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CHAPTER 12

Failure of Pressurized Vessels

E. S. Folias

The chapter provides some basic results of the theoretical and experi-
mental investigations of the failure criterion of a thin-walled vessel
with a through crack taking into account effects of shell shape and
curvature variations, and local yielding. The following plan is chosen
to treat the subject.
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Section 8. Plasticity correction

Section 9. Experimental verification
Conclusions

INTRODUCTION

In nature, shells are the rule rather than the exception. The list of natural shell-like structures is long, and
the strength properties of some of them are remarkable. It is logical, therefore, for man to utilize them in
his structures. However, to do this safely the designer must understand the fundamental laws that
govern the strength and displacement characteristics of such structures, for they are not immune to
failures, particularly in the fracture mode.

Moreover, we know from experience that thin-walled pressurized vessels do resemble balloons
and like balloons are subject to puncture and explosive loss. For a given material, under a specified
stress field, e.g. due to an internal pressure, there exists a minimum crack length in the material which
will become self-propagating. Crack lengths less than the critical value will cause leakage, but not
destruction. However, if the critical crack length is ever reached, either by penetration or by the growth
of a small fatigue crack, an explosion and complete loss of the structure may occur. Similarly, for a
given crack length, there will be a critical internal pressure beyond which the pressure vessel will fail
catastrophically. One conjectures, therefore, that there exists a certain relationship between internal
pressure and crack size. More specifically, one may expect that the following will be true:

Qeriica = F {shell geometry, flaw shape, flaw size, loading, material properties, other}. (1)

The subject of our concern, therefore, is the derivation of an equation that relates the critical
pressure to the critical crack length in a pressurized vessel, based upon analytical considerations. A
relation of this type is called fracture criterion.

For the derivation of a fracture criterion, two ingredients are necessary: the knowledge of the stress
distribution due to the presence of a crack, and an energy balance for crack initiation. Accordingly, in
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the first part of this chapter, a review of past work on initially curved sheets dealing with the stress
distribution in the vicinity of a crack is given, and in the second part a fracture criterion which may be
used to predict fracture in pressurized vessels is presented. Finally, comparison of the theoretically

, predicted values with some of the existing experimental data substantiates the validity of this derivation
and its potential use.

1. GENERAL THEORY

In the following, we shall consider bending and stretching of thin shallow shells, as illustrated in
Fig. 1 and described by the traditional two-dimensional linear theory. Such a theory is appropriate in
view of the “thinness™ of the shell. We shall limit our considerations to linearly elastic, isotropic.
homogeneous, constant thickness, shallow segments of shells, that are subjected to small deformations.

shallow shells are the displacement function w(x,y), in the

equations governing w and F, with x and y
given by:

%w, 92w 0w, 0w ?w, 0w
VAF = Ep|2—2 — _ 20 %W
dxdy dxdy ax2 gy? ay? 9x?

2F 32 2F 2 2F 52
DV4W=_q_28F6w0+6F8w0+6Faw0 3)
oxdy oxdy = g2 ay? ay2 ax2’

where w,(x,y) describes the initial shape of the shell in reference to that of a flat plate, E is Young's
modulus, D is the flexural rigidity, 4 is the shell thickness, and g is the internal pressure.

2. FORMULATION OF THE STRESS PROBLEM

Let us consider a portion of a thin, shallow shel
pressure g(x,y) and containing a crack of length 2¢
F(x,y) and w(x,y) which satisfy the differential e
boundary conditions. More specifically,

1, of constant thickness h, subjected to an internal
(see Fig. 1). Our problem is to find two functipns
quations 2 and 3, together with the appropriate
along the faces of the crack, we require the normal moment,

q(x, y)
FIGURE 1. Initially curved sheet containing a finite line crack.
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equivalent shear and normal and tangential membrane forces to vanish. Similarly, far away from the
crack, we require that the appropriate loading and support conditions be satisfied.

It is evident from Eqs. 2 and 3 that a theoretical attack of the general problem with an arbitrary
initial curvature presents formidable mathematical complexities. However, for the simple geometries of
a spherical and a cylindrical shell, exact analytical solutions have been obtained in an asymptotic form.
Alternatively, for other more complicated shell geometries, good approximations can be obtained by a
proper superposition of the above two solutions.

3. STRESS DISTRIBUTION IN THE VICINITY OF A CRACK

Two simple geometries of pressurized vessels immediately come to mind: a spherical and a
cylindrical, which are considered below.

