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Abstract

A 3D micromechanical model has been developed to represent a
undirectional composite plate which is subjected to a uniform trans-
verse load 0,. The model assumes the fibers to be cylindrical inclu-
sions which are periodically embedded into an epoxy matrix. The
materials of both fibers and matrix are assumed to be linear, elastic,
and isotropic. The analytical solution shows the radial stress oy to
decrease as the fiber volume fraction V; increases. The stress profile
along a fiber length is shown to be constant except in the neighbor-
hood of the fiber edge where a boundary layer is shown to prevail. In
this region, the analytical solution shows the stress field to be singu-
lar which is a departure from the results given by macromechanical
theories.

In the limit, as Gy — 0% the 3D stress field of a plate weakened
by a periodic array of holes is recovered.

1 INTRODUCTION

It is well recognized that fiber composite materials are very attractive for
use in aerospace, automotive and other applications. These composites
consist of relatively stiff fibers which are embedded into a lower stiffness
matrix. Although in most designs the fibers are aligned so that they are
parallel to the direction -of the external loads, it is almost impossible to
avoid induced transverse stresses which may lead to premature failure of
the laminate. An excellent example of this is the case of a filament wound
pressure vessel in which the presence of curvature induces bending as well
as transverse stresses (Folias, 1965). However, in order to be able to predict
their failing characteristics, particularly in the neighborhood of free surfaces
such as holes, edges etc., it is necessary to know the local stress behavior
from a 3D point of view.

An overall summary of some of the results, which are based on 2D
elasticity considerations can be found in the books by Hull (1981) and by
Chamis (1975). In their pioneering work, Adams and Doner (1967) used
finite differences to solve the problem of a doubly periodic array of elastic
fibers contained in an elastic matrix and subjected to a transverse load.
Their results reveal the dependence of the maximum principal stress versus
the constituent stiffness ratio (E;/E,,) for various fiber volume ratios. A
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few years later, Yu and Sendeckyj (1974) used a complex variable approach
to solve the problem of multiple inclusions embedded into an infinite ma-
trix. Their results were subsequently specialized to cases of two and three
inclusions thus providing us with further insight into the strength of the
composite.

In this paper, we will construct an analytical solution for the 3D stress
feld of a matrix which has been reinforced in one of the directions with

cylindrical fibers.

2 Formulation of the problem

Consider the equilibrium of a body which occupies the space |z| < oo, ly| <
00, |z| < h and contains a periodic array of cylindrical inclusions of radius
a, whose generators are parallel to the z-axis (see Fig. 1). The physical
situation depicted here is that of a uniderectional composite plate that
consists of a matrix where fibers are embedded into. For convenience, all
quanties with the script (mm) will refer to the matrix while quanties the with
script f will refer to the fibers. The materials of both matrix and fibers
will be assumed to be homogeneous, isotropic and linear elastic. At the
interface, i.e. at r = a, perfect bonding will be assumed to prevail. As
to loading, a uniform tensile stress o, is applied on the composite plate
(see Fig. 1) which is in a direction perpendicular to the axis of the fibers.
Furthermore, the surface |z| = h, for both regions, matrix and inclusion,
will be assumed to be free of stress and constraints.

In the absence of body forces, the coupled differential equations govern-
ing the displacement functions u;” are :

1 9eld)

e V) =0, i=1,23 j =m, @)
J 1

where V? is the Laplacian operator, v; is Poisson’s ratio, u,(m) and qu )

represent the displacement functions in the matrix and fibers respectively,

and

u?

Ty

el) = : 1=1,2,3 ; j=m,f. (2)




The stress-displacement relations are given by Hooke’s law as
o) = Mjell) 6 + 2Gjel) (3)

where A; and G; are the Lame constants describing the material properties
of the matrix and of the inclusions.

As to boundary conditions, one must require that (see Fig. 2 for cell
configuration)

at |z =h: o) =7l = T,S’Q =0; j=m,f. (4)
at r=a: u™ -y = ugm) —uf) = ul™ —u{H) = 0. (5)
AP o) = P =P =0 (o)

Moreover, at r = 0 we require that all stresses and displacements be fi-
nite. the cell configuration boundaries AB and C'D will be taken as planes
of symmetry, thus satisfying the respective boundary conditions automati-
cally. It remains, therefore, for us to satisfy only the continuity boundary
conditions along the segment BC| i.e.

ufM(0) - uiM(F) =~V (G - 0) +ulM() (7)
ufm(6) — wM(g) =~ - )+ () (®)
F{™(6) = F™(5 — 6) (9)
F{™(6) = Fy('@(g ~ &), (10)

Fianlly, in order to complete the formulation of the problem, one must also
require the resultant forces

[ Feds=0 (11)
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F,ds = bo,.
g S50 = S (12)

It is found convenient at this stage to seek the solution to equation (1) in
the form:

) = uP 40 21,23 j=m,f (13)

where the first term represents the particular solution and the second term
the complementary solution.

