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Abstract —Under the action of an external force, a solid body 8 penetrates into another body. Body
8 is assumed to be of an incompressible, viscoplastic, Bingham material, consisting of a solid core
surrounded by a zone of viscoplastic flow. As a first model, the problem is treated one-dimensionally
in the space variable x as well as the time variable .

By utilizing Green's functions, the location of the moving boundary s(¢), i.e. the boundary
between the region of viscoplastic flow and the core, is expressed in terms of an integral equation,
which maty then be solved numerically.

The resulting numerical method works well in practice, as illustruted by two examples,

1. FORMULATION OF THE PROBLEM

A solid body 8 of width 2#f penctrates into another body under the action of an external
force. We assume that body B is an incompressible viscoplastic Bingham body, that is, it
satisties Bingham’s law,

(X% *Y =1, = + gﬁ:( * e 1)
L 4 = ...!lax,, X, )s (

where t* is the stress, 1, the yield stress, u the coefficient of viscosity and u* the velocity in
the y-direction. The movement is in the y-direction only and is assumed to be independent
of = and symmetric about the plane x* = H (see Fig. 1). (The starred variables represent
the original units; we will replace them below by their nondimensional counterparts.)

Perhaps it is appropriate at this point to note that the physical condition depicted here
is that of a penetrated body consisting of bituminous material, e.g. asphalt. While it is
well recognized that such an application is not the most desirable goal of the mechanics
community, nevertheless its solution will provide us with sufficient information and knowl-
edge which one may subsequently be able to use in order to extend the analysis of this
notoriously diflicult problem to also include other materials which are physically more
desirable. Morcover, such a solution will serve as a limit check for the complicated finite
element codes presently available. Thus, the case of an incompressible viscoplastic Bingham
material is a logical fountainhead for detailed theoretical study.

Returning next to our present analysis, the body 8 is divided into two parts

B, = Ix*:0 < x* <s*(*) or 2H-—s*(1*") < x* <2H),
t

By = {x*:5*(1*) € x* S 2H ~5*(1*)}. {2)

t The work of this author wus supported by the Mathematics Department of the University of Utah.
3 The work of this author was partially supported by NSF Grunt No. DMS-8902122.
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Fig. I. Geometrical configuration.

In B, (respectively B.,) the tangential stress is larger (respectively smaller) than the yield
stress t,. We call B, the zone of viscoplastic flow and B, the core.
In the zone of viscoplastic flow, the velocity w*(x*, £*) satisfics the equation

pus(x*, %) = quk (X )+ gr (1Y), 3)

where g* is the foree per unit volume due to an external foree acting in the y-direction and
p is the density. Since the core is rigid, the velocity in it is

uh(r*) E ut (s*(1*), %), @)

where it is assumed that u3(0) # 0.

Before going any further, let us nondimensionalize the problem. We choose the half-
width H of the body B as the characteristic length scale, 1, as the characteristic stress and
1o/ H as the characteristic force per unit volume. The characteristic time interval T will be
specified later, separately for each application.

Thus, upon introducing the dimensionless variables

u=u*T/H,
t=1*T,
x = Xx*/H,
g =g*H/x,,
T =1*/1,, (5)
Bingham's Law (1) becomes
Nn-1=+ ! (x, 1) (6)
x,)—1 = _Su‘ X,

and eqn (3) turns into

1 S
ul(xv I) = Eu.m'(x' ’)+ kg(’)' (7)
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where
pH*
R_uT'
T
s=2L (8)
u

R is the Reynolds number, i.e. the ratio of inertial to viscous forces. Similarly. S represents
the ratio of external to viscous forces.