(i) Spherical Shell

For a shallow spherical shell the radius of curvature remains constant in all directions; therefore,
—==0; —_—=— =, 4)

Substituting Eq. 4 into Eqgs. 2 and 3 one obtains the well known Reissner’s equations:
-l%thw + V4F =0, (5)

1 q
Véw RD V2F = — D (6)
It is worthy to note that the above governing equations are coupled and that, as the radius of the
shell tends to infinity, they become uncoupled. This suggests, therefore, that, in the limit, one must re-
cover precisely the corresponding solution to the case of a flat plate. On the other hand, for an arbitrary
shell radius, the coupling of the equations suggests that there exists an interaction between bending and
stretching loads. That is, a stretching load will induce both stretching and bending stresses. Alter-
natively, a bending load will also induce both stretching and bending stresses.
For a spherical cap which contains at the apex a crack of finite length 2c (see Fig. 2), the author (see
Folias, 1965a) has reduced the problem to that of the solution of two coupled singular integral equations.
Their solution was then sought in the form of a power series in A2, where A2 is defined by:

2
A2 = {121 — v2)}1/2%, @

with v being Poisson’s ratio. It may also be noted that, for A less than a certain calculated bound, this
series solution has been shown to converge to the exact solution (see Folias, 1964a).

It is clear from Eq. 7 that \ is small for large ratios of R/h and small crack lengths. As a practical
matter, if one considers crack lengths less than one-tenth of the periphery, i.e. 2c < (2pR/N0), and for
(R/h) < 103, a corresponding upper bound for A can be obtained, i.e. A < 20. For most practical
cases, however, the range is 0 < A < 3. Consequently, an asymptotic expansion for small values of X is
indeed justifiable.

Without getting into the mathematical details, the stress distribution around the crack tip for
symmetrical loadings is given by:
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FIGURE 2. Geometrical configuration of a pressurized spherical cap.
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and

AN/3 {1 +7v 1+ 3v< x)}
b) = — (e) — -
PO=—aGgon 3 T s TG

1 < 1+3v1r)\2) ( )\)
—qg(b —_— 41y —
U3+v1+3+v n +0)\ln4,

(15)

where A = 0.577 is Euler’s constant.

Finally, it should be emphasized that the stress coefficients in Eqs. 14 and 15 contain only up to
0(N?) terms. Their use, therefore, is limited to only small values of the parameter A, i.e. for A < 1. For
Jarger values of \, it is necessary to consider higher-order terms in order to guarantee the convergence of
the solution. Thus, for a Poisson’s ratio of &, an alternative form of the stress coefficients good up to
\ < 6 is given by:

P@© = g@A® — 0.5400)a (16)
P® =1.810@a®) — 0.300PA®), (17)
where the coefficients may now be approximated by:
A© =+/T +03295\%,  a® =0.0002 + 0.0580\ — 0.0042)\2 (18)
A®) =0.993 + 0.032\, a® = —0.0080 + 0.0550\ — 0.0010A2 — 0.0005A%. (19)

(ii) Flat Plate

A flat plate represents the degenerate case of a spherical cap whereby the radius becomes infinite,
thus:

3w, 9w,  Pw,

oxdy  ox2 ~ dy?

=0. (20)

Substituting Eq. 20 into Eqs. 2 and 3, one recovers the classical flat plate equations:

V4F = 0 Q1)
Véw = —%. (22)

The problem of a flat plate containing a finite line crack and subjected to a lateral load has been
investigated by many authors for various types of loadings. The solution, however, may also be
obtained from the “‘spherical cap” solution by simply letting R — o, or A — . Thus the stresses around
the crack tip are given precisely by Egs. 8—13, where the stress coefficients now become:

1
(e) = le) b) = — (b)
Ppe ale and Pp 3 v0' : (23)

(iii) Cylindrical Shell

For a shallow cylindrical shell, one of the principal radii of curvatures is infinite, while the other
1s constant; therefore:

(24)

i o e ——
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Substituting Eq. 24 into Eqgs. 2 and 3, one recovers the governing equations for a shallow cylindrical
shell, i.e.:

Eh 3
—= —axf + V4F =0, (25)
. 1 8%F q

VW kD~ D 0

There are two cases of special interest that immediately come to mind: an axial crack and a
peripheral crack. Due to the mathematical complexities of this problem, Sechler and Williams (1959)
suggested an approximate yet very clever method of solution based upon the behayior of a beam on an
elastic foundation, and thus they were able to obtain reasonable agreement with some of the experimen-
tal results. In their simplified model, they theorized that curvature plays the same role as an elastic
foundation. Subsequently, using the same method of solution as in Folias (1965a), the author was able to
study this problem from a slightly more sophisticated point of view, and the mathematical details for an
axial, as well as a peripheral line crack (see Fig. 3), can be found in the literature (Folias, 1965b and
1967).