3 Method of Solution

A generalized analytical solution to a class of three-dimensional problems
which arise in elastostatics has been constructed by Folias (1975 , 1990a).
The solution was subsequently used, Folias and Wang (1990b), to solve for
the 3D stress field in a plate which has been weakened by a hole. This work
was later extended to the solution of an isotropic inclusion embedded into
a matrix, Penado and Folias (1989). On the bases of these results, one may
now assume the solution to system (1), which automatically satisfies the
boundary conditions at the plate faces eq. (4), in the form ? :

u(90) = mjl_ 2 ”%:l 6;1:'1:,2(,1') {2(m; — 1) fi(B,2) + m; (B, 2)}
+n§ {_G;Ii;gj) u aﬁHﬁj)} cos (aph) cos (anz) (14)
A - yagg ) mf-i- i ?91%2
L SHD ) b )

L0 —

m; —2 L, 0zdy

2Note that because of symmetry in the present problem, one needs only to consider the
region 0 < 6 < «|2. :



2 {7 (5)
- ozo & H cos (anh) cos (ay2) (15)
() 24 ()
3m ) ) 6)\3 1 26 /\3
/\ J by J) __ _
Tl m; + 1 + A yay mj+lz Oz?
, 1 oo OHY 1 6,\“
w0 = —5 E oz B {(m; — 2)fs(B,2) - me4(ﬂ,,z)}— 3y
(16)
From which the stresses can easily be obtained as:
1 : 1 oo OH)
— o0) = 27 v
3G, i—2X { g 11(P?)
03H
- DA(B) + i85 17)

o [ &8HY  ,0HY
+n§1 {——-—-—axs + a, e cos (anh) cos (anz)
2 S A Y0\

+6x‘ Y b2 m;+1 Oy +m_7+1 9220y

1 1
e o0) = s {2ﬂ2 fl(ﬂuz)

&PHY)
— ( 93 —ﬁf ‘1)f1(ﬂu2)+m1f2(ﬂuz)]} (18)
+ n"é {6361? _a? agjﬂ} cos (anh) cos (anz)

2m,; 6/\§j) _ 6)\9) 1 BzAgj) 1 2 03/\;(3j)
m;+1 Oy 0z Y o2 m, +1° 0220y
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2G0T my- L f2(Buz) (19)
L6 = 1 oo &HY . s
56 = =3 L, 0ty 1)f1(8,2) +m; f2(Br2)}
j t
"z {% ;"‘3815 )} 03 {anh) cos (on2) (20)

M= 102y N N _yaug") 1 2263,\(3”
m; +1 Oz Oz dzdy m;+1 0r°

oo 0*HY)

L @6) = ™
l G Tyz - m; — 2 .?;1 Bmay ﬁv {f3(ﬂuz) + f4(ﬁu2)}
| 100 O*HY :
+§ nz=:1 O 320y cos (anh) sin (anz) (21)

1 m; oo 0?HY
(C)(J) e J v
l ot T 05
1 oo O*HY ; ,
Ii 2 E [——=— 522 af,H,(l’)]cxﬂ cos (anh) sin (anz), (22)
where
lﬁ | an=3h3n—123 (23)
!\ B, are the roots of the equation
y
sin (2B,h) = —(2B,h), (24)
HY) and HY) are functions of = and y which satisfy the reduced wave
o equation:
0? 0 F) H(J)
=0 (25)

Gzt By? —B) %, oz




o* 0

SHY)
(B *

5 =0 (26)

=iy
,\9 ), Agj ) and ,\gj ) are two dimensional harmonic functions, and

fi(Buz) = cos (B.h) cos (B,2) (27)

f2(Bz) = Bk sin (B,h) cos (B,z) — B,z cos (B,h) sin (B,z) (28)

f3(B.z) = cos (B,h) sin (B.2) (29)

fa(Boz) = B,h sin (B,h) sin (B,z) + B,z cos (Buh) cos (B.z). (30)

Examining the nature of the boundary conditions, we furthermore con-
struct the solution to equations (25) and (26) in the form:

H™ = ¥ a,Ki(fur) cos (2k6) (31)
k=0
HD = 3 bIy(B,r) cos (2K0) (32)
k=0
H™ = X CiKi(awr) sin (2k0) (33)
k=0
HY = 3 diIi(anr) sin (2k6). (34)
k=0
A™ = g(-nkf} sin (2k +1)8 (35)
A = k°° (—1)’°% cos (2k +1)8 (36)
=0
A — :g (—1)’°13ri cos (2k+1)8 (37)
=0
7
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MW = (<1 Eyr sin (2k +1)6 (38)
k=0