Due to symmetry, it is sufficient to consider eqn (7) in the domain 0 < x < s(r). On
the moving boundary s(r). the tangential stress is equal to the yield stress. so by Bingham’s
Law

u(s(e), 1) = 0. 9

Considering the forces on the core [see e.g. Rubinstein (1970)], we find

) S S
() = R.‘l(')— RO=st)" (109
Since by (9)
. d ;
y() = d’[u(.v(l).l)] = 1 (5(2), )50 + 10,(5(2), 1) = u,{s(0), 1), (0
eqn (10) can be written as
100—3(0—" S 12
uw,(s(1). 1) = Ry R(I=s(1)" (12)

Assuming continuity of the sofution and all its derivatives up to the boundary and
letting x /7 s(¢) in (7). we obtain

| S
mmmn=Rm$MA+kﬂ& (13)
Upon comparison with (12), we must have

S
u, (s(0). ) = — i-:?li . (14)

We assume we are given the boundary and initial values

u(0,1) = f(n),
u(x,0) = ¢(x),
s(0)=bh O0<b<l. (15)

To make (9). (14) and (15) consistent, we must require that

$(0) = f(0),

¢’(h) =0,

. _ S

(b)) = - T (16)
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Notice that in this analysis we have for simplicity assumed that s(0) > 0. The case
5(0) = 0 requires some special mathematical rigor which for the sake of brevity we will
omit.

Perhaps it is appropriate at this point to comment on the difference between the present
problem and the classical Stefan problem. For the classical Stefan problem. the location of
the moving boundary x = s(¢) is governed by the velocity u as well as its derivative with
respect to v, whereas in the present problem it is also governed by the time derivative. i.e.
an additional constraint which makes the solution even more difficult.

Before engaging in the details of the construction of the solution, let us summarize the
problem we are trying to solve. Given a time T,,,, > 0, we are looking for a pair of functions
u(x. 1), s(t) so that

s(1) 1s Lipschitz continuous on (0. T,

uand u, are continuous for0 < x < (0.0 1< Tt
u,..uare continuous in0 < x < s(Nfor0 <t < T«
u satisties the equation

('t)—l» 3 )+S 0 (17)
w,(x. 1) = —Ru‘,‘.(i\.l Rg

mo<v<s(N0O<t < T,
e on the moving boundary s(¢), u satisfics

(.0 = gt >
(.0 = 9= o Zsiy)”

u (s(0).n =0,

u, (s(). )y = — (18)

1 —s(r)’

forO0<r<T,.:
e r and s satisfy the boundary and initiai conditions
s0)y=5h, 0<h<l,
u(x.0) = ¢(x),
u(0,1) = f(1). (19)
with compatibility conditions
$(0) = /(0).
$'(h) =0,

o S

Gy ==y (20)

This problem has been discussed before by the authors in Ang ef al. (1989). A related
problem is solved by similar methods in Ang er al. (1988).

2. REFORMULATION OF THE PROBLEM

. . . def | .
We shall reformulate the problem as an integral equation in r(r) = $(¢), which can be
solved by successive approximation, using the contraction principle. For this purpose we
shall require some regularity conditions on the initial and boundary data

e f(t)is continuous, g(r}isC'on¢ = 0:
e ¢(x)is C*on (0.h). and the left-hand derivative ¢ (b) exists.
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Put ¢ = u,. The equations for r(x.17) can be derived from the corresponding equations

.( ) = l . ( ¢ f) l q’([)
l, X! Rln- X. R‘ .

Differentiating (9) with respect to r gives

0= (% [t (s(0). D] = u (502). () + v (s(0). 1),

thus by (14)
3(1) -

e 0 = S

Equation (12) becomes simply

S S
Equations (7) at ¢ = 0 and (15) give

def

e, ) = u(x.0) = :{:{;"(x)+ :q(())

while the boundary condition at v = 01s
e(0.0y = f(1).

The compatibility conditions are

S(0) = ¢(0)
S S

Summing up the above equations, ¢ must satisfy

‘( . f) —_— I N - § ¥
r(x, 1) = Rl..(.\.l)%— Ry(l)-
S S
v(s(1). 1) = Ry(l)'“ RU=s(1)"
iy = S0
v (s(n. 1) = Sl S
r(x.0) = @(x).
(0.1 = (1),
S S

F(0) = ¢(0).
Assume for now that s(¢) is C' on {0.a].+

+ We will justify this assumption later.

