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Abstract -Under the action of an cxturnal force, a solid body B penetrates into another body. Body 
B is assumed to be of an incompressible. viscoptast,c. Bingham material. consistinp of ;I solid core 
surrounded by a zone of viscoplastic flow. As ;1 tirst modet. the problem is treated one-dimensiotxtlly 
m the space variable .x as well as the time variable 1. 

By utilizinp Green’s functions. the location of the moving boundary .r(r). ix. the boundary 
bctwocn the region of viscoplastis flow and the core, is expressed in terms of an in!qrrtl equation. 

which may that bc s&d numcricdly. 

The nsul~mg nut~>&;tl method works well in practice. as illustr;it~d by two examples. 

I. IQRMULATION OF Tilt: PROBLEM 

A solid body S of width 2ff penc~ates into another body under the action of an external 

force. Wc ;tssunlc thilt body fz is an incomprcssiblc viscoplastic Bingham body, that is, it 

satistiss Bingham’s law, 

where T* is the stress, rr, the yield stress, I( the coefficient of viscosity and U+ the velocity in 

the ),-direction. The movement is in the _r-direction only and is assumed to be independent 

of: and symmetric about the plane s+ = H (see Fig. I). (The starred variables represent 
the original units; we will replace them below by their nondimensional counterparts.) 

Perhaps it is appropriate at this point to note that the physical condition depicted here 

is that of a pcnetratrd body consisting of bituminous material, e.g. asphalt. While it is 

well recognized that such rtn application is not the most desirable goat of the mechanics 

community, nevertheless its solution will provide us with sufficient information and knowl- 

edge which one may subsequently be able to use in order to extend the analysis of this 

notoriously difiicult problem to also include other materials which are physically more 

desirable, Morcovcr. such a solution will serve us a limit check for the complicated finite 

element codes presently available. Thus. the cast of an incompressible viscoplastic Bingham 

material is a logical fountainhead for dctailcd theoretical study. 

Returning next to our present analysis, the body 8 is divided into two parts 

Bl = fX*: 0 < S* < s*(f*) or ZH-,s*(f*) < .y* c 2N], 

B: = fP: s’(P) g s* < 2H-,P(r*)). (2) 

t The work of this author w&s supported by the Mathematics Department of the University of Utah. 
:Thc work of this author was partially supported by NSF Grant No. DMS-89021X!. 

115 



116 D. D. Asti CI ul. 

viecoplutic flow Bl 
_- -_ motion 

core & 
z __ __ 

rkaplvtic flow Bt 

Fig. I. Geometrical contiyuntion. 

In B, (respectively B:) the tangential stress is larger (respectively smaller) than the yield 

stress r,,. We call B, the XMIC r!/‘~~i.~coplr.~ric.,~~),~~ and B2 the m-c. 
In the zone ofviscoplastic flow, the velocity u*(.P. I*) satisfies the equution 

pu:.(.Y*,I+) = ~cu~.,.(.r+.r+)+g+(t*), (3) 

where g* is the force per unit volume due to an external forcc acting in the _r-direction and 

1) is the density, Since the core is rigid. the velocity in it is 

u:(P) ‘AL! u*(s*(l*). P). (4) 

where it is assumed thnt U:(O) # 0. 

Before going any further. let us nondimensionalize the problem. We choose the half- 

width H of the body B as the characteristic length scale, r,, ;LS the characteristic stress and 

r,,/H ils the characteristic force per unit volume. The characteristic time interval Twill be 

specified later, separately for each application. 

Thus, upon introducing the dimensionless variables 

u = u+T/H. 

I = P/T, 

.r = x+/H, 

Y = y+Hlrr,. 

'I = P/7,. 

Bingham’s Law (I) becomes 

and eqn (3) turns into 

(5) 

(6) 

(7) 
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where 

R is the Reynolds number. i.e. the ratio of inertial to viscous forces. Similarly. S represents 

the ratio of external to viscous forces. 