A few years later, two more theoretical analyses of the same problem appeared in literature, the
axial crack was investigated by Copley and Sanders (1969) and the peripheral crack was investigated by
Duncan and Sanders (1969). Their method of solution consisted of the application of the Fourier
Integral Transforms leading to the derivation of two coupled singular integral equations (different in
form from the author’s), which in turn were approximated to high accuracy via matrix equations and
were subsequently solved with the aid of a computer. Their results were based on a zero ‘‘applied
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FIGURE 3. Geometrical configuration of an axially and peripherally cracked cylindrical shell subject to an axial
extension Ny, and an internal pressure 9o
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pending” load, i.e. o® =0, and for a Poisson’s ratio of v = 0.32. Their results are consistent with the

lindrical ; .
author’s findings.
Again omitting the long and tedious mathematical details (see Folias, 1965b and 1967), the stresses
) around the crack tip are given by Eqs. 8-13, where the stress coefficients become:
25) For an axial crack:
2 2 — )2 & +
(26) Pe =o<e>(1 + m—) ~ or<'>)—)‘= iL=v) {5 3y L1 DY (y + 1n5)} +
ca 64 V3 3+v eI —v) 161 — )\ 8 &
K and & + O(\*In\)
as (1959) V/3\2 1 {5 +37v 1+ Sv( x)}
(b) = —gle) ) I
am on an PO= -0 am Tl %6 T 16 T3 o8
perimen- 4 + 5p2 A2
1 elastic —ot L {1 - 13 +2 )"(1 _5") %} + 00N forh <1,
as able to v ( & 5
1ils for an or the alternative approximate expressions valid for v = &
965b and P© = g@A© — 0.540®)a), (29)
ca c,a ca
-ature, the P®) = 1.810@a®) — 0.300AY), (30)
tigated by ' ' '
ie Fourier where:
ifferent in A©) = 0.8097 + 04110\ + 0.0071)%, (31)
ations and (;) )
. “applied A®) =1.0188 — 0.0541\ + 0.0016A2, (32)
al) = —0.0093 + 0.0701\ — 0.0077\2 +0.0003)3, (33)
a®) = 0.0073 — 0.0029\ + 0.0422)\2 — 0.0190\3 + 0.0028\* — 0.0001)5. (34)

Here again, the stress coefficients are approximate functions of A and are similar to the results obtained
by Erdogan and Kibler* (1969) as well as by Copley and Sanders (1969).
For a peripheral crack:
2 2 — )12 + +
P = cr(e)(l + fl) NP Cll ) { a+v , (+) < + } +
op 64 V3 3+wv 1320 -v) 161 —v) 8 (35

+ O(\*In\)

/32 1 {1 +v 1+ v( x)}
Pp="0 1-»¥23+vl 32 e \Y +lng
5+ 2v + v2 mA?

1
- o - G o ) ooty

(36)

1{ 54 2v+ 12 A2 19 —2v — 12 ()\)4
PO = gO{] + —— o — -
op A (1-v@3+v 64 32(1 —v)3 + v)\4

23 + 22v + 1112 Z\_ ()_\_)4}
* 8(1 —v)3 + v ('Y +In 8) 4 + 37 *

VA —v? (1 +v) 1 { ﬁ) _ 1w 5)2} !
f e aw a-wATNU T v+ mg) - T G

*Erdogan and Kibler used the Folias formulation and method of solution, but extended the numerical results to a

>ct to an axial
larger range of values for the parameter \.
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3(1 + v) x?—{ ( x) <17 - 2% — 11v2> ()\)2}
(b) = (e) _ —1{] + 2 + In—) - =
Per = TG + WVI2T = 92 A YTy 160 -v /™))"
1 A2 13 + 2v + 2 ()\)4
- R —— = -
+tooE T v)A{l 64 "TRErwa-w\a) T (38)
LB+ 11v2< o 5)(&)‘*}
83+ w1 —v V73
where
(1 + v)? A2 14 + 12v + 612 S5+ 2v+12 M4
A=14+—-— TV + m (=] +
(1 -v)3+v) 32 320 - wB +v) | 16(1 — v)3 + v) 4 39)

) - Y

4. EFFECT OF TRANSVERSE VIBRATIONS

In addition to the usual external applied loads, pressure vessels are frequently subjected to lateral
vibrations. In order to establish what effect if any such vibrations have on the mechanism of fracture, an
investigation was undertaken (see Do and Folias, 1971). The analysis revealed that, in general,
transverse vibrations reduce the amplitude of the stress intensity factor. However, when the forcing
frequency approaches the local natural frequency of the uncracked shell, the stress intensity factor
increases without bound. This phenomenon, coupled with the usual /A/r singular behavior, causes the
pressure vessel to fail at even lower nominal values of the internal pressure. Consequently, a designer
must take into account the presence of transverse vibrations in structures, for they may have severe
implications on the mechanisms of failure common in such applications as aging aircraft, turbines, etc.