= (x),

(2

(23)

(24)

(26)

&)

(28)
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Let k = R'°. We define the Green's functions

k K (x—2)°
Kx.t:i1)= — */i_l’: exp <— ‘j‘(‘v—‘—"l‘).

oy

2\/7r N Hr—1)
Gler; i) =K(x.t:S.t)—K(x.t: =E.1).
N i) =K(x. . E.)+K(xt: =&, 1), 2N
for
O<x<s(), O0<i<s(n), O<t<t. (30)

We will use the following properties, which are easy to verify

G‘-‘==k2N‘
G\ = "N:
N(x.t: & =0 (R1D]

Thus, let v(. T, s() be a solution of (28) with (x, ¢) replaced by (¢, 7). Integrating the
identity
(Gr,—G&,), —k*(Gr), = —S5Gg (32)
over the region {(E.1):0 € & € s(1).e < v < t—¢}, applying Green's identity and letting
£ — 0, we obtain

t

b l
r(x, 1) = J ()G (x. 1 E,0)dE - Rf (DG (vt 8(T), 1) dr

} )

1

+ Lf e (5(0). )G (v, 1 x(r),t)dr+J‘ ro()G (Nt (1), 1)s(T) dt

[} {

(. S{ ;
+ I(J f(0)G(x, 10,y de + RJ f G(x,t; ¢ t)ydEg(r)dr, (33)
[ )

0 €
where we have put
ro(t) = v(s(1). 1) (34)
and have used the identity
dé = s(r)dr on s(¢). (35)

Take the x-derivative of both sides of (33) to get

b l 4
v(x. 1) = J YOG (x.1:4.0)dE— Ef to(1)G o (x, 15 5(1), 1) dt

] [i]

t

+ lRJ z“.(s(r),r)G‘.(.\‘,t;s(t).r)dt-i—j to(t)G (x. t; s(1), T)s(r) dt

|
R

! S t {t) ..
f(0G, (x.r:0.1)dt+ RJ J G (x.t: ¢ 1)dg(n) dr. (36)
0 (1) §]
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Integrate the various terms on the right-hand side by parts

A 4
J; V()G (x.1:¢.0)dé = — . Y(SN:(x.1:£.0)d¢E

o

= Y(OIN(x.£;0.0) =Y (H)N(x.1: 5,0)
af 3

+ \ Y (IN(x.1:4.0)dC.
{

o

- %Lro(t)GQ(x.f:s(r).r)dt

= —J. to{t)N(x, 1. s(2). 1) dr

- J.“ to(1) {;r— [N(x.t55(2) O] = N (x. t; 5(7). r)r(r)}dr

t

= ra{Q)N(x.1: 5,0) +J‘ Fo{IN(x, 2 s(0). D) dr
]

+j roltIN (X, 10 s(z). D)r{t) de

R f(r)(i‘:(.\'.t:O.r)dr=Jf(t)N,(.v.l;O.r)dr
@ {

= —f(0)N(x.1;0.0) -J S(ON(x.t:0. 1) dr,
1)

4] e}
J Gulx.t: &0 dE = —J No(x.1: & 1) dé
[t 1

}

= =N 8(0), D)+ N(x1;0,7),

T

S0
S ! s} S

J j G (x, 1. & 0dég(r)dt = — - j g(t) IN(x, 1 s(1). 1) = N(x,1:0,1)} dr.
R 1} 43 R 0

We end up with
h 2
muJﬁ=f¢T@NUJ:&md&+fﬁAﬂNGJN&Lﬂdr
[ 43
+ % J v,(s(t).t)Gx(x.l;s(t).t)dt—j JS@N(x.1;0,1)de
0 0
S,

- R J. GO N(x. 1 5(2), 1) = N{(x,1:0,7)} dr.

Now, let x 7 s(¢) and use a lemma from Friedman (1964).

