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PREFACE

Titanium matrix composites reinforced with SIC fibers have been the subject of extensive
research over the past decade because of interest in advanced aerospace applications that
require light weight, high stiffness, and high temperature capabilities. Programs such as the
National Aerospace Plane (NASP) and the Air Force Integrated High Performance Turbine
Engine Technology (IHPTET), in particular, have been evaluating the properties, mechanical
behavior, and failure mechanisms of this class of materials under typical anticipated use
conditions. While failure modes depend on the specific mechanical and thermal loading
conditions, fiber failure has been identified as either a direct mode of failure or as a dominant
mode of failure after some other mode such as matrix cracking has produced an increase in fiber
stresses.

Direct failure of fibers which act as a bundle embedded in a ductile matrix material is
considered to be the primary cause of composite material failure under creep, low cycle fatigue,
and in-phase thermo-mechanical fatigue (IP TMF). The process of breakage of the fiber bundle,
however, is not very well understood. Results of IP TMF tests on composites with SiC fibers
having different matrix materials, and tested at different maximum temperatures, show apparently
different modes of progressive failure after a fiber has broken. Timetal matrix composites at 650
C maximum temperature show debonding of the fiber/matrix interface in the region adjacent to
the fiber crack. Ti-6-1-4V composites at 427 C, on the other hand, show an apparent propensity
for matrix cracking adjacent to the fiber break. To evaluate the potential for forming an interface
crack, and to shed light on the mechanics of crack formation and interfacial toughness, the present
study was undertaken. The analysis refrains from making many of the simplifying assumptions
about stress distributions which are commonly utilized in analyses of this type. Instead, a rigorous
and systematic elastic analysis is conducted using only the boundary conditions as an"assumption"
in addressing the problem. Moreover, the general problem is broken down into key problems
which are examined individually and will finally be combined to provide answers to the general
problem.

It was found convenient to divide the work into two different parts.

In part I, we examine the load transfer characteristics of a material system after a fiber
breaks.

In part II, we examine the residual stresses due to curing and thermal stresses due to
differences between the thermal expansion coefficients of the matrix and fiber.

In part III, we are developing a sinc-function based numerical method that is geared
specifically for solving 3D problems that posses stress singularities, in certain regions of the body.
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ABSTRACT

In this study, the load transfer characteristics of a broken fiber are investigated.
The problem consists of a cylindrical fiber that is embedded into a matrix material. The fiber axis
is assumed to coincide with the z-axis and a crack is assumed to be present on the plane z= 0 and
for r <a. Far away from the crack, the fiber is subjected to uniform external load of o,.

Moreover, adjacent to the crack and along the interface ( see fig. 3 ), the matrix and fiber

surfaces are assumed to slide along the interface length -c <z <c, in the presence of a variable

friction ‘tg) = ucgn ). On the other hand, perfect bonding is assumed to prevail all along the

remaining interface, i.e. for | z | > c.

For the solution of the problem, we utilize a Fourier Integral Transform whereby we
reduce the problem to that of the solution of a singular integral equation along the interface path
-¢ <z <c. The solution of this integral equation then allows the determination of the displacement
and stress fields. Two areas of special interest immediately come to mind, (i ) the neighborhood
adjacent to the point | z | =c and r = a, and (ii ) the neighborhood adjacent to the point z=0 and
r=a. o

The analysis reveals that the load transfer characteristics depend heavily on the material
properties of the system.




1. Introduction

It is well recognized that realistic modeling of deformation and damage accumulation in
the fatigue of metal-matrix composites depends heavily on the mechanisms which govern the
damage. Experimental evidence of the accumulation of strain in a SiC-fiber/titanium-matrix
composite, in conjunction with fractographic examination of the samples, point to fiber breakage
as the dominant mode of failure during thermomechanical fatigue tests. During this physical
process individual fibers break periodically, at random locations, and throughout the composite.
Considerable work on the modeling of broken fibers in composites has already been conducted
over a number of years. In the literature one may find the work of Rosen (1964) using a shear- lag

model. The stress concentration present in the immediate vicinity of a broken fiber was first
analyzed by Hedgepeth (1961) and has subsequently been addressed by many others who have
utilized other simpler models. Recently, Penado and Folias (1989) investigated the stress
concentrations in a fiber based on three dimensional considerations. Moreover, the 3D edge
effects, when a fiber meets a free surface, have been investigated by Folias (1989). A closer
inspection, however, of the local neighborhood of a fractured fiber ( see Fig. 1) reveals that the
problem is much more difficult that it was originally thought of. This is because one must also
account for the vertical interface cracks that develop along the sides of the fiber. One may also
recall the fact that composites, in general, are attractive in using them for practical applications
because the fibers are designed to carry most of the applied load. Consequently, when a fiber
breaks, at least locally, the load must then be transferred somehow to the other portion of the
broken fiber via the matrix. This suggests, therefore, that the adjacent matrix must now carry a
much higher stress load. In reality, however, one may conjecture that ( i) there is some
redistribution of the load to the adjacent unbroken fibers, and that (ii) there is perhaps an increase
in the load which the adjacent matrix must now carry. Recently, Nicholas and Ahmad (1994),
through the analysis of a relatively simple model, were able to provide some qualitative answers
regarding this complex phenomenon. On the other hand, a more sophisticated stress analysis of
the local problem, coupled with the results of a sporadic sequence of fiber breaks along the
composite material system, can provide important information and guidance to material designers
for the development of future material systems.

2. Formulation of the Problem

Consider the equilibrium of a material system that occupies the space | x | <o ,|y| <o ,

| z| <0 and contains a cylindrical fiber that is embedded into a matrix space ( see Fig. 1 ). The
fiber axis coincides with the z-axes and the fiber radius is r=a . Both fiber and matrix materials
are assumed to be homogeneous, isotropic and linearly elastic. At the interface ( r = a ) perfect
bonding is assumed to prevail.

In this model, we envision the failure to take place in three different stages. During the
first stage, a plane crack is formed in the middle of the fiber region, i.e. at r < a and on the plane
z =0, and advances until it reaches the fiber/matrix interface boundary. This problem has been
studied by others and recently more rigorously by Pagano et al (1995 ). Subsequently, during the
second stage, a certain length along the fiber/matrix interface, above and bellow the plane z =0,
has debonded and the matrix is now allowed to slip in the presence of a non-constant frictional




force. Finally, during the third stage, the fiber crack pups open and a finite jump in the fiber
displacement is formed. The present analysis deals with the events of the second stage. We believe
that the analysis of this stage will provide important information related to the failure process and
may reveal 'the sufficient conditions' required for the subsequent advancement of the failure to
that of stage three. Putting it another way, it is hoped that it will reveal the ' sufficient conditions '
required to suppress any further development of the failure.

At a certain instant in time, the fiber breaks in two peacesas shown in Figs?2 and 3. The
separation distance Ao , denotes the maximum displacement between the fiber faces after the
system has been loaded. It is also assumed that, subsequent to the fiber breakage, splitting
between fiber and matrix along the interface and up to a distance -c<z<cis simultaneously
being formed in the presence of a non-uniform frictional force. As to loading, far away from the

location of the break, the fiber carries a uniform stress G, parallel to the direction of the fiber
axis. Similarly, the matrix carries a uniform stress G1 also in the direction of the fiber axis.

In the absence of body forces, the differential equation governing the stress potential
functions ®® and O™ is given by

Vid=0 | (1)

where V4 is the biharmonic operator. The displacement and stress fields are then given in terms
of the potential functions as :

(i) displacement field :
2
2Gu,=-22 (2)

2Gw=2(1-v)V20-Z2 (3)

(ii) stress field :

3
G”=szg-a—aﬁ%§ (4)
sz=(2—V)V2%ZR-";i—<§ (5)
3 .
'crz=(1—v)Vz%‘-,’,'i—;‘%’2 : (6)

where Vv is Poisson's ratio and G the shear modulus.

As to boundary conditions, we require that :




(i) matrix region :

atz=0: wm =0 (7)

atz=0: 17 = (8)
(ii) fiber region :

at z=0: 19= (9)

at z=0: I;21rrc§2dr=0 (10)

atz=0: WOFr,0)=Aoa2-r? (11)

It may be noted here that the latter represents a crack that has the shape of a very sharp
ellipse. In this study, the primary emphasis was to examine the effect that a non-uniform frictional
force has on the mechanism of failure and to gain some further insight on the evolution of the
events of this complex crack formation. In a follow up paper, which the authors are presently
working on, the boundary conditions have been relaxed by allowing now the fiber displacement w
to possess a finite jump.