Due to symmetry, it is sufficient to consider eqn (7) in the domain 0 < .x c S(I). On 

the moving boundary s(r). the tangential stress is equal to the yield stress. so by Bingham’s 

Law 

rr,(s(r). I) = 0. (9) 

Considering the forces on the core [see e.g. Rubinstein (1970)]. we find 

s 
R( I --s(l)) ’ 

(10) 

Since by (9) 

h(O = ~,[I4s(rw] = Ir,(.v(f).I)i(l)+u,(.v(l). I) = II,(.T(l),I). (11) 

cqn (IO) can bc wriltcn as 

. 
U,(S(I), I) = $(r) - .. S 

R( I --s(l)) ’ 

Assuming continuity of the solution and all its derivatives up to the boundary and 

Ictting ~/s(r) in (7). we obtain 

II,(sfl), 1) = ~lI,.(.Y(,). I) + &I). (13) 

Upon comparison with (I 2). we must have 

lr,,(s(l). I) = - -.s- 
I --s(l) * 

We assume we are given the boundary and initial values 

m I) =/‘(I), 

11(x. 0) = f#J(.r). 

s(0) = h. 0 < h < I. 

To make (9). (14) and (IS) consistent. we must require that 

4(O) =/w. 
4’(h) = 0. 

(14) 

(15) 

4”(h) = - A. (16) 
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Notice that in this analysis we have for simplicity assumed that s(0) > 0. The case 
s(0) = 0 requires some special mathematical rigor which for the sake of brevity we will 

omit. 

Perhaps it is appropriate at this point to comment on the difference between the present 

problem and the classical Stefan problem. For the classical Stefan problem. the location of 

the moving boundary .Y = s(t) is governed by the velocity II as well as its derivative with 

respect to s, whereas in the present problem it is also governed by the time derivative. i.e. 

an additional constraint which makes the solution even more difficult. 
Before engaging in the details of the construction of the solution, let us summarize the 

problem we are trying to solve. Given a time T,,,,, > 0. we are looking for a pair of functions 

II(.Y, t), s(r) so that 

l s( 0 is Lipschitz continuous on (0. T,,x,,] : 
l II and II, are continuous for 0 < .V G S(I). 0 ,< r < T,,,,, : 
l II,,. 14, are continuous in 0 6 .V < s(r) for0 < t < T,,,,, : 
l II satisfies the equation 

lf,(.Y. I) = k u,,(s. I) + is(r) 

in 0 < .V < S(I). 0 < I < T ,,,,,, ; 
l on the moving boundary S(I). I/ satisfies 

for 0 < I < ‘I:,,.,, ; 
l II and s satisfy the boundary and initial conditions 

s(0) = h. 0 < h c I. 

fI(X.0) = c/)(s). 

U(O. I) =1’(f). 

(17) 

(18) 

(I’)) 

with compatibility conditions 

(b(O) = i’(O). 
c/l’(h) = 0, 

&“(/I) = - I-“i. 
(‘0) 

This problem has been discussed before by the authors in Ang et (I/. (1989). A related 

problem is solved by similar methods in Ang PI ~1. (1988). 

2. REFORMULATION OF THE PROBLEM 

We shall reformulate the problem as an integral equation in r(f) z’.i(/). which can be 

solved by succcssivc itpproximation. using the contraction principle. For this purpose WC 

shlrll require some regularity conditions on the initial and boundary data : 

0 ,/‘(/) is continuous. .y(r) is C’ on I 2 0; 
l c#J(_Y) is C’ on (0. h). and the left-hand derivative (b”(h) exists. 
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Put (’ = u,. The equations for I’(.L I) can be derived from the corresponding equations 

for u by differentiation. Thus. from (7). 

Differentiating (9) with respect to I gives 

thus by (14) 

V,(.S(I), I) = .s----. 
1 -S(l) 

Equation (I 1) becomes simply 

s 
I’(.S(I). I) = $,(r)- --- ---.-- . 

R( I -X(l)) 

Equations (7) at f = 0 and (I 5) give 

I s 
l’( .r, 0) = u,(.r,O) = R f/r(X) f /p)) ‘iii $(.r)+ 

while the bound;lry condition nt .V = 0 is 

The compatibility conditions arc 

Summing up the rnbovc equations, I’ must satisfy 

1‘,(S.I) = ;r,,(.r. t)+ i&r). 
S 

rfs(r). t) = /p(t) - 
S 

Ri I -s(r)) ’ 

r,(.y(/), 1) = s z!!.._ 
I -s(r) ’ 

t+(.r,O) = Il/(.r), 

t*(O, t) =fw. 

$(h) = ;.do) - R(ls h). 

Assume for now that s(r) is C’ on [O. a].? 

(72) 

(23) 

(24) 

(25) 

(20) 

(17, 

t Wc will justify this ;issumption k~tcr. 
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Let k = R ’ ‘. We define the Green’s functions 

for 

0 < .t- < s(r). 0 < 5 < s(r). 0 < 5 < 1. 