SAS 28:1-1

(37

(38)

(39)

(40)

(41)

42)



122 D. D. ANG et ul.

Lemma 2.1 (Friedman). Let p(¢) (0 < 7 € 6) be a continuous function and let s(2)
{0 < t € o) satisfy a Lipschitz condition. Then, forevery0 <1 < o,

-

ol

1 2 ‘ o}
lim fmj p()K(x. tis(n). t)dr = 1—(_;~p(1)+J. p(r)[{;~ K(x.t;s(r).r)] dr. (43)
- 4]

st -0 X g X =

where K is as in (29).
This gives

£

o]
r st = j YEONGND 180 éi-&f Fl NS 1 sin). 0 dr

!

+ e s n+ }l{ j t(5(0). DG (s, £ s(T). 1) dr
[H]

—j FON(s(n.1:0.1)dt

- ; (; GVING(OL 1 s() = N(s(r). 11 0.1y dr, (44)
or
g(\{&{a’}. t} = .{ ifi'{f}N(\(:}‘ t: &, ] di.{‘J‘ FolDIN (). 11 (), 1) dT
+ : J' (). DG (s, 1 5(0). 1) de
R i
—f SN (0,10, 1) de
S,
- RJ- GOV IN(s(1). 12 5(T) 1) = N{s(0), 11 0, 1)} d. 45)
]
Define
r{r) = (1), (46)
so that
s(1) = b+J. r{t) dr. a7
[j]

and recall (23) and (24)

v (s )= S l-r-(:)(l)
o = 90~ i s
Ealt) = ggmw }{(51 (_5‘();)‘;:» (48)
The left-hand side of (45) equals
sy = 5 (49)

2 1—s(n)"
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while the right-hand side becomes

e

A
J- YN, 1 3.0)dS
1]

+ § J., [g’v(t)— (—r(r—)m—,]N(s(t).z;s(r). t)dr

Ry 1—s(1)°
S{'] r '
[ oo s

—j F@Ns(0).1:0. 1) de
(4]
Si{'. ) )
-2 GO INGs(). £ 5(0). 1) = N(s(0).1: 0. 1)} dt. (50)
it
After some minor simplifications. we end up with

,
r(t) = ;u —5(1)B(r(1), (51

where

N anian s s S| @ PP
B{r(n)) = J; FEONGEM 0 dE - RJ:. s N{s(). 1 5(2), 1) dr

ST rn y
¥ RJ:» ‘;s(t)G‘("(’)"‘-‘(f).t)dt

“J []'(t) - ig)(t)]N(s(t), 1;0,7)dr. (52)

It can be shown that there exist Af > 0 and ¢ > 0 such that the right-hand side of (51)
defines a contraction on B,(0, M), the closed ball of radius M, center 0 in the space of
continuous functions on [0, a].

Thus, for small values of 1, tteration of (51) will produce a solution r(¢). (In the
numerical experiments, no limit on the values of 1 was found ; the method converged in all
cases.) Jn addition to providing the basis for a numerical method, this justifies the smooth-
ness assumptions on s(7) made earlier.

We will use eqn (51) as the basis for a numerical method, similar to the one used in
Ang et al. (1988).

3. NUMERICAL RESULTS

Formula (51) forms the basis of a numerical method as follows.

Lets,i=0,1,2...., be equally spaced points in the ¢ direction. Given a guess for r(r),
we can calculate a guess for s(t) from (47), then B(r (1)) from (52), and finally an updated
r{t) from (51).

Once s(¢) is known, we can calculate 1, (x, t) for any value of (x, ) from

g s 1
ux.t) = L G EIN(x, 1. &, 0)dE~ R L mN(x.i: s(r).t)dr

+J [gg(r)—f(r)]/v(x.(;O.r)dt. (53)

8
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This equation is similar to eqn (42) and derived the same way. Finally, we can calculate
u(x.r) from

u(x, t) =f(t)+j u (. 0nds (54)
0

As a check. u(s(¢). t) can also be calculated from

| —s(t

u(s(1). 1) =J u(s(r).1)de = %J- [g(t)—

0 )

A value for r(0) is provided by the third formula in (28)

1
r(0) = S(1-b)y’(5). (56)

The first iteration starts out with this value for r(¢,) and r(f,).