(iii ) interface region :

atr=a: U§°=U$m) ;0<z<o0 (12)
atr=a: o_g)=0_gn) ;0<z<o (13)
atr=a: wh = wm ;0<z<00 (14)
atr=a: 'cg):tg") ;c<z<® (15)
atr=a: ‘tgz)=u0'1(r¢7) ;0<z<c (16)

Perhaps it may be appropriate here to note that one of the difficulties presented by
boundary condition ( 16 ) is that the shear stress ‘rg) is an odd function of z while the normal
stress Gir. ) is an even function of z . At first glance this appears to be O.K., however the

mathematical satisfaction of such type of a boundary condition requires some very special
attention. 3

(iv) far away from the plane z = 0 :

Ggg:co (17)




oPeoy (18)
where G1 isrelated to Go via the relation :
Iim.z,_m(eg% - 822)) 0 (19)
Moreover, in order to complete the formulation of the problem we must require that :
as r & z—> o : all complementary displacement and stresses must vanish

and the continuity condition :

atr=0: all the complementary displacements and stresses for the fiber must be
bounded

3. Method of Solution

Without going into the mathematical details, we have constructed the following stress
potential functions that exhibit the proper behavior at infinity.

QN = [P {ADI,(sr)+ BO(sn)l1(sr)}sin(s2)ds

+ §° {C? + DPa, |zl yexp(-anlzl)o(onn) (20)
+a®z3 + pzr2

where the upper sign refers to z > 0 and the lower sign refersto z<0,

den = ZGfVm - Gme- Gfo(1 - 2Vm) - Gf+ Gm - 2VfVme (21 )

3" = —2={4Gmvm(1 = V1) = 2GHVm + V1) + 4vmv /Gy

+Gr—Gp} (22)
b =

{-viGH(1-2vp) +vmGm(1 - 2vf)} (23)

2(den)
and

O™ = [ {AMK,(sr) + B™(snK1(sn}sin(sz)ds

+a™z3 + bmzr2 (24)




with
8™ = —2is{4vmVH(Gr— Gm) — 4v(Gr + 2Gm(Vr — V)

+Gr—Gm} 2 (25)
b™ = 52 {vmGm = ViGr+ 2Vmv(Gr - Gm)} o= (26)

The constants A®,B®, CH, DO A B  are to be determined from the boundary
conditions of the problem.

By construction, boundary conditions ( 7 )-( 8 ) are automatically satisfied. Next, to satisfy
boundary condition ( 9 ), we let

cY = 2v,DY (27)

Similarly, to satisfy boundary condition ( 10 ) we choose o, , n=0,1,2,..., to be the roots of
the equation

Ji(ap@)=0 (28)
in view of which eq. ( 10 ) now reduces to
[o 82[2(1 - v)B® + AD]/(sa) + saBO/,(sa)}ds = -Fa. (29)

We will suppress, at this time, the satisfaction of the above condition but will return to it at a later
time.

Next fromeq (11 ), we have

w(r,0) = —52 £ 02D do(ann) = Aola? — P2 (30)

in view of which the coefficient Dg) may now be determined as

Jg ((lna)

1-
_( GVr)a'z,Dg) = _Jf_"Aoa-"’_a; n=1,23,... (31a)
! Jo(on8) ((X.na)i
and
(1-vy)
""é‘f""(lng) = §Aoa . (31b)




Thus, the crack opening in the fiber region becomes a very sharp ellipse. Perhaps it may be
appropriate here to note that the constant A, has now been related, through eqs (29 ) and ( 31),
to the applied load 6, . Moreover, the matrix load stress G is related to the fiber load stress
Co through the eq. ( 19 ). More specifically,

Gm [—ZGmV[—Gﬂ'Gm'FZVmeGr—2GmeVm+GfVm+Gme]

c1=1{7g, G m—Gmvr-Gr2vmvGr-GrGm2vmGn] $ 00 (32)
Next, the boundary conditions at the interface r=a
u®-u™ -0 (33)
oy - = (34)
become respectively,
Io $%{(sa)Ko(53)B™ + K1(5a)A™ + G(sa)l,(5a)B?
+Gli(sa)AP}cos(sz)ds =0 (35)
and
I5 s2{[I1(sa) - (sa)lo(sa)]AD + [-(1 — 2vs)(sa)lo(5a)
—(s5a)2/1(sa)]B? + [K1(sa) + (sa)Ko(5a)]A?
+H-(1-2vm)(sa)Ko(sa) + (sa)’K1(sa)]B™}cos(s2)ds =
=- ni::o aa3{1 - anlz|} DD Jo(ana)exp(=an |zl (36)
Similarly, the boundary condition'
wih —w(m =0 (37)

becomes
Jo §%{lo(Sa)A® + [4(1 - vp)lo(sa) + (Sa)l1(sa)]B?
~GKo(sa)A™ + [4(1 - vn)GKo(Sa) — G(sa)K1(sa)]B™} (38)

xsin(s2)ds = §0{2(1 - v+ anlzl}a2DPJo(ana)exp(-anlzl)
n=t

See remark on top of page 3.




where we have adapted the definition ~

In order to facilitate our subsequent discussion, we define

Ko(sa)

lo(sa).
e=(ayy o= (A

I1(sa)’
and

n=A%. pgn__8
AD = li(sa)’ B ~ Iy(sa)

m) _ _Am | m) _ Bim)
A = Ko(sa)’ B™ = K(sa)

(39)

(403b)

(41ab)

(42ab)

In view of eqs (40a,b), (41a,b), (42 a,b), equations (35)-(36) and ( 38 ), by Fourier

inversion, become respectively :

AD 1 eBO + GAM 4 Ge,B™M =0

(1-€)A0 +[-(1 - 2v)e - (5a)21B® + (1 + e)A™

(1 - 2vm)e, + (sa)2|B™ = 22 [0 eZ sin(sE)at

and

eA® + [4(1 - vp)e + (sa)21B" - Ge, A™

+[4G(1 - ve)er - G(sa)2]B™ = 22 [7{2(1 - v)U

~E }sin(sE)de

where we have made use of the definition

U(E) = ’go a2DP exp(=on & )o(0ind) .

The system of egs. ( 43 )- (46 ) may now be solved in terms of one of the unknowns, say B m

More specifically,

(43)

(44)

(45)

(46)




Am = LEBm 281 [0 g2l sin(s&)dk + 2822 [5 Usin(sE)de  (47)

R — _(1-6)1+6) 2 (m) _ [(1-6)(s8)*~(1-G)(1-2vm)er+2G(1-vm)et] A (m
B Alm) _ B(m)

2(1-vpe 2(1-vy)
+283 [3 Usin(sg)dt (48)
A® = —eBO — GA™ — Gg,Bm (49)

where for simplicity we have adopted the following definitions :

[(1-2vpeH1-6)e+(sa)?] 1 e
Pi=1-G+ei+Ge+ RE (1-G)z+3 (50)

P2 = ~(s8)? + (1 - 2vm)er— G(1 - e)e, - 20l nea]

2(1-vpe
[(1-G)(sa)?-(1-G)(1-2vm)e++2G(1-vm)er] 4 _
X — L (51)
[(1-2vpe+e(1-6)+(sa)?)
P3=——"— (52)
Finally, the last boundary condition becomes
lim,a13’ ;. €<Z<® (53a)
liMse 1 ={
liMrsa(uoir )) ; O0<z<c (53b)

where
D = [* s3{[2(1 - vi) + €]BD + AO}exp(-s(a- n)sin(sz)ds  (54)
) = [ s° {/2\(”’) +[-2(1=vp)+ e,]é("”}exp(-s(r— a))sin(sz)ds (55)
o = =3 [% S2{[1 + eJA™ + [-(1 - 2v,,,)e, +(sa)2]BM}  (56)

xexp(—s(r- a))cos(sz)ds

It remains, therefore, for us to satisfy the last boundary condition ( 53 ), as well as eq.
(29). This will ultimately tie the remaining constant in terms of the applied load of the material
system.




