 60.19

Appendix C

Fracture toughness (test data by Roy Foreman [13])

Test h=c K 2c=2w

A 0.05 74 0.41
B 0.34 54.00 0.11
C 0.18 62.00 0.22
D 0.10 67.00 0.36
E 0.08 63.00 0.51
F 0.60 46.00 0.16
G 0.33 51.00 0.30
H 0.18 49.00 0.56
2J 0.08 69.00 0.21
2K 0.05 68.00 0.36
2L 0.03 60.00 0.51

Appendix D

Failure criterion
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For test #1:fe�l� � 4:002 0:12g�l�; and fb�l� � �20:122 0:22g�l��3:33:For test #2:fe�l� � 3:212 0:11g�l�; and fb �
�0:022 0:23g�l��3:33:
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Remark: When no bending is present, the criterion may be approximated by the simple relation:
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Appendix E

Estimate of load carried by rubber seal

wherep0 is the internal pressure andp p the normal pressure between rubber and aluminum vessel.



The equilibrium of rubber segment implies:

p0 2
�p0 2 pp��R2 D�

D
� 0

or

pp � 1 2
2D
R

� �
= 1 2
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ForD � 0:50 in: R� 10:40 in:

pp � 1 2
0:50
10:40

� �
p0 � 0:95p0;

hence the aluminum vessel experiences, locally, a pressure
equal to 0.95p0, and

ptail � 31:20
0:95

� 32:80 psi:
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