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ABSTRACT: This paper deals with the 3-D stress field of a cylindrical fiber which is 
embedded into a resin matrix. The composite is then subjecled 10 a uniform tensile load 
u.. The strain energy release rate is computed and the criterion is used to predict debond- 
ing initiation at the fibedmatrix interface. The analysis show that this failure is most 
likely to occur at the free surface. i.e. the region where the fiber intersects a free surface. 
for example a hole. an edge, or 3 crack. Moreover, it will occur at approximately (l/lO) the 
load value required for the same failure to commence at the center of the fiber length. 

The results are also extended to include a doubly pcriodic array of fibers which are 
embedded into a matrix. Based on 3-D considerations, the stiffness matrix is shown to in- 
crease as the volume fraction of the fibers increases. Similarly. the stress u,, in the matrix 
is shown to decrease as the volume fnction of the fibers increases. 

INTRODUCTION 
T 1s WELL recognized that fiber composite materials are very attractive for use I in aerospace, automotive and other applications. These composites consist of 

relatively stiff fibers which are embedded into a lower stiffness matrix. Although 
in most designs the fibers are aligned so that they are parallel to the direction of 
the external Imds, it is almost impossible to avoid induced transverse stresses 
which may lead to premature failure of the laminate. An excellent example of this 
is the case of a filament wound pressure vessel in which the presence of a curva- 
ture induces bending as well as transverse stresses (Folias, 1965). However, in 
order to be able to predict their failing characteristics, particularly in the 
neighborhood of free surfaces such as holes, edges, etc.. it is necessary to know 
the local stress behavior from a 3-D point of view. 

An overall summary of some of the rcsults, which are based on 2-D elasticity 
considerations can be found in the books by Hull (1981) and by Chamis (1975). In 
their pioneering work, Adams and Doner (1967) used finite differcnces to solve 
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the problem of a doubly periodic array of elastic fibers contained in an elastic 
matrix and subjected to a transwxse load. Their results reveal the dependence of 
the maximum principal stress versus the constituent stiffness ratio (E,IE,) for 
various fiber wlume ratios. A few years later, Yu and SendecLyj (1974) used a 
complex variable approach to solve the problem of multiple inclusions embedded 
into an infinite matrix. Their results were subsequently specialized to cases of 
two and three inclusions thus providing us with further insight into the strength 
of the composite. On the other hand, the separation of a smooth circular inclu- 
sion from a matrix was investigated by Keer, Dundurs and Kiattikomol(W73). By 
using finite integral transforms, they were able to reduce the problem to that of 
a Frcdholm integral equation with a weakly singular kernel. Thus, extracting the 
singular part of the solution, they were able to reduce the remaining problem to 
a simpler one which lends itself to an effective numerical solution. Their results 
are very general and are applicable to various combinations of material proper- 
ties and loads. 

In this paper, use of the local, 3-D, stress field will be made in order to examine 
the dependence of the stress u,,, in the matrix, on the ratio (GJG,). The strain 
energy release rate will then be computed in order to predict crack initiation at 
the fibcrlmatrix interface. Particular emphasis will be placed in the region where 
fibers meet a free surface as well as at the center of a fiber’s length. 

FORRIULATION OF THE PROBLERI 
Let us consider a cylindrical fiber of homogeneous and isotropic material, e.g., 

a glass fiber, which is embedded into a matrix of also homogeneous and isotropic 
material. 

Furthermore, we assume the matrix to be a rcctangular plate with infinite di- 
mensions 2w, 2P, and 211 as defined by Figure 1. For simplicity, we assume 
( d o )  > 8 and (P/a) > 8. Such an assumption will guarantee that the boundary 
planes x = f w, and j = f P, will not affect the local stress field adjacent to the 
fiber.’ Thus niatliem~tically, one may consider the boundaries in the x and y di- 
rections to extend to infinity. As to loading, the plate is subjected to a uniform 
tensile load a. in the direction of the yaxis and parallel to the bounding planes 
(see Figure 1). 

In the absence of body forces, the couplcd differential equations governing the 
displacement functions 14; ’ )  are 

I a e ( j )  

1 - 2u, a.r, -- + V’ir:’) = 0 i = 1,2,3 j = 1,2 

where V’ is the Laplacian opcrator, v, is Poisson’s ratio, u ! ’ )  and i t : ’ )  represent 
the displaccment functions in media 1 (matrix) and 2 (fiber), respectively, and 

~ 

‘This can be seen from the results which were recently reported by Rnado and Foli3s (1989). 
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Figure 1. Geometrical and loading conhgurations. 

The stress-displacement relations are given by Hooke’s law as 

u!.;’ = ),je~’,16i, + 2G(J1eij!’ (3) 

where A, and G, are the Lamf constants describing media I and 2. 