4. The Integral Equation

In order to solve the dual integral equation ( 53 ), we first cast it into the form of a Cauchy
singular integral equation of the first kind. For this reason, we let at r=a

[? s3(sa)B™sin(sz)ds = y(z) ;0<z<c (57)

and
[? s%(sa)B™cos(sz)ds = §(2) ;0<z<cC (58)

where \ represents an odd function of z and ¢ represents an even function of z . Furthermore,

the reader may be reminded that, by construction, equation ( 53a ) is automatically satisfied along
the interface segment C <Z <o . Thus, it remains for us to satisfy equation ( 53b ) along the

interface segment 0 < Z < C. Without going into the mathematical details, equation ( 53 ) may

now be written as, after some straight forward manipulations,

a J‘c W(&)—M@)} =fiz) : O0<z<w (59)

where we have adopted the following definitions :

f(2) = 24, € {fo(2) +fo(2)} , (60)
with
3(1+p+2uvb  4b3(6-+u+2uvy) 24b5
fo(2) = { @2+b22 | (22+b2)3 (zz+bz)4} (61)
~4+2v-G  b%(-16+8v4G-12p)  24pb*
f o(2)={ (@2+62)2 (22+b"2)3 - (z2+b2)4} . (62)
In writing the function f (z), we have made use of the following approximation
A 2, &
UE) =-Aoz i} (63)
with
1- ~ 21 AoaG
-2 Ko=-02089T552Cr b _ 0,0700a (64abed)
4G(1-vy)

Q1 =—"GH 5

The general solution of the above integral equation is given by




V@) -m@ = o 5 L (S ek (65)

n2a

where k now represents an arbitrary constant and where the integrals are to be evaluated in the
Cauchy Principal Value sense. Without going into the tedious mathematical details, the integrals
in equation ( 65 ) may now be evaluated and the following result is obtained after simplification.

2 A & b d'z
\|I(Z) - ud’(z) =T J222 k§0{ (Z2+b2)K + ) +b2)k} (66)

where the coefficients dgk), d gk) , k=0, 1,2, 3, 4 are long expressions involving the material
constants of the system. Thus, in vieyv of equations (65 ), (57 ) and ( 58 ), one may now

determine explicitly the coefficient B™ _In particular,

2 d c J1(s¢) kc?  Ja(sc)
s3(sa)B("’)=-;5(-fTAok§o{ 2 =+ +..]

1 (c24b2)k (c?+b?) (s0)
09 1 [Jo(s0) | ke? Ji(s)
e (cz+b2)k[ 1T T (c2+b2) (s0) -1} (67)

Moreover, in view of equations ( 47 ) - (49 ) and ( 67 ), the remaining coefficients may now be
determined and the displacement and stress fields can be recovered explicitly.

S. The Stress Fields

As it was previously noted, it is now relatively easy to recover the displacement and the
stress fields everywhere within the fiber, and within the matrix, region of the material system. Two
areas of special interest are worthy of examination, ( i ) the neighborhood of the point |z|=cand
r=a( see Fig. 4), and (i ) the neighborhood of the point | z| =0 and r = a. In this report, we
examine the stress field of the former. Suppressing the long and tedious algebraic manipulations,
one can show the stresses to be:

stress fieldat |z | =candr=a:

12 = 60Bo [Z {cos(d) + usind)} (68)
+60B1 [ sin(@){cos(F)+usin(R)} + Oe°)
1z = 6oBo [ {cos($) - usin(d)} (69)

+60B1,[Z sin(9){cos(F) - usin(P)} + O(e°)

10




oif” = -00B, [£ {ncos(3) +sin(})} (70)
~00B1[% sin(@){pcos(z) +sin(P)} + OE°)

67 = —oi" + O(c) (71)
where

Gy

B, = 3032 R(1+2v (O ++2pv)(R) 2HE-2p—4pv(D)* ]
0= "¢ Aoa; }

{ (B—4vtG) a +(%)2)(7/2)

(72a)

@1-6
Bi= —mBo (72b)

Finally, returning to eq ( 29 ), we see that the quantity A, may now be related to the
applied load G, .

6. Conclusions

Without going into the numerical details, it would be of practical interest to examine how

well the actual physical boundary condition 69 = 0 is satisfied on the plane z = 0. For this
reason, we assume

&-=10,u=05,8="5,v,=0.25 (73)

and upon defining

S =g [{02 ~ 6o} z0dr (74)
one finds that
GtSAo+6o,r=0 , (75)

or upon solving for A,

Ao = —‘c’;—‘;g’; = 0.629‘;;—", . . (76)

In view of the present analysis, the numerical result for the function S is given in Fig. 5.
The reader will notice that its profile is a straight line up to approximately r/a =0.65 where by it
begins to deviate. This, however, was to be expected for it is the result of our approximation of
the function U (see equation (63)) with a single term. Moreover, it may be noted that the function

11




S does not exhibit any oscillations. While this approximation does effect the boundary condition

0'(22 =0 in the neighborhood of the point r = a and z = 0, it can be shown that it has no effect
the singular term of the stress fields in the vicinity of the crack tip | z | = ¢. In conclusion, the
actual boundary condition is seen to be satisfied a lot better than expected.

Returning next to the stress fields, we note that the usual % singular stress behavior,

which is characteristic to crack problems, still prevails in the vicinity of the crack tip, i.e. at the
interface point | z | = ¢. Furthermore, the unexpected condition

oy +o5% = OE®) (77)

also holds, suggesting, therefor, that an increase in the stress O'(z’g) is followed by a proportional
decrease in the stress cg .

As a practical matter, the analysis will now be used to derive a criterion with which to
predict the debonded interface length 2c, as well as the sufficient conditions required to suppress
any further development of the interface crack to that of stage three ( please see discussion on top
of page 2 ). Moreover, as it was previously noted, we are presently examining the third stage
where the fiber crack has now pupped and where the fiber displacement w has been allowed to
posses a finite jump. The results will be reported in a follow-up paper in which the effects of a
thermal loading have also been included.
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PREDICTING CRACK INITIATION IN COMPOSITE MATERIAL
SYSTEMS DUE TO A THERMAL EXPANSION MISMATCH

by

~ E.S. Folias
Michael Hohn




ABSTRACT

Residual stresses due to curing and thermal stresses due to differences between the
thermal expansion coefficients of the matrix and fiber may have a major effect on the
microstresses within a composite material system and must be added to the stresses induced by
the external mechanical loads. Such microstresses are often sufficient to produce microcracking
even in the absence of external mechanical loads, example during the cooling process.

In this report a few selected results are presented for a material system consisting of SIC-6 .

cylindrical fibers which are periodically embedded into a plate matrix consisting of beta21

material. The results are based on a linear elastic micromechanics model which provides the stress
profiles due to (i) a uniform load perpendicular to the direction of the fibers and (ii) due to a
thermal expansion mismatch. In this analysis, perfect bonding between the fiber and the matrix is
assumed to prevail. For this case the analysis shows that at a free edge and for a lateral load, there
exists a weak stress singularity which increases as the temperature increases. Selected stress
profiles are given for the above two loads. Moreover, the application of a fracture criterion shows
that no failure is likely to take place for a cooling temperature AT of 900° C Thus the growth of
any pre-existing microcracks w1ll be suppressed.




1. INTRODUCTION.

Residual stresses due to curing and thermal stresses due to differences between the
thermal expansion coefficients of the matrix and fiber may have a major effect on the
micro-stresses within a composite material system and must be added to the stresses induced by
the external mechanical loads. Such micro-stresses are often sufficient to produce micro-cracking
even in the absence of external loads, example during the cooling process. Furthermore, if the
material system is thermally fatigued, these residual stresses may cause some of the existing
micro-cracks to grow and coalesce and thus form the presence of larger cracks.

Thus, if rational designs in the use of fiber-reinforced metal matrix composites are to be
made, their performance under static, dynamic, and thermally fatigued loads need to be
predictable. The first step towards this goal is the realization that the ultimate failure, as well as
many other aspects of the composite behavior, are the result of growth and accumulation of
microdamage to the fibers, matrix and their interfaces. Thus, it appears that any generally 3
successful model of performance and failure must incorporate the effects of this damage in some
way. This certainly represents a challenge. In this paper, we address the form of such damage due
to the residual stresses developed as a result of the thermal expansion mismatch between the
fibers and the matrix.

In this work, a systematic, 3D, micromechanics approach is used in which the fibers of a
composite material system are modeled as cylindrical inclusions that are embedded into a matrix
plate. The analytical model is then used to predict, the residual stresses due to a thermal expansion
mismatch, e.g. during a cooling process. Moreover, the model provides a better understanding of
how the residual stresses are developed and how they can be controlled particularly in relation to
ceramics where there is no ductility to accommodate any plastic deformation.