A = R (=1)*Eir cos (2k +1)8 39)
&

M) = 3 (=1)Gyr cos (2k +1)8 (40)
k=0

where I;(fr) and Ki(Br)represent the modified Bessel functions of the first
and second kind and ax, b, ¢k, dk, Ak, Bk, Ex and G are arbitrary constants
to be determined from the remaining boundary conditions (5) - (12). Upon
substitution of equations (14) - (40) into equations (5) - (12) one arrives
at a system of twelve equations involving series in z. The system may
then be solved numerically for the unknown coefficients. Perhaps it may be
worth noting that in our numerical analysis we satisfied first the boundary
conditions at r = a by using well over 200 roots. The method of solution,
as well as the rate of convergence of these series, is similar to that found by
Penado and Folias (1989, see reference for details). The system is sensitive
to small changes and for this reason double precision was used throughout
the numerical analysis.



4 Numerical results

Once the coefficients have numerically been determined, the stresses and
displacements may then be calculated at any point in the body. Avoid-
ing the long and tedious numerical details, the behavior of the stresses o,-
and ogp versus (z/h) and at r = a and 6 = 0 are given by figures 3 and
4 respectively. It is noted that the stresses along the interior length of
the fiber are essentially constant and that as one approaches the edge of
the fiber length, a boundary layer is shown to exist. This sudden change
suggests, therefore, the presence of a stress singularity at such regions. In-
deed, a separate asymptotic analysis for the investigation of the local stress
field, at such neighborhoods, shows the stresses to be proportional to p~%,
where a = 0.249 for a glass fiber/epoxy matrix interface (Folias 1989) and
o = 0.318 for a carbon fiber 3/ epoxy matrix interface (Li and Folias 1990).
It may also be noted that Figs 3 and 4 provide us with important infor-
mation concerning the regions of applicability of macromechanical theories.
The reader may recall that such theories predict the stress values at edges
to be finite, except in the vicinity of an interface where the singularity
strength is shown to be very weak (Wang and Choi, 1982; Folias, 1991).
Thus, they tend to underestimate the actual stress levels at such edges, e.g.
surface of a hole, surface of a crack etc. But, if one is to study damage
evolution at such regions, the knowledge of the local stress field is essen-
tial. Be that as it may, a closer examination of Figs 3 and 4 shows the
boundary layer region, for a transverse applied load, to be restricted to a
distance of one fiber diameter away from the fiber edge. On the other hand,
if the applied load is in the direction of the fiber axis, the boundary layer
is then spread out to a distance of six fiber diameters away from the edge
(Zhong and Folias 1991). Thus coupling between the macromechanical and
micromechanical results may be desirable in predicting local damage due
to fracture.

Returning to the stress profiles o,, and gge (Fig. 3 and 4) we note that
the magnitude of the stresses decreases as the fiber volume fraction, Vj,
increases. The decrease, however, is only noticed when the spacing of the
fbers becomes less than four fiber diameters center to center. Figs 5 and
6 show typical stress profiles for oy, and o as a function of G5/Gm. It

31 this analysis the material of the carbon fiber is assumed to be transversely isotropic.



is interesting to note that the circumferencial stress ogy decreases rapidly
as the ratio (G;/Gm) increases. For glass fiber/epoxy matrix (G;/Gn) =
16.67, which implies that the ogp stress is approximately zero. Thus, all
things being equal, the controlling stress for possible crack failure is the
radial stress o, at the particular location of § = 0. For large (G5/Gm)
ratios, the radial stress reaches an asymptotic value. A similar result was
also obtained by other researchers based on 2D considerations (e.g. Adams
and Donen 1967). In Fig. 7, a plot of the radial stress on the interface
boundary is shown to decrease as the angle 8 increases. On the other
hand, the shear stress 74 (See Fig. 8) vanishes at the two positions 6 = 0°
and 90° and attains its maximum value at 6 ~ 45°. The location of this
maximum shifts slightly to the right as the ratio of (a/b) increases. Similar
stress profiles also appear as one moves towards the free surface. At the
free surface, the question arises as to whether the strength of the stress
singularity is affected as the separation distance between fibers becomes
smaller and smaller. While initially the authors believed that this may be
the case, lately they believe that the singularity strength will not be altered
but that the function multiplying the singular term is expected to change.
Be that as it may, the subject is under further investigation.