5. PARTICULAR SOLUTIONS

In general, the actual stress fields are dependent upon the contributions of the particular solutions
reflecting the magnitude and distribution of the applied loads. On the other hand, the singular part of the
solution, that is the terms producing infinite elastic stresses at the crack tip, will depend upon the local
stresses existing along the vicinity of the crack before it is cut, which of course are precisely the stresses
that must be removed by the particular solutions described above in order to obtain the stress-free edges
as required physically.

(i) Clamped Spherical Shell

Consider a clamped segment of a shallow spherical shell of a base radius R, and containing at its
apex a radial crack of finite length 2c (see Fig. 4). The shell is subjected to a uniform internal pressure
q,, with a radial tension of N = (90/2)R and, because it is clamped, we require that the displacement and
slope vanish at R = R ,. For this problem, the residual applied bending and applied stretching loads at
the crack faces become: o® = () and g(© = qoR/I(2h).

(ii) Closed Cylindrical Tank

Consider a shallow cylindrical shell containing a crack of length 2c. The shell is subjected to a
uniform internal pressure g, with an axial tension of N, =(qyR/2), M =0, far away from the crack. For
this problem, if the crack is parallel to the cylinder axis, then o® = 0 and o(® = qoR/h.
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FIGURE 4. Pressurized spherical cap with fixed ends.

On the other hand, if the crack is perpendicular to the cylinder axis, then o® = 0 and
o = q,RI(2h).

6. GENERAL DISCUSSION

It becomes evident from the above analysis that in an initially curved sheet the stresses near the
crack tip possess the usual 1/7/7 singular behavior which is characteristic of two dimensional linear
elastic problems. Moreover, the angular distribution around the crack tip is precisely the same as that of
a flat plate and that the initial curvature appears only when stress intensity factors are considered. They
appear in such a way that, within limits, one can recover precisely the flat plate behavior.

Thus, the general effect of a positive (negative) initial curvature, in reference to that of a flat plate,
is to increase (decrease) the stresses in the neighborhood of the crack tip and to reduce (increase) its
resistance to fracture initiation. For a cylindrical shell with an axial crack, for example, one has:

hision ~ 1
V1 + 0.317\2°

(40)

0-plate
which correlates flat plate behavior with that of initially curved specimens. In experimental work, for
example, considerable savings can be realized, for one would be able to design pressure vessels based
on experiments carried out on flat plates.

7. ELASTIC BRITTLE FRACTURE CRITERION

From the foregoing discussion, it becomes apparent that initially curved sheets which contain
through flaws or cracks present a reduced resistance to fracture initiation. Consequently, the presence of
a flaw or a crack in the walls of a pressure vessel can severely reduce the strength of the structure and
can cause sudden failure at nominal tensile stresses less than the material yield strength. To ensure,
therefore, the integrity of a structure, the designer must be cognizant of the relation that exists between
fracture load, materials properties, flaw shape and size and structural geometry.

The principal task, however, of fracture mechanics is precisely the prediction of failure due to the
presence of sharp discontinuities. Specifically, the approach is based on a corollary of the first law of
thermodynamics which was first applied to the phenomenon of fracture by Griffith (1924). His
hypothesis was that the total energy of a cracked system subjected to external loading remains constant
as the crack extends an infinitesimal distance. That is:

oU,

system

R = 0, (41)
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Following the work of Griffith, the total energy of the system is given by: 8.
Usyslem = Uloading + Usurface + Ustrain’ (42)
where the increase in Strain energy due to the presence of a line crack may be calculated by considering crit
the discontinuity in the v-displacement across the crack. For example, in the case of a crack that is not
subjected to a Mode [ loading this becomes: (19
c
Useain = =1 [ 0,(x, )0+ — y-y g 43)
=g
which, in view of the previous results, now becomes: wh
int
Usean = = FellPOF + ¥(1 + wyrpop), (44) fra
Thus, for crack instability, we have:
U, .
4y = — strain , 45) In
¥ dc ( prc
where y is the surface €nergy per unit area. Substituting Eq. 44 into Eq. 45 one finds: fa
2mc T { dp dP(b)} 2K2
=—{[P12 1 2 2[ p(b)]12 =2 J—ee . 2 2pb)y — 1 _ Ze 6
4y E{[P(]+3(l+v)[P(]}+2Ec P(e 20 31+ v)2p o (46)
Wwhere K,_is the Plane stress fracture toy in the limit, as
9.
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8. PLASTICITY CORRECTION