The analysis reveals the dependence of the residual stress field on the fiber volume
fraction ratio, identifies the critical locations where a crack is most likely to initiate and
subsequently propagate, recovers the interface shear stress profile and provides important
information and guidance to material designers for the pre-selection of fiber and matrix materials
in order to alleviate some of the residual stresses. It may be noted that the theoretical model is
applicable to ceramic and metal/matrix composite systems.

2. MATHEMATICAL MODEL.

Consider in infinite plate matrix which consists of material Beta21, see fig. 1. The matrix
plate is assumed to extend to infinity both in the x- and y- directions. In the z-direction, the matrix
plate is assumed to have a finite dimension, 2h, in order to capture any possible 3D effects that
may be present. A uniform and square periodic set of cylindrical, SIC-6, fibers are embedded into
the matrix plate in the directions of both x and y. Two types of loads are being considered : (i) a
uniform transverse load o, perpendicular to the direction of the fibers and along the y-direction -
and (ii) a uniform temperature load AT (cooling ) that is applied throughout the material system.
Both fibers and matrix are assumed to be homogeneous and linear elastic. :
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Fig. 1. Geometrical configuration.
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The governing equations, are the well known Navier's equations coupled with the Energy
Balance equation. More specifically,

| g2, 24v)oT _
ThatV - a=0 @)

| v 2. 204V)aT _
1-2v5§+v v-15 5 =0 : (2)

1 ow 2 2(1+v) oT _
e TV WS v & =0 (3)
ViT=0 (4)

As to boundary conditions, (i) the appropriate stresses are required to vanish at the free
edge, (ii) perfect bonding is assumed to prevail at the fiber / matrix interface, (iii) finally the
boundary conditions within the cell configuration are required to be satisfied. Once the
displacement field has been completely determined, the stresses can be obtained by using the

stress-strain relations:

GU=)\.80'5“+2GSU'—G.(3)\.+ZG)(T—' To)s,_, S )

3. THE 3D DISPLACEMENT FIELD.

LN S A A R

Without going into the mathematical details, the 3D displacement field has been derived by
Folias ( 1976) and can be expressed as :

0 ()
w0 = -1 £ 2 0m, — /(B + mfa(B2)} (6)
© i i) )
+Z %@ cos(atnh)cos(onz) +17 —Y% + gt 2%
@) = L § o0 1 - 7
v = oL & 22 (2(m, — 1fi(Bu2) + mf2(B2)} (N

x aHg) 3Imi-1 () ) 61(3’) 1 2621(3’)
,.El.—ax—cos(a,,h)cos(a,.z)-t-;;-l—[g’ +I(2’ Vo "l o

® )] a,m
w0 = Lo 8 Eo(m - LG + B} -5z (B

where,
f1(Bv2) = cos(Bvh)cos(Bvz) (9
F2(Bv2) = (Bvh)sin(Bvh)cos(Bv2) - (Bvz)cos(Bvh)sin(Bvz) (10)




2+2 _gyEY =0 (11)

ol ayl -
2 2 )
2+ Z - pHHY =0 (12)

and /1 /2, I3 are 2D harmonic functions. Furthermore, it may be noted that the first series has
complex eigenvalues and eigenfunctions while the second has only real eigenvalues and
eigenfunctions. For an explicit definition of all functions see Penado and Folias (1989).

4. LOADING TRANSVERSE TO THE FIBERS.

(i) Interior Stress Field:

For a uniform transverse loading along the fiber direction and under the assumption that
perfect bonding prevails at the fiber / matrix interface, the 3D stress field (at the interface) and
along the fiber length is found to be constant ( see Fig. 2 ) all along the interior and that as one
approaches the free surface a boundary layer is noted to prevail where the stress field increases
rather rapidly. This rapid change suggests, therefore, the presence of a possible stress singularity.
Moreover, the width of this 3D boundary layer is, approximately, two fiber diameters from the
free edge. The reader may also note that a second, 3D, effect is that the amplitude of the stresses
at the center of the fiber length is, in general, a function of the ratio of fiber diameter / fiber
length. If that ratio, however, happens to be less than or equal to 1/10, then all along the interior a
'pseudo plane strain' condition prevails. Figs. 2a, 2b depict the profile of the interface stresses at
0=0 as a function of z / h. The numerical results are specialized for the material system : SCS-6 /
fibers, Beta21 / matrix. Figs. 3, and 4, show typical interface stress profiles of the matrix and fiber
on the plane z=0, and as functions of the angle 0. The reader may notice that the max. of the
stresses occurs at the location 6 = 0.

(ii) Edge stress Field:

As it was previously noted, in the neighborhood where one approaches a free surface e. g
the edge of the plate or in the vicinity of crack bridging ( see Fig. 5 below), there may very well
be present a stress singularity. Utilizing a local, 3D, asymptotic analysis one can substantiate the
presence of a weak stress singularity. Complete details of this analysis may be found in the work
of Folias ( 1989 ). Without going into the mathematical details, a summary of the results, at room
temperature and for the composite material system discussed, is given below:




NORMALIZED STRESSES AT THE INTERFACE

MATERIAL SYSTEM : SCS-6/ FIBER, BETA21/ MATRIX

LOADING : UNIFORM TENSION TRANSVERSE TO THE FIBER
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Fig. 2a. Interface matrix stresses as a function of z/h.
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NORMALIZED OCTAHEDRAL SHEAR STRESS AT THE INTERFACE

MATERIAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX

LOADING : UNIFORM TENSION TRANSVERSE TO THE FIBER

FIBER DIAMETER / FIBER LENGTH = 1/10

0.46 + Vr = 0.07 ,9 =0

o
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Fig. 2b. Interface matrix octahedral shear stress as a function of z/h.




NORMALIZED STRESSES AT THE INTERFACE

MATERIAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX

LOADING : UNIFORM TENSION TRANSVERSE TO THE FIBER

FIBER DIAMETER / FIBER LENGTH = 1/10
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Fig. 3. Interface matrix stresses on the plane z=0 and as a function of 0.
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NORMALIZED STRESSES AT THE INTERFACE

MATERIAL SYSTEM : SCS-6 / FIBER, BETA21/ MATRIX

ADING : UNIFORM TENSION TRANSVERSE TO THE FIBER
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Fig. 4. Interface fiber stresses on the plane z=0 and as a function of 0.
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CORNER ANALYSIS AT THE EDGE

%'—)
%
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L7777

Possible composite failure mode

FIBER MEETING A FREE EDGE

Local 3D Stress Field : ( Folias IJF 1989 )
oy =pFy(®,9)
Where for a Titanioum matrix and SiC fibers
o =0.110, at room temperature
a =0.190, at 900° C
(i) location: ¢ =3,for G7Gn =3.608
o =-11219pBY

oM = —4.823pBY
o™ = -9.97pB®
ol = -3.391p™B™.

Fig. 5. Geometrical configuration and basic resuits.
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OCTAHEDRAL SHEAR STRESS AT THE CORNER OF A FREE EDGE:

The max. octahedral shear stress for G/G,_ = 3.608 occurs at 8 = 40°.

4.6=
4.5}
4.4
L=~y
<
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Q
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Q
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P
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4.2}
J
+
0 0.2 0.4 0.6 0.8 1 1.2 1.4

REMARK : Crack will initiate at the fiber edge and at the interface and will then
follow the direction of the max=oetahedral shear stress.

Fig. 5b. The octahedral shear stress at the corner.
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The following observations are worthy of note. First, as the ratio of the shear moduli
increases, so is the stress singularity. This is compatible with our physical expectations and within

" the assumptions of our theory. Second, all things being equal, at the edge the controlling stress for

failure is the radial stress particularly at the location ¢=0 and 6=0.

Room Temp. 900 C
at $=0: oMoty = 2.94 oPIcly =2.94
at o=n/2: o5 loly =2.33 oMIcly =2.18

Similarly, in the vicinity of the edge, the octahedral shear stress attains a maximum at an
angle $=40 degrees (see Fig. 6). It is interesting to note that in this neighborhood, the ratio of

Toctmax Iroomtempltodmax IQOOOC = 1/209

This suggests, therefore, that as AT increases the application of a transverse loading will cause the
matrix to undergo substantial more plastic deformation in this region.

Computing next the displacement at the free surface z = h, we notice that its magnitude
increases at elevated temperatures.

wl ¢=0,6=0,RoomTemp/ W=0,0=0,9000C = 11.6.

Physically, this suggests that a mode I, IT and III crack failure will initiate at the edge and
at the interface due to an applied load transverse to the fibers.
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5. RESIDUAL STRESSES DUE TO A THERMAL LOAD.