5 Conclusions

A 3D micromechanical model has been developed to represent the response
of a .unidirectional composite plate subject to a transverse load. In this
model, the fibers are considered to be cylindrical inclusions which are peri-
odically embedded into the matrix. The material of both fibers and matrix
is assumed to be linear, elastic and isotropic. The analysis has shown that,
as the fiber volume fraction V; increases, the radial stress o,, decreases by
30 to 40 percent. On the other hand, the circumferential stress ogg is almost
negligible. The stress profiles across the fiber length are almost constant
except in the neighborhood of the fiber edge, where a boundary layer is
shown to prevail. In this region, the stress field possesses a weak stress
singularity which for a glass fiber/epoxy matrix composite is of the order
0.25. This result represents a departure from the results predicted by a
macromechanical theory. This inconsistency is attributed to the fact that
macromechanical theories tend to average the local effects throughout each
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layer thickness, and as a result all stresses at the edge are predicted to be
finite. Thus, the present analysis also provides us with important informa-
tion regarding the regions of applicability of macromechanical theories.

A closer examination of the stress field reveals that, in the presence
of a crack, the damaging stress for possible failure is the radial stress oy,
particularly at the location 6 = 0. Two types of failure immediately come
to mind: a fiber/matrix interface crack and a radial matrix crack. In
conjunction with this work, the former was recently considered by Folias
(1991) and the latter by Folias and Liu (1991).

It is well recognized that void nucleation occurs more readily in a triaxial
tensile stress field, a result which is consistent with experimental observa-
tions. Such a model for estimating the void nucleation stress may now be
obtained, if in our previous analysis we let G; — 0%. The physical situation
depicted here is that of a matrix which has been weakened by a uniformly
distributed periodic array of cylindrical voids or holes. Such an estimate
may then serve as a lower bound for the transverse strength of a unidirec-
tional composite plate. Without going into the numerical details, we plot
in Fig. 9 the stress concentration factor gy through the thickness (z/h)
and for a typical ratio of (a/b) = 0.3. It is noted that the s.c.f. is relatively
constant throughout the interior and that it rises slightly as it reaches the
vicinity of the free surface whereby it begins to drop rather abruptly. The
characteristic stress profile is in agreement with that found by Folias and
Wang (1990) for the case of one hole. the variation of the s.cf. as a func-
tion of the ratio (a/b) is given by Fig. 10, where it may be noted that the
void volume fraction in the matrix is given by

Vi = (5 (41)

It is clear from this Fig. that the s.cf. increases rather rapidly as the
void volume fraction ratio increases. The result is in agreement with our
physical expectations. A similar stress profile is also observed throughout
the thickness including the plane * z = h. (see Fig. 11). Finally, in Figs.
12a and 12b we plot the variation of the s.cf. on the planes z = 0 and
» — h as a function of the position angle 6 and for different (a/b) ratios.

4Folias (1987) has shown that no stress singularity is present in the vicinity of the
intersection of the hole surface and the free of stress plane.
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It is noted that in the region 70° < 6 < 90° the s.cf. is relatively flat.
This is the region where a crack is most likely to initiate and subsequently
propagate.

It is now possible for us to develop approximate fracture criteria for the
prediction of the transverse tensible strength. For example, let us consider
the case of an epoxy matrix which has been weakened by the presence of
a periodic array of cylindrical holes. The situation depicted here is that
of a composite in which every fiber/matrix interface is debonded. From a
practical point of view, the transverse strength of such a case may serve as
2 lower bound estimate to the composite. Thus, if we assume that a radial
crack has developed at the edge of one of the holes (see Fig. 13), then the
following approximate criterion for crack initiation may be used®:

3.10 o, C\ o 7me
{3.00 \I:(Vh)}‘/;EF(ZZ)“'Q 1—v, (22}

where the function ¥ is given by Fig. 14 and the function F(;) is given
by the table below (See Hellan 1984, p.246).

Table 1
(jf—h) 0.00 0.10 0.20 0.30
F(-f;) 3.36 2.73 2.30 2.04

Assuming next a crack length of 0.10a; and an epoxy matrix with the
properties: '

G = 2.10Gpa vm = 0.34

O = 1235 2a, = 1073m
(%) =0.05 Vi = 0.357
one finds
(00)r &~ 24.39 Mpa = 3.54ks:. (43)

5The 3.10 factor is due to the triaxility effect (see Fig. 9) which is applicable to
(a/k) = 0.05, thus a conservative value. Also, the equation is valued for all —h < z < h.
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This value may now be thought of as a lower bound estimate of the trans-
verse strength in a unidirectional composite plate. In practice, an exam-
ination of the material will provide the size of a typical hole diameter to
be used in the above analysis. The criterion may also be used in reverse in

order to establish material specifications.
In closing, it may be appropriate here to note that the analysis may now

be extended to also include row of fibers with different fiber orientations,
which points to the concept of a laminated composite plate. This defines

the subject of a subsequent paper.
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Fig. 13. The function ¥ versus the void volume ratio Vi.
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Fig 14. Plate weakened by a periodic array of holes and a small crack.
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