(29) 

(30) 

We will use the following properties, which are easy to verify 

G,; = k?N, 

G, = -N; 

N(.r. I : 5. t) = 0. (31) 

Thus, let ~(5. r. s(r) bc ;I solution of (28) with (s, 1) replaced by (5, T). Integrating the 

identity 

(GV, -GC,.); -x-2(Gr), = -SG.Cj (32) 

over the region ((c.7): 0 < ( 6 .Y(T).I: < 5 < I-t:), applying Green’s identity and letting 

I: -+ 0. WC obtain 

I 

I 

f',(s(T),~)c(.\..f ; s(s),~) ds+ I’,,(r)G(.V. f; .V(T).T)i(?)dT 
0 

where we have put 

f’,,(f) = f’(.S(f). I) (34) 

and have used the identity 

d< = i(s)ds on s(l). (35) 

Take the s-derivative of both sides of (33) to get 

+’ I 
, 

i 
I 

R I, 

~,(.s(T),~)G,(s,I; ~(~),5) dr+ r,(r)G,(.r. I; S(T). s)S(s) dT 
” 

+ f 
I 

‘/(r)G,(x.,:O.r)dr+ 5 G,(s. I; s’. 5) d&j(r) dr. (36) 
II- 
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Integrate the various terms on the right-hand side by parts 

ro(~)G&. t ; s(r). t) dt 

=- c,(t)N,(.r. r: S(T). t) dr 

I 

=- I r I’O(T) ;; [Ntx. t ; s(r). T)] - N;(.T. I ; S(T). T)~(T) dr 
I, 

f 
= r”(O)N(.~. I; h.O)+ 

I 
~;,,(r)N(s,r; .s(r),f)dr 

II 

+ I’,~(~)N,(.Y.I; s(r).r)r(r)dr (38) 

I 
rlrt 

I 
rtrt 

G,(s. I; i”. T) d< = - N,(.r, I: (. T) d< 
0 II 

= -N(.~,~;.s(T),T)+N(.T.~;~,T), W) 

G,(.r.t; <.r)df&r)dr = - R ~(t)~N(~,f;~(r).t)-N(.t,t;0.~)1d5. (41) 

WC end up with 

s i - E 

I 
gj(rf(N(s.r: .s(~).t)-N(_~.~;O,t)) dr. 

0 
(42) 

Now. let S/S(I) and use a lemma from Friedman (1964). 
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Lrmmu 2.1 (Friedman). Let p(t) (0 $ I G 4) be a continuous function and let s(t) 
(0 < t < af satisfy a Lipschitz condition. Then. for every 0 < f < 5. 

where K is as in (29). 

This gives 

S(I) = h-t- ‘r(r) dr. J (I 

The left-hand side of (45) equals 

(45) 

(47) 
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while the right-hand side becomes 

123 

N@(t). r ; s(r), r) dr 

After some minor simplitications. we end up with 

r(t) = :(I -.s(~))~(f(f)), 

where 

It can be shown that there exist ilf > 0 and D > 0 such that the right-hand side of(5f) 

defines a contraction on &JO, M), the closed ball of radius M, center 0 in the space of 

continuous functions on [0,6], 

Thus, for small values of /. iteration of (51) will produce a solution r(l). (In the 

numerical experiments, no limit on the values oft was found; the method converged in ail 

cases.) In addition to providing the basis for a numerical method, this justifies the smooth- 

ness assumptions on s(r) made wrlicr. 

We will use eqn (51) as the basis for a numerical method, similar to the one used in 
Ang er c/l. (I 988). 

3. NUMERICAL RESULTS 

Formula (51) forms the basis of a numerical method as follows. 

Lctr,,i=O.I,Z . . . . . be equally spaced points in the I direction. Given a guess for r(t), 

we can calculate a guess for s(f) from (47). then B(t (I)) from (52), and finally an updated 

r(f) from (51). 

Once s(l) is known, we can calculate u,(s. I) for any value of (x. I) from 

Il,(.Y. t) = 

(53) 
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This equation is similar to eqn (42) and derived the same way. Finally. we can calculate 

u(.‘c, I) from 

‘i 
u(x, 1) = f(r) + u,(<. t) d:. (54) 

J ‘I 

As a check. u(s(r). r) can also be calculated from 

f 

, 
u(s(r). I) = 

0 
u(s(T). 7) dr = ; 

I 
g(r)- __-- 

I -s(r) 1 dr. 