Residual stresses due to curing and thermal stresses due to differences between the
thermal expansion coefficients of the matrix and fiber may have a major ‘effect on the
microstresses within a composite material system and must be added to the stresses induced by

-the external mechanical loads. Such microstresses are often sufficient to produce microcracking
even in the absence of external loads, example during the cooling process. -

In this investigation, a systematic, 3D, micromechanics approach is used in Wthh the |
fibers of a composite material system are modeled as cylindrical inclusions which are embc;gided
into a matrix plate. The analytical model is then used to predict, the residual stresseg due to a
thermal expansion mismatch, eg. during the cooling process. Moreover, the model prowdesoa '
better understanding of how the residual stresses are developed and how they can be contmhe&
particularly in relation to ceramics where there is no ductility to accommodate plasttc
deformation. S

The analysis reveals the dependence of the residual stress field on the fiber volume fraction
ratio, identifies the critical locations where a crack is most likely to initiate, recovers the interface
shear stress profile and provides important information to the matefial designers for the
pre-selection of fiber and matrix materials in order to alleviate some of the residual stresses.

Without going into the mathematical details, we consider a composite material system
consisting of SIC-6 fibers which are embedded into a beta21 matrix plate and the entire system is
then exposed to an environment of a uniform cooling temperature AT. While it is true that the
material constants do change as a function of the temperature, the thermal coefficients appear in
the solution as a ratio and interestingly enough this ratio changesvary little. On the other hand, the
ratio of the shear moduli changes considerably as the temperature varies. Thus, the results are
very much dependent on the material properties which one uses. Thus, if one bases the analysis on

the shear moduli ratio at room temperdture, the following stress profiles ar_e__reco.vered at ke fiber .

/ matrix interface. Fig. 7 depicts the radial matrix stress on the plane z=0 and as'a function of the

angle 0 . It is noted that the radial stress is compressive. Similarly, the tangential stress i tensilein’

nature and its maximum occurs at the location of © = 0. In general, the location ‘of this maximum;,
is a function of the material properties and particularly the shear moduli ratio. Moreover, in the -
above analysis perfect bonding was assumed to prevail at the fiber / matrix interface. If, however,
we relax the conditions at the interface and allow slippage then the maxjmum occurs elsewhere.-
More specifically in this case it occurs at 6 = 45. ’

Examining next the possibility of matrix cracking, it becomes evident from the above that
no cracking will occur in the matrix for a AT = 900°C. This matrix material i is 100 strong for
preexisting microcracks to grow. Examination of the 62z stress also shows that no cracks will
develop in that direction either. These results are in line with the obtained in house tesults based
on finite elements ( J. Kroupa, 1994).
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MATERIAL SYSTEM : SCS-6/ FIBER, BETA21 / MATRIX

LOADING : UNIFORM THERMAL LOADING
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INTERFACE RADIAL STRESS

Vr=0.39
G/lGm=3.60

Fig. 7. Interface radial matrix stress on the plane z=
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0 and as a function of 0.
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MATERIAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX

LOADING : UNIFORM THERMAL LOADING
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Fig. 8. Intérface Geg matrix stress on the plane z=0 and as a function of 6.
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Finally, it should be noted that the effect of the shear moduli ratio on the interface stresses
is substantial. This can be seen by the following comparison of the tangential interface stress when
using three different shear modaulii ratios which reflect different temperature levels:

O, /(.G AT) Oy /(0,,G,, AT) O /(a,,G,, AT)
Ne Room Temp. Mid Temp. - HighTemp.

039 1.36 1.59 1.64

Although it would be desirable to have a program in which the material properties do vary with
temperature, one can compensate by taking the results corresponding to the high shear modulii
ratio. The thermal expension coefficients on the other hand appears as a ratio which ratio does not
vary appreciably to make any significant differences.

The variation of the normalized tangential interface stress as a function of the fiber volume
fraction, for this material, is almost linear and may be approximated with the equation

% —0.92+1.02V7+028 V. ~ (13)

6. CONCLUSIONS.

In view of the above, the matrix will not exhibit any cracking as a result of the residual
stresses which are developed during the cooling process (AT = 800°C). Moreover, the residual
stresses predicted are in very good agreement with those obtained in house. ( WL/MLLN )
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1 Introduction

In design, anticipation of material failure is vital. Over the last decades, a
theory first proposed by Griffith has become one of the most used tools in
prediction of fracture of simple materials. In the Griffith theory, a material
is assumed to have microscopic cracks with high stresses found at their tips;
these cracks cause the material to fail at a much lower level than molecu-
lar binding forces predict. To accurately predict failure of these materials re-
quires knowledge of the stress field near the tips.

Composite materials also have cracks, but models are much more involved
because of material interactions. As before, accurate determination of the
stress field, especially near high stress regions, is vital for failure prediction.

For all but the simplest geometries, closed form solutions are almost impos-
sible to obtain, so numerical methods have become very popular. For ma-
terial science, by far the most popular methods are the finite element (FE)
methods. Some of their desirable properties are relative conceptual simplic-
ity, straightforward (but tedious) implementation, a large available code base
for solving problems, and a tendency to require only modest computing re-
sources. Since finite elements are based on polynomials, the solutions to prob-
lems for which finite elements are used must be expressible as a sum of poly-
nomials, or the FE approximation will be very poor. Since functions with
unbounded derivatives (i.e. stresses near cracks and material interfaces) can-
not be approximated well with polynomials, it is common to use special el-
ements for these functions.

For example, in 2 dimensional problems and some special 3 dimensional cases,
it has been shown that the stresses near the crack tips are proportional to
1/4/r, and that the constant of proportionality, K., depends only on the ge-
ometry of the material. This is enough information to complement the (poly-
nomial based) FE methods with singular elements (which behave like 1//r
in the appropriate regions), thus reducing the problem to one for which FE
are well suited, and get good numerical answers.

For other 3 dimensional crack problems however, asymptotic expansions have
shown the stress fields to be proportional to 7=%, 0 < & < 1/2, a depending
on the geometry of the material. Thus, for 3D problems, one does not in gen-
eral know the behavior of the singularity a priori, and the problem cannot
be reduced to one which FE can handle well, resulting in low accuracy near
singularities. Notice the difficulty here: the stress distribution in the vicinity
of a crack also depends strongly on material geometry, making it impossible
to separate behavior near cracks from the rest of the material— but this sep-
aration is how FE methods handle these problems.

This inherent weakness of most numerical methods — the inability to han-
dle singularities without “assistance” — is not shared by the group of sinc-




function based methods. Further, sinc methods enjoy an exponential con-
vergence rate, enabling one to get many digits of accuracy with reasonable
work, if desired.

For crack and related problems, this means only the location, but not the type,
of the singularity is needed, and the solution can be accurately computed.

The weakness of using these methods lie in the fact that their use for differ-
ential and integral equations is recent, so no large code base yet exists; their
use has been largely in 1D problems; and they are not as intuitive as FE or
finite difference methods, hence overlooked by most people.

The purpose of this work over the last years has thus been the further devel-
opment of sinc methods for systematic solution of problems in mechanics
that possess singularities. The development of the method has been guided
by a representative problem, described in detail below.

It should be emphasized that the following problem is only one example
of an entire class of problems, serving here to illustrate the effectiveness
and flexibility of the sinc methods for that class of problems.

It should also be noted that this method is readily extended to handle fully
nonlinear material behavior.

The details of the method and development to date comprise the bulk of the
remainder of this report.

2 Problem and Solution Approach

The problem here is to find the stress field uniformly to a desired accuracy’
in the piece of composite material shown in figure 1. To this end, we solve
the full isotropic Navier’s equations

1
1-2v

with appropriate displacement and stress boundary conditions.

VZu +

V(V-u)=0 (1)

This problem is broken down as follows.

1. Using this problem’s radial symmetry allows immediate reduction to
a sequence of 2D problems on domains as shown in figure 2 — section
2.1. '

2. At points 4,,..., Ay, singularities are to be expected. Typically, these
singularities’ behavior depends on approach direction, so each of these

problems is further divided into triangles, and these triangles are mapped

to coupled rectangles as shown in figures 3 and 4 — section 2.2.