At the ith iteration, we only used values of rat ¢,..... t,. since good guesses of r(¢) for
large ¢ were not available. For the (i+ 1) iteration, we added a new point r(z,, ). with initial
guess

r(’lbl) = 2r(’l)_r(,I I)' (57)

Only r(1;) had to be calculated at the ith step, since the previous values of r were already
known and not affected by later values.

Except near the start, four to five iterations per point, combined with extrapolation,
were sufficient for convergence.

We used free spline interpolation to caleulate r, s at intermediate points, and routines
from QUADPACK for numerical integration. Note that the sccond and third integrals in
(52) are singular, but the type of singularity [(—1) '] is known exactly and can be casily
handled.

As an aid in selecting appropriate test problems, we note the existence of special steady
flow solutions of the form

. ‘S' 3 A
u(x.1) = fot S gulb* = (x= b)), (58)

where /(1) = fo. g() = gy s() = band b = 1-1/g,.
In all numerical experiments, weused S= R =1, (1) = 0.

Example 1. We started with the steady flow solution corresponding to g(¢) = 2, that
is. b =0.5, ¢(x) =0.25—(x—0.25)°. We then set g(1) = 0, corresponding to an abrupt
vanishing of the external force. Thus, the motion is dominated by viscous forces.

Figurc 2 shows plots of the moving boundary s(¢), the core velocity uy(r) and of the
velocity u(x, t) and the stress t(x, 1) in the zone of viscoplastic flow for various fixed valucs
of x and 7. We used a small time step of 0.001 to produce smooth curves; the results for
larger time steps are in excellent agreement. As one would expect, the core expands rapidly
until it reaches the boundary x = 0.

If g(1) is taken to be 2 initially, then dropped to 0, we obtain time-shifted versions of
the same curves. This indicates that the method can handle discontinuous external forces
easily. The last integral in (52). must, of course, be modified to account for the delta function
behavior of g(¢).

Example 2. We used an external force

g(n =2[1-3e), (59)
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Moving Boundary
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Stress Profiles for fixed t
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Fig. 2d. Example 1 : Stress in flow zone for 1 = 0 to ¢ = 0.14 in steps of 0.02.
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o
=1

-

Fig. 3a. Example 2: Moving boundary.

Core Velocity

noen, . s e e e

hENIGES

bt

yousn

U o -

BT R S | 1 1

.60 noe [T 210

Fig. 3b. Example 2: Core velocity.

Velocily Profiles for fixed t

0156 |-

n.050

-} 060 - — . — 1 L
donan onen G200 0. 300 0, 4 500

‘s
[

Fig. 3c. Example 2: Velocity in low zone for t = 0 to 1 = 3.5 in steps of 0.5.



128

a

taut. ,td

D. D. ANG e1 dl.

for fixed t

Stress Profiles

0. Neo

a.3nn O ot

Fig. 3d. Example 2: Stress in flow zone for r = 0to r = 3.5 in steps of 0.5.

=

NIEY)

BT ] B . - g S

ot

iht

tho

64N

Velocity Profiles for fixed x

050 b e
0.

y.0n

)

Fig. 3e. Example 2:

Velocity in flow zone for x = 0 to v = 0.4 in steps of 0.1,

Stress Profiles for

fixed x

20U —— S ey
1750 - B - i
) - i
.—/1
- g N T
- 1500 |- e L -
- /', '/1‘ e
Z - - [ S
3 T - . -
no1.250}- o T -
- i e PO e
1.000 - -
T L T S
1, .70 1 .40 o ¢ R

Fig. 3

Example 2: Stress in flow zone for v = 0 to v = 0.4 in steps of 0.1.
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and initial conditions corresponding to the steady state for g, = 1.0101... . The initial
location of the moving boundary is # = 0.01. very close to 0. (The case A = 0 needs further
investigation, as previously noted.)

The external force g(r) increases rapidly to a limiting value of 2. so we would expect
the moving boundary to approach the value 0.5. The curves in Fig. 3 were generated with
a time step of 0.025.
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