A value for r(0) is provided by the third formula in (28) 

r(0) = $1 -h)@‘(h). 

(55) 

The first iteration starts out with this value for r(l,J and r(r,). 

At the ith iteration, we only used values of r at I,,, . . . . t,. since good guesses of r(r) for 

large I were not available. For the (i+ I) iteration. we added a new point r(l,+ ,). with initial 

guess 

dl,+ I) = Wl,)--r((, I). (57) 

Only r(!,) had to bc calculated at the ith step. since the previous values of r wcrc already 

known and not atTcctcd by Iatcr values. 

Except near the start, four to five iterations per point. combined with extrapolation. 

wcrc suflicicnt for convcrgcncc. 

We used free spline interpolation to calculate r. s iit intcrmcdiatc points, and routines 

from QUADPACK for numerical integration. Note that the second and third integrals in 

(52) arc singular. but the type of singularity [(l-r) ’ ‘1 is known exactly and can bc easily 

handled. 

As an aid in selecting appropriate test problems. WC note the existcncc of special steady 

How solutions of the form 

ff(.\..I) =/;,+ ;.q,,[h'-(+-h)21. (58) 

where/‘(r) =J,,,, g(l) z g,,. s(r) G hand h = I - I/g,,. 

In all numerical experiments. we used S = R = I.j’(r) P 0. 

Example I. We started with the steady flow solution corresponding to g(r) z 2. that 

is. h = 0.5. 4(.u) = 0.25-(s-0.25)‘. We then set g(r) = 0, corresponding to an abrupt 

vanishing of the external force. Thus. the motion is dominated by viscous forces. 

Figure 2 shows plots of the moving boundary s(r). the core velocity u”(r) and of the 

velocity II(S. I) and the stress r(s. I) in the zone of viscoplastic flow for various fixed values 

of s and r. WC used a small time step of 0.001 to produce smooth curves; the results for 

larger time steps are in excellent agreement. As one would expect, the core expands rapidly 

until it reaches the boundary I = 0. 

If g(f) is taken to be 2 initially, then dropped to 0, we obtain time-shifted versions of 

the same curves. This indicates that the method can handle discontinuous external forces 

easily. The last integral in (52). must, ofcourse. be modified to account for the delta function 

behavior ofgi(f). 

Example 2. We used an external force 

g(l) = 2[1 - i:i’ e -‘I, (59) 



Fig. ?a. Example I : Moving boundary. 

Fig. Zb. Example I : Core velocity. 

Fig. 2. Example I : Velocity in flow zone for I = 0 to I = 0.14 in steps of 0.02. 
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Stress Profiles for flxe41 t 
: C?- - ----- 

Fig. 2s. Enamplc I : Velocily in llow lone for .x = 0 to .v = 0.4 In slcps 01’0. I 

Flp. 1f. Ex;tmplc I : Stress in flow 7onc for .s = 0 to .v = 0.4 in slep4 Of 0. I. 
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Moving Roundat-? 

127 

Fig. ?a. Example ! : Moving boundary. 

Fig. 3b. Example 2 : Core velocity. 

FIN. 312. Enamplr Z : Vckity in flow zone for f = 0 10 I = 3.5 in steps of 0.5. 
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Fig. 3d. Example 2 : Stress in flow zone for I = 0 IO I = 3.5 in steps of 0.5. 

St.rcs* I’rofilss for fisctl s 

-.-_-.-_ - --- 
_ -- ._ -- 

.A,- 
, .’ _. -- 

A],! .- 
_ -- 

,’ ’ 
.’ 

/*- 

,” , . (3 .’ .__ __ 

/ 
,’ ,** 

__.‘. - 

‘ I. _. 
. I, , _ ._ -- .-. 

I ,’ 
_I ’ 

__ - 
,’ 

/ /’ , __ 
__ e.-- 

. 0 4 __ . ‘- 
I ’ , 

, 
,’ . 

I ,- 

big. 3’. Ex;mplc ? : Stress in flow tone for .v = 0 IO s = 0.4 in srcps of 0. I. 
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and initial conditions correspondin, u to the steady state for CJ,, = 1.0101.. The initial 

location of the moving boundary is h = 0.01. \er) close to 0. (The c;1se h = 11 needs further 

investigation. as previously noted.) 

The external force y(r) increases rapidly to ;L limiting value of 2. so L~\c‘ lrould expect 

the moving boundary to approach the value 0.5. The curies in Fig. 3 were gxerated bvith 

a time step of 0.025. 