"Uniform accuracy of 3 digits in both displacements and stresses is easily achieved.
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Figure 1: The domain for the full 3D problem. The debonded region is
treated as a very thin crack.
/Fibrous inclusion

/

Matrix

Region of debonding

3. The sincmethod is applied to the resulting collection of rectangles, and
the solution is thus obtained — section 2.3.

The details of steps (1) and (2) are currently being worked on, and are pro-
gressing rapidly. We therefore only present an outline of the required steps
in sections 2.1 and 2.2. The sinc method and its application to (3) are found
in section 2.3.

2.1 Forming of the 2D sequences
Although the sinc methods can be used directly for 3D problems, incremen-

tal development is best done for 2D problems first. For the given problem,
we take advantage of the geometry and use the substitutions

ur(r,0,2) = upo(r,2) + i Urn(T, 2) COS (%0) 2
up(r,0,z) = Z Ug (7, 2) sin ( 0) (3)
uy(r,0,2) = u,0(r,2) + Z Uz, (T, 2) COS (%9) 4)




z= A
z=C fiber (1) As matrix (2)
r
crack
z=-C As
z=-h Ay
r=0 r=a r=b>a

Figure 2: Reduced 3D problem. Crack and points with singularities are in-
dicated.

in the polar form of equation 1 to reduce the original equations to the men-
tioned sequence of 2D problems. The equations governing figure 2 are thus

2 2 v (2 Uy a . 2
-2 (_8__ Ur,O) v+2 (—a—-— Ur,o) -2 (ar ,0) +2o (‘(?‘“ Ur,O)
T T T 2

or?
i . r i
—2 (Tur,o) u+2":‘2’”—2“’”+( uz,o) =0 5)

8 KA 8
(62 ) —2 (a_zuz,O) y+ 0 _ g (3 420) v 4 22 tno

arz "0 Or? T T T
0? 0? 02
-2 (ﬁ uz,O) v+2 (ﬁ uz,ﬂ) + (az or ur,O) =0 (6)
for the non-§ terms of equations 2—4 and
0? 1(-34+4v)upun 02
—2(1/—1) (ﬁu,,n)—ké— 2 —(—1+2V) azzur,n
(V—l)(a-a;ur,n) 2u,,n+1(—1+2u)ur,nn2+2yur,n
r 2 4 2 2
8 1 (2 von) n
Ao 0/ - 7
+ (az or uz’") + 2 T 0 @




z=h
d A
d3
z=C
4
ds f
z=-c ds
dq
ds
d
z=-h ?
r=0 r=a r=b>a
Figure 3: Triangulation of reduced problem.
(—1+4+2v) (53—:2 ug,,,) (-1+2v) (-(% u(;,n)
T r2
1(v=1)uppn? 1(-3+4v)uran
M = R 3
2
_ (-1+2v) (5922 'uo,n) 1(% r,n) o VYo
r 2 72 r3
]
U n 1 ('5; uz,n) n —0 (8)
™2 2 B
02 0? 1(-1+2v)u,,n?
_2(1/—1) (ﬁﬂz'">—(—l+2ll) (-aﬁuz,,,)+z 2
5 ) l(%ug,,,)n_(—1+2u) (%u”")_i_a%“m
oz0r ") 2 T T T
=0 ©)

for the @ terms — notice the n dependence here.

So far, we thus have one 2 unknown system, and one 3 unknown system,
both independent of §. Of course, each set occurs twice — once for the matrix
and once for the fiber, and appropriate coupling is done across the bound-
aries by matching stresses and displacements above and below the crack,
and requiring zero stresses at the crack.

The boundary conditions are transformed similarly.
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Figure 4: Rectangular solution regions from triangulation of reduced prob-
lem. Notice that the four domains shown share the boundary that came from
the point A,

2.2 Mapping of the Triangulation

After the reduction to a sequence, there may be singularities at the points
Ay, ..., A4 (figure 3). Most likely, these will be moving singularities, e.g. us-
ing a second polar coordinate system with origin at point A4, the displace-
ments may have a form similar to f = r*sin(f), 0 < o < 1/2. In the coor-
dinate system used in figure 2, f would behave like z(r? + 22)*/2-1/2 near
A,, and its partials would have the dominant term rz/(r? + 22)3/2-2/2, This
form of singularity is easily changed to a more suitable form via the map-
pings r = &, z = n€. Geometrically, this means splitting rectangular do-
mains into triangular pieces, as shown in figure 3. Algebraically, this map-
ping turns dominant terms of derivatives into the form 1/£!~¢, which no
longer depends on approach direction, enabling direct solution using sinc
methods.

2.3 Sinc Method Description

It is the purpose of this chapter to give necessary background for the under-
standing of sinc methods as used for the present work. We begin with some
known one-dimensional results in section 2.3.1; the extension to two dimen-
sions is shown in section 2.3.2. The extension to higher dimensions is similar,
and will not be shown here.

Section 2.3.2.5 demonstrates a 2 dimensional, multiple unknown, multiple-
domain problem of the type occurring after the triangulation done above.




2.3.1 Sinc methods for 1D problems

In this section, we summarize some available results for sinc interpolation
and sinc collocation. The main reference for technical details of this section is
the book Numerical Methods based on Sinc and Analytic Functions, Springer,
1993; most results are proven there.

2.3.1.1 Interpolation and simple collocation First, some definitions.
The sinc (or Whittaker Cardinal) function is defined by

sin(7 z)

sinc(z) = (10)

T

Define the domain D, by
D; = {w € C|S(w) < d} (11)

Leta > 0,and let L, (D,) denote the family of functions f with the properties
e fisanalyticin Dy;

e forsomec > 0andall z € Dy,

eaz

1f(2)| < “TreD® (12)
rd \ Y2
Now, taking h = (&_ﬁ) , we have the interpolation result
N . z —kh
f(z)= > f(kh)sinc — |+ E(N)
k=—N

E(N) = ¢;V/Ne~VrdeN (13)

for a positive ¢; depending only on f, d and a. Notice that this result is for
the real line, and the function must decay at +oo.

By first remapping functions approaching a nonzero limit, this can be en-
hanced to handle non-zero values at +o0:

N z—kh
f@)= Y ¢ sinc ( - ) + eN41500(Z) + C—m-15-00(z) + E(N) (14)

k=—-M
ck = f(kh), k= —N.N (15)
c-m-1= f(—00) (16)
env41 = f(o0) . (17)
Sol@) = T (18)
Seol®) = 1 f:am (19)
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Notice that the summation runs from —M to N; the error bound is of the
same form as above.

Defining m as m = 2N +1, this means once n digits of accuracy are obtained,
one can roughly get 1.4n digits by doubling m.

To interpolate a function f defined on [a, b] C R we first make the following
definitions:

1. for [a,b] € D, ¢ is a conformal map with ¢ : D — D,
2. p=9¢7"1

3. p=etd

4. %™ = sinc (ﬁ‘i@%’“—")

Leta > 0, and let L, (D) denote the family of functions F with the properties

e F'is analyticin D

e forsomec>0andallz € D,

p(2)®
F(2)| L e~ 20
PO T 0
rd \?
Now, taking h = (m) , we have the interpolation result
IR0
fl@) = 3 e (z)+ E(N)
k=—-N
E(N) = CV/Ne~VrdeN (1)

for a positive ¢, depending only on f, d and a. Notice that equation 20 re-
quires f to vanish at the endpoints of the interval.

As before, this series can be enhanced to handle nonhomogeneous endpoint
values with a simple addition:

F(z) = i ck'y,(ch) (z) + en41S5(2) + c—pm-1Sa(z) + E(M, N) (22)

k=-M
Cp = (F — S — Sb)(":b(kh))a k=-N.N (23)
cv+1 = F(b) (24)
c-m-1= F(a) (25)




and S, and S, are cubic splines with value 1 at the left and right endpoints,
respectively, and zero derivatives at the endpoints.

As written, the expressions for the ¢, are no longer simple function evalua-
tions. This extra work can be shifted to the expansion of F' by defining the
discrete-orthogonal terms

.0 = 5u@) - X dena) 26)
& = Su(p(kh) @)
5@ =5@ - L denl) 28)
s = S0 (k) (29)

With these definitions, we have the expansion

N
F@)= Y i (z) + csSs(x) + cala(z) (30)

k=-N

with ¢ = F(zy), ¢ = F(a), ¢y = F(b), and z = ¢(kh)

2.3.1.2 Extensions for mixed boundary value problems For the solution
of mixed boundary value problems, a finite nonzero approximation of the
derivative at endpoints is needed. Since the derivatives of the ; are un-
bounded at the endpoint, a nullifier g is introduced to make the derivatives
of the series terms also vanish at the endpoints. Then, as before, adding extra
terms with the right properties gives a useful basis.