THE SOLUTION FOR ONE FIBER 

A. Region Where Fiber Intersects the Free Edge 
This problem was recently investigated by the author (Folias. 1989) who was 

able to recover, explicitly, the three-dimensional stress field adjacent to the sur- 
face of the fiber.’ Without going into the mathematical details, the displacement 

’A similar amlysis for a Innswsely isotropic fbcr meeting a free surfxc h s  recently been complercd and the 
rcsuiu will bc reported soon. 
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and stress fields for the matrix arc givcn in terms of the local coordinate system 
(see Figure 2) by: 

1. DISPLACEMENT FIELD 

i t ( ' )  = sin O(B[2(1 - vI)  cos(a - l)4 

- (a - I )  sin 4 sin(a - 2)6] - (a + I ) [ ( I  - 2v,) sin(a - l)4 

+ (a - 1)  sin 6 cos(a - 2)6]) cos(2nO) (4) 

, , ( I )  = A " eo-l  cos O(B[2(1 - v,) cos(a - l )4  

- (a - I )  sin 4 sin(a - 2)4] - (a + I)[(l - 2v,) sin(a - l)4 

+ (a - 1) sin 4 cos(a - 2)6]) cos(2rrO) (5) 

w ( ~ )  = A.e"-'[B[-(l - 2 4  sin(a - 1)6 + (a - 1) sin 4 cos(a - 2)4] 

- (a + 1)[2(1 - v,) cos(a - I ) &  

+ (a - I )  sin 4 sin(a + 2)4]) cos(2rrO) (6) 
2. STRESS NELD 

u!:)  = 2G(')(a - I)A.eu-'(B[2 cos(a - 2)4 - (a - 2) sin 4 sin(a - 3)4] 

- (a + I)[sin(a - 2)6 + (a - 2) sin r$ cos(a - 3)+]) cos(2riO) (7) 

u::) = ~ v : G ( ' ) ( c Y  - l)Aneo-'(B COS(CY - 2)4 

- (a + I )  sin(a - 2)4) cos(2riB) (8) 

u::) = 2G")(a - I)A.e"-'(B(a - 2) sin Q sin(a - 3)4 

+ (a + l)[(a - 2) sin 4 cos(a - 3)4 - sin(a - 2)4]) cos(2riO) (9) 

7! : )  = 2G(')(a - l)A,qo-'(B[sin(a - 2)4 + (a - 2) sin 4 cos(a -3)4] 

- (a + l)(a - 2) sin 4 sin(a - 3)4) cos(2riO) (10) 

7 ; ; )  = 7;:)  = 0 (1 11412) 

where 11 = 41.2,. . . and B is a function of the material constants and A. is a 
constant to be determined from the boundary conditions far away from the fiber.' 

'For one Cber n = 0.1.. uhilc for a periodic extension n = 0.1.2.. 
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FRONT SURFACE 

Figure 2. Delinition of local coordinates. 
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In general, the characteristic value of a depends on the material constants of the 
fiber as well as of the matrix. A typical example is given in Figure 3. 

Upon examination of the stress field, the following remarks are northy of note. 
First, the stress field in the neighborhood where the fiber meets the free surface 
is singular. Moreover, in the limiting case of a perfectly rigid inclusion this sin u- 

7: ; )  and 7:;) are satisfied as a consequence of the odd functional behavior in 4, 
larity strength reaches the value of 0.2888. Second, boundary conditions us* R ) , 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

2ooo> 

I I 

103 
1.675 ' 

100 1 b' 102 - G2 

G1 
Figure 3. Singularity sfrengfh for isotropic Kber and isotropic matrix versus GJG,. 
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1.45 -. 

1.44- 

I .43 - 

1.427 

which points to the presence of a boundary layer solution as one approaches the 
free surface. Third, on the free surface the radial stress is ( I l u l )  times the circurn- 
ferential stress. This suggests, therefore, that if a crack was to initiate, it would 
propagate along (or very, very close to) the fiber/matrix interhcc. Clearly, the 
occurrence of either adhesive or cohesive failure will  depend on the relative 
strengths of the interface, of the fiber, and of the matrix. All things being equal, 
the analysis shows the stresses to be highest at the interface, thus pointing to an 
adhesive type of failure. 
B. Interior Region 

The 3-D stress field for this region has also been rccovercd by Pcnado and 
Folias (1989) and the results for various (a//!) and (G,IGI) ratios may be found in 
the literature. The results have subsequently been extended (Folias and Liu, 
1990) to also include a layer of modified matrix around the fiber. Thus for 
v 1  = 0.34, v1 = 0.22 and (GJG,)  = 16.67 the stresses a!!) and a!:) at r = a 
and for all I z [ I h are given in Figures 4 and 5, respectively. Finally, Figure 6 
(for X = 0) shows the variation of the stress a!!’ as a function of the ratio 
(GJGd. 