Due to the presence of high stresses in the vicinity of the tip of a crack, when the appropriate yield
criterion is satisfied, localized plastic deformation occurs and a plastic zone is created. This phenome-
non effectively increases the crack length and therefore must be accounted for. Following Dugdale
(1960), the size of the plastic zone (see Fig. 5) may be approximated by:
iy

= cos=—, (47)
207

O e

where ¢, now represents the effective crack length and o the uniaxial tension yield stress. Thus,
introducing a correction factor that accounts for plasticity effects, one finds the following approximate
fracture criterion:

wK? 1

™
(1 + v)[PPP) %;] = exp (— g{ ;>. (48)

33 + 6v — Tv?

cos [(I(e)([P(")]2 + 30 = )

In general, the stress coefficients P(© and P® are functions of the crack size, shell geometry, material
properties and loading characteristics. For certain simple loadings, however, the table below gives a
fairly good approximation of the stress coefficients:

Long cylinder
axial crack

R
Pe = J1+0.31722 (9%7—)

P =0
ang cylinder q R
peripheral crack P = J-‘ +0.0522 (_20_5)
%
~ P(b) =0
R
Pe = J1+0.466% (9207)

Pb) =0

Spherical cap

T

9. EXPERIMENTAL VERIFICATION

In judging the adequacy of a theory, one often compares theoretical and experimental results. For
this reason, in Fig. 6 we compare the theoretically predicted values (Eq. 40) with the experimental data
obtained by Kihara, Ikeda and Iwanaga (1966) on cylindrical pipes containing axial notches. The reader
may note that the theoretically predicted values are somewhat conservative (as they should be) and are
fairly well vindicated by the experimental data. Thus, one may conclude that Eq. 40 may be used to
predict the response behavior of curved sheets from corresponding flat sheet test data. As a practical
matter, the use of such a property offers to designers and to manufacturers potentially substantial
€COoNnomic savings.

Next, we compare our results with a set of data obtained by Anderson and Sullivan for a 6 in.
diameter, 0.060 in. thick, cylinders of 2014-T6 aluminum tested at —320°F. However, in order to utilize
Eq. 48, one must know a priori the material fracture toughness K. For this reason, we use one of the
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FIGURE 6. Correlation between fracture stress ratio of a cylindrical shell and that of a flat plate versus the ratio
(2¢liN/Rh).

data points, e.g. the first one, to compute K . This value is then used in conjunction with Eq. 48 to
predict the remaining failing hoop stresses. The results are shown in Fig. 7. The agreement is very good.
Moreover, results of tests on 6 in. diameter, 0.020 in. thick cylinders made out of 5AI-2.58n-Ti, with
full thickness cracks, also show a very good agreement (see Fig. 8).

Similarly, comparison between the theoretical and experimental data obtained by Sopher et al.

(1959) for 9 in. diameter, 2 in. thickness spheres with through-cracks is given in Fig. 9. Here too, the
comparison is very good.
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o, (ksi)

40 b K =196.2 ksiV/in
o* = 200.0 ksi
for 5A1-2.5Sn-Ti cylindrical vessels at —320°F

0 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

c (in)
FiGURE 8. Comparison between theory and experiment for 5A1-2.58n-Ti cylindrical pressure vessels at —320°F.

CONCLUSIONS

In view of the above, one concludes that the general effect of an initial curvature, in reference to
that of a flat plate, is to increase the stresses in the neighborhood of the crack point and thus reduce its
resistance to fracture initiation. Moreover, the close agreement between the theoretically predicted
values and the experimental data substantiates the validity and the potential use of the derived fracture
criterion, i.e. Eq. 48. Designers may now use this criterion in order to predict failures in pressurized
vessels by knowing only: the structural geometry, the crack length and the properties of the material.
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It may also be noted that the criterion may be used in two different ways. First, given a pressure
vessel with certain geometrical parameters and a given internal pressure, one may deduce the critical
crack length beyond which the vessel will fail catastrophically. For example, in the case of the Space
Station, if a piece of debris impacted the manned module and penetrates it, then a hole with two adjacent
wing cracks would be formed. This condition, most likely, will only cause leakage. However, if the
formed cracks are sufficiently long so that the overall effective crack length is approximately equal to
the critical crack length of the shell structure, then the module may unzip and thus fail catastrophically.
Second, given a certain statistical flaw size, one may deduce the maximum safe internal pressure which
can be sustained by the vessel. The latter, in particular, is useful in defining material specifications.
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