Let T,(z) and T(z) be cubic splines with derivatives of one at the left and
right endpoint, respectively, and other values and derivatives zero at the end-
points; then the following series can be used to approximate f on [a, b)) when
[ is specified via a mixed boundary value problem.

N
f@) = X am(@) + eSh(@) + caSa(z) + ey Ti(z) + (31)
k=—-M
caTo(z) + E(N, M) (32)
Y% = sinc (M) 9(z) (33)
zx = (kh) (34)
1
g(z) = @) (35)
a = flze)/9(zk) (36)
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e = f(b) (37)

ca = f(a) (38)
cv = f'(b) (39)
cw = f'(a) (40)
N
Sa(z) = Sal@)— Y diw(z) (41)
k=—
_ Sa(xk)
dp, = —-———g @) (42)
N
S(@) = Siz)— Y dim(a) (43)
M
_ Sp(zx)
d = 9(zk) (@4
N
To(z) = Tu(z)— Y din(z) (45)
k=-M
_ Ta(l‘k)
d. = ————g(.’rk) (46)
Ty(z) = Tb(x)—k_Z di k() (47)
_ Ty(zx)
dy. —g(:vk) (48)

All following extensions are based upon this series representation, or sub-
sets of it.

2.3.2 Sinc methods extended for 2D problems

The straightforward way to extend the sinc series to higher dimensions is
via tensor product. In this section, two derivations of the series expansion
are given and the matrix structure which arises for collocation is described.

In section 2.3.2.1, we first show the derivation under the assumption that the
unknown canbe fully represented by the series (31), and using a tensor prod-
uct to get the two dimensional extension.

Next, we treat the splines in (31) as a change of unknown, so as to produce a
: N

homogeneous equation to be satisfied by the simple sum Y ¢y (z), and
k=—-M
extend this line of thinking to two dimension - section 2.3.2.2.

Extension of the series to multiple domains is considered in section 2.3.2.3

Splitting of the two dimensional series into logical units for collocation and
matrix setup is the subject of section 2.3.2.4.
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2.3.2.1 Tensorproductderivation Letu(z)be represented by the full sum
used in equation (31), written as single sum. Thus

N+2
wz)= D anl) = (@) (49)
k=—-M-=-2
where the last equation is written in summation notation (repeat subscripts
are summed over). Then we have

u(@,y) = [dk(¥)]m(z)

= [dkyko Ve ()] Vo (2)
Ni42  Nat2

> Y ik ()76 (Y) (50)

ki=—M1~2 ko=—Mo—-2

This representation is valid on any rectangular region; regions with other
shapes can easily be mapped onto a rectangle. Also, the “rectangle” can be
unbounded on one or more sides; only the choice of conformal map (below)
changes. Thus, half- or fullspace problems can be solved easily.

Assume for simplicity N; = Ny, M} = M . Definemasm = N + M + 1.
Then the series (50) has

(m+4)?=m2+8m+16 (51)

terms. Notice that this is the most general form possible, used for problems
with mixed conditions on all boundaries. Since not every problem has mixed
conditions on all boundaries, the nullifier must be selected in conjunction
with the splines for each direction and boundary separately before forming
the tensor product.

To this end, it is more natural to think of the splines as a remapping of the
unknown — the subject of the next section.

For collocation points, starting from {zi|zx = ¥(kh)}}k=-m-1.N+1 U {Za,zp}
for the one-dimensional case, we get the collocation points as a tensor prod-
uct also:

{zkjlzi; = (W(kh1), ¥(5he)) k=—rr—1. My +1,5=~Mr—1.Np+1 U (52)
{Zaj|Zaj = (@a, V(5h2))}i=-Mp—1.Np41 U (53)

{zoj|ze; = (@5, P(5h2)) }i=-Mr-1.Mp41 U (54)

{ZkalTra = (Y(kP1), Ya) be=—ry -1 41 U (55)

{zrs|zes = ((kh1), Y6) o=—py~1. M1 (56)

Notice that we have (m + 4)> = m? + 8 m + 16 points, as expected.

2.3.2.2 Tensorproductsrevisited Recall thesimpleseriesused for L, func-
tions in 1D (equation (21)). By using a nullifier, this series has zero value and
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zero derivative at the boundaries. By providing splines for the nonhomoge-
neous boundary conditions (equation (22)), the problem Lu = f, Bu = g is
effectively remapped to Lv = f, Bv = 0 and this problem can be solved with
the sinc-only series (21).

The same approach can be taken in 2 (and higher) dimensions. Starting with
the simple sinc series and forming the tensor product, we obtain the repre-
sentation

N N>

wzy)= > D ¢k (S(k,h1)odigr) (z) (SUy he) 0 doge) (v)  (57)

j=—M; k=—M,

valid for u € L, v/(a) = u/(b) = 0. It thus remains to remap the problem
Lu = f,Bu=gto Lv = f, Buv = 0.2 Taking a hint from the previous section,
on each boundary of the rectangle, we can use a series of the form

Mz

Y [(Sth,h) 0 101) (1) + Salwr) + Salmn) + Ta(w1) + Ti(21)] S(z) (58)

j=-M;
for u’s value and tangential derivative, and a series of the form

N,

> [(Stk,h) o b9) (1) + Sa(m1) + So(z1)] T(22) (59)

j=—M

for g%. The direction of the boundary is z;, the normal direction z,. This
gives a total of m? + 8m + 24 terms per unknown. The causes for this larger
number are redundancies at the corners of the domain, in the spline-only
terms. First, u only has one value at each corner, reducing the total number
of terms by 4. Then, the z and y partials at each corner are unique also, fur-
ther reducing the number of terms by 8. Thus, we are left with m?2 + 8m + 12
terms per unknown. The four terms missing here but present in (50) are the
second order mixed derivative terms representing 5§Z—y at the corners of the
domain.

The results in sections 2.3.2.1 and 2.3.2.2 thus differ at the corners of the do-
main; numerically, the presence of terms representing the mixed second par-
tial is redundant and these terms are not used.

Next, we derive at the collocation points by extending the 1D problem in a
way analogous to the series derivation, rather than by tensor product. First,
recall that for 1D, three point regions can be distinguished. Always present
are interior collocation points, given by z, = v(kh),k = —M..N since these
correspond to the sinc part of the series. When the splines representing the

Note: for single unknown problems, an explicit remapping can usually be found, so
that the resulting problem has only the coefficients of (57) as unknowns. However, with
multiple unknowns, only the form of the remapping is known, and unknown coefficients of
this form also go into the matrix system. Thus, this approach is somewhat implicit.
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Figure 5: The point layout for 2D collocation, for N = M = 1. The circles are
the boundary points, while the crosses represent the always present part of
the interior points obtained from the 1D tensor product. The points marked
with triangles are used only when the derivative spline terms corresponding
to them are present. Notice that the points are not really evenly spaced.

SaSES B R
OAAAAAD
PAXXXAOD
OAXXXAOD
QAXXXAQD.
PAALAAAAD

value of the unknown at the endpoints of the interval are present (.§’,a etc.),
the collocation point set is expanded to include the boundary points. Lastly,
when the splines representing the derivatives at endpoints (T}, etc.) are in-
cluded, the collocation points are further extended with extra points in the
interior: zx = ¥(kh), k= {-M —1,N + 1}

Selecting the collocation points in 2D analogously we have a point grid as
shown in figure 5.

Notice that here we have no points at the corners, unlike equations (52); this
is consistent with the series selection in equations (57) through (59), since
there we also have 4 terms fewer than equation (50).

2.3.2.3 Multiple Domain problems in 2D Handling of multiple domain
problems is straightforward. At the connecting boundaries, the equations
involve unknowns from both domains and this simply reflects in the collo-
cation matrix.

Stated another way, the continuous properties of the linear problem are re-
flected in the discrete approximation via the linear system. Therefore, one
has to only consider the matrix implications of domain coupling. These con-
siderations go along with those for general matrix setup, and are the topic
of section 2.3.2.4.

2.3.2.4 Splitting of the series and points Recollecting the form of the se-
ries in section 2.3.1.2 (equation 31), we next expand the pieces of equations
(57) through (59) and arrange the terms in a form conducive to setting up
and solving the linear system which arises from collocation of a boundary
value problem.

Similarly, the collocation points in figure 5 are dealt with in separate parts,
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to facilitate multiple domain handling and more elaborate unknown repre-
sentations®.

For collocation point ordering, first note that different equations are valid on
each of the boundaries, and further that not all of the ancillary interior points
(triangles, figure 5) are always needed, while the interior points (crosses, fig-
ure 5) are always used. This suggests separately handling the boundaries,
ancillary interior points, and interior points, giving a total of six point sets
per domain. Throughout, these will be denoted by t,b,1r,a,i.

For the unknown’s component splitting, note the following.

e The Spline-Spline product terms are nonzero in most of the point re-
gions.

e The interior series has zero value and derivative, or zero value and un-
bounded derivative (depending on nullifier) on the boundaries, and
thus never needs to be explicitly evaluated at there.

e The Series-Spline terms of equation (58) and (59) are nonzero only in
the interior and their boundary (the boundary on which the spline’s
value or derivative is 1)

From these observations, it follows that for multiple domains, only the Spline-
Spline product terms and the Series-Spline terms on the touching bound-
aries are affected by the overlap, and the domains unknowns’ are otherwise
independent. Thus, the unknowns are split into top-value, top-partial, left-
value, ..., right-partial and interior series parts, complemented by the Spline-
Spline terms, which we will refer to as corner splines (since they provide val-
ues and derivatives at the corners).

This is perhaps best illustrated pictorially; figure 6 shows the structure of a
single unknown using formulas, while figure 7 shows the structure as it is
implemented on the computer.

The above structuring for points and unknowns leads directly to the matrix
block structure. Since this structure can only be drawn for specific cases, we
refer here to figure 11 which is part of the example shown later.

2.3.2.5 Numerical Example-Multiple Unknown/Domain problem This
is one of many test problems; it is far from the hardest. It was chosen here be-
cause it illustrates all important features of the sincmethod applied to multiple-
domain, multiple-unknown P.D.E. problems, while being conceptually sim-
ple.

*Mixed boundary conditions on one boundary, with Dirichlet or Neumann conditions
on another, and coupling between unknowns and domains.
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8
u = ZciBS(w,y) +

=1

16
Y BT (x,y) +1S(,y)

i=1

/

Ny Na
IS@y)= Y, Y ¢k{STG:)STk)}

J=—M; k=-M3

—

BT (z,y) = {0S(2)0S(y)}

N
BS(z,y) = {OS(z) > cksr(k,m}
k=—M

ST(z) = sinc((CM(z) — kh)/h)NU(zx)

N
0S(z) = §P(x)— Y diST(3)
k=—M

CM(z) = ln(:::) SP(z) = az® + ba® + cz +d
= 1) = B a)(=b+2) - _SPUCM(kh))
NU(z) = 1/CM'(@) = —= 5 % = NUUCM((kR))
_ _ _ (e¥b+a)
ICS(z) =CM~Y(z) = — T

Figure 6: The unknown’s representation hierarchy (mathematical expres-

sions shown).

The Geometry

This problem requires the solution of two sets of elliptic partial differential
equations on two rectangles which have one common boundary. See figure
8 for the equations and their location. In the equations, the following defi-

nitions are used:

0 0
au-—(/\+2G)-a—;u+)\a—yw (60)
o —(/\+2G)£w+/\iu (61)

w Oy oz
0 0
Ozy = Ga—zw + Gé;u (62)
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Unknown

il

InteriorSeries BoundaryTerm
BoundarySeries
SeriesTerm OrthoSpline
ConformalMap Spline
Nullifier Dk macro
i
InverseConformalMap

Figure 7: The unknown’s representation hierarchy (program parts shown).

and g, etc. are determined by substitution of the exact answer, chosen below,
into the appropriate equation.

The exact answers
The exact answers here are chosen as

ul = (z — )™ (2, — z) (63)

wl = (z — z,)"" + 3.0 (64)

u? = (y - ya) (s — ¥) + (3 — 2)"* (65)
w2 = (y— ya) (v — ¥) (x — Ta) (25 — x)mwz (66)

and runs are made for various values of lpul, lpwl, rpu2, rpw2. z, and y,
denote the left and bottom boundary of the domain, respectively, while z,
and y, denote the right and top boundaries.

Numerical Parameter Values
For the above equations, the parameter values shown in tables 1 were used.

Parameters of Unknowns’ Sum Representation
Having the unknowns’ representation as detailed in section 2.3.2.4, it remains
to provide parameter values; the chosen parameters are shown in table 2.

Collocation Points Used
In figure 9, the used collocation points’ indices are shown graphically. Recall
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U =g
w = gio

Ozy = g1 Ozy = g5
Oyy = 92 Oyy = g6

G

2 2 2 2
G ;f?;w+%5w)+()\+G)(ﬁ3;u+#w)=f2 G

42 +(A+G) 4 ) = fa

2 2 2 2 2 2 2
%ﬁ-u+a‘%§u)+(A+G)(f—zgu+£ﬂw)=ﬁ G %,—w+d—‘i-;w +(A+G) d—zm;‘lt‘*'ag’w =f3
a2 i
TVt g Y Frrriaaen A

) (2
Oz — ¥y =h1
Domain 1 :(Ef) 2’) Domain 2
Ogx — ¥Pzz = ha

a® — 4 = py
w® — @ = hy

Oyy = g3 ' Ozy = g7
Ozy = g4 Oyy = g8

Figure 8: Domains with equations.

Table 1: Equation parameters

domain 1: | domain 2:
z,=1.0 z,=2.0
Tp = 20 Ty = 30
Y. =1.0 Y. =1.0
yp =2.0 y =2.0
G=11 G=1.1
A=20 A=20

that the actual position of a point is given by
z; = ¢ (), yx = ¢7 (kha)

and interior points are “bunched up” near the boundaries.

The block matrix

The above formulas are used to set up a matrix corresponding to the origi-
nal linear PDEs; its structure is shown with fixed block sizes (to keep names
legible) in figure 10, and in proportion in figure 11

Some numerical comparisons

There are many graphs for even this single problem. Some representative
results are shown in figures 13, 12 and 14.These graphs show slices in the y
direction, displayed to fit on single pages. Results shown use 29 series terms
in both z and y directions, and were computed on a PC with 32 Megabytes
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Table 2: Parameters for the sinc sum, both domains.

d=m/2.0
a=1.0
M; =10
M2 =1O
N1 =10
N2 =10

Mi=M+N +1
M2=M2+N2+1
h1 2‘/27%,‘1—1

hg_\/'_—"_r—d—

a Ny
Domain 1 Domain 2

0-0-0-0-0 0-0-0-0-0
OPAAAAAOD OAAAAAOD
M oD AXXXAO OAXXXAO
OAXXXAOD ODAXXXAO
M D AXXXAO ODAXXXAO
OPAAAAAOQ OAAAAAOD

0-0-0-0-0 0-0-0-0-0

-M, N -M; N

Figure 9: All possible collocation points are shown, but only boldface ones
are used in this example.

of memory.

Because the accuracy at most points exceeds 2 digits, most graphs show no
visible errors; the partial derivative in « shown in figure 13 has roughly a
10% relative error on the y-slice z = 1.001 near the left boundary of the do-
main. Not shown is the relative error on the y-slice at z = 1.003, only around
1%. Put another way, we can expect less than 1% relative error when within
3/1000 of the singularity or crack, using sufficiently many terms in the se-
ries. This is close enough, for example, to curve fit a simplified local model
of singular behavior near the crack tip, if so desired.

In conclusion, we thus get very good uniform accuracy, for functions and

derivatives, with both bounded and unbounded derivatives, making the method

well suited for crack and related problems.
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Figure 10: Coupled problem. Entries have the form (unknown)-{equation)-
(domain)-pts—(point region)-prt—(unknown part).
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Figure 11: Coupled problem, to scale, M = N = 10.
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Figure 12: Function value comparison; stars are computed values, solid lines
are the exact answer.

Sum/Exact. domain: 1 unknown:u Ml =14

0.3

0.2

0ps

.

1.001 1.111 1,222 1.333 1.443 1.554 1.665 1.775 1.886 1.9%7
y slices at indicated x values. y ranges from 1.001 to 1.997

Figure 13: Comparison of function’s partial derivative in z; stars are com-
puted values, solid lines are the exact answer.

s

M ¥

Sum/Exact. domain: 1 unknown: u, x partial, M1 = 14

)

A I

1.001 1.111 1.222 1.333 1.443 1.554 1.665 1.775 1.886 1.997

y slices at indicated x values. y ranges from 1.001 to 1.997
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Figure 14: Comparison of function’s partial derivative in y; stars are com-
puted values, solid lines are the exact answer.
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