INTERFACE FAILUKE CLOSE TO THE FREE SURFACE 
A closer inspection of the local stress field shows that a crack is most likely to 

initiate at the location 8 = 0 and subsequently propagate along the fiberlmatrix 

.lh=o.o5 v l = O U  vzm22 ram 

-1-1 6.87 

- - -  - - 

0.0 0.2 0.4 0.6 0.0 1 0 

Figure 4. Stress 0:) at r = a, 0 = 0 and for v l  = 0.34, vt = 0.22 and (G,K;J = 16.67. 
across the thickness. 
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Figure 5.  Stress O $  at r = a, 8 = 0 and tor Y ,  = 0.34, u2 = 0.22 and (GJG,) = 16.67, 
across tho thickness. 

interface until it reaches a nominal value of the arc length beyond which it will 
advance into the matrix. Moreaver, once the crack begins to propagate, it will si- 
multaneously propagate along the interface and parallel to the axis of the fiber 
(mode 111). Thus, crack propagation will be goxrned initially by a mode I failure 
and subsequently by a combination of mode I and mode 111 failure. It is now pos- 
sible for us to examine the first stage of the failing process and to obtain an esti- 
mate of the debonded arc length as well as an estimate of the critical transvcrse 
stress for crack initiation. 
As a practical matter, we will consider the special case of a glass fiber em- 

bedded into an epoxy matrix with the following properties 

Y, = 0.34 

Yz = 0.22 

G, = 2.10 GPa 

GI = 35.00GPa 
(13) 
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Without going into the numerical details, the constants a!, A and B for this exam- 
ple arc found to be‘: 

a! = 1.751 I G(1)Ann-2 = 0 . 6 3 4 9 ~ ~  B= 2.1302 (14) 

wherc a. now has the unirs of GPa. Thus, from Equations (7)-( 12) one has 

(I) At Q = 0 and 0 = 0: 

- -0.2489 
a!!)  = 4.0633~. (7) 

(2) At Q = d 2  and 0 = 0: 

-0.1489 

a!!’ = 1.9163u0(+) 

It is clear now from Equations (15) and (16) that crack failure is most likely to 
initiate and subsequently propagate along the fiberlmatrix interface rather than 
perpendicular to it. Similarly, Equations (17) and (19) suggest that failure in the 
direction parallel to the axis of the fiber is dominated first by a mode I and second 
by a mode 111 type of failure. It may also be noted that a!!’ attains a maximum 
at 0 = 0 and decrcases as one travels along the surface of thc fiber. 

Finally, based on 3-D considerations, the stress field away from the edges, 
z = - + / I ,  and in the interior of the plate wis shown to be non-singular (Penado 
and Folias, 1989; Folias and Liu, 1990) withs 

a::) = 0.4090 a!!)  = 0.4090(1.4281a0) = 0.5841~. 

a t e  = o  (20a) 

at r = n and t = 0. Comparing this value with that of the corresponding plane 
strain solution 

(20b) 
VI 

u:;) = 0 . 5 1 5 2 ~ ~  a t e  = o - - - 
1 - v, 

‘The consunt A I u s  bcen dctcrmind by comparing the dirplaccrnent d’). 3s uell a s  the strcss 0::’ at 0 = 0, at 
t = h and for ( d h )  = 0.5 uith thc unrk of Pcmdo and Foliar (1989). A m C.A.. 
‘These resullc arc d i d  for a ntio of ( d h )  = 0.05 3nd subject to the assumption that ( w h )  > 8 and ( I h )  > 8 in 
which case h e  end boundaries in I and y h . 7 ~  insignificant CITCCIS on  the local to Ihc fibcr stress field. 
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DO 

Figure 6. Stress u!;'at r = a, 0 = 0 and for Y ,  = 0.34, v2 = 0.22, versus lhe ratio (GJG,). 

one notices that it is approximately 13% higher in value due to the presence of 
the stresses in the third dimension. 

It is now possible for us to obtain an approximate criterion for debonding along 
the fibcdmatrix interface based on Griffith's theory of fracture. Thus, following 
the work of Top (1974), if one assumes the presence of an interface crack of 
length 2 4  and if furthermore takes into account the local 3-D stress field, then 
Toyas result may be written as 

(1/16)(1.1337u.)*ku&1 + 48)7rN0f10 sin 0 exp[2c(~ - P) ]  = 2yll (21) 

where 

for plane stress 
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1 - (cos 0 + 2c sin 8) exp[2c(?r - 0)] 

2 - k - k(cos 0 + 2c sin 0) exp[2e(?r - /3)] 
+ (1  - k)(l + 42)  sin' 0 Go = 

E. S. FOLIAS 

(24) 

where f l o  is the complex conjugate of No. yI1 is the spccific surface energy of the 
interface and 0 the angle of debonded interface (see Figure 7). While it is true 
that this type of approach does not provide results for the exact initiation of an in- 

I t 1  =* 

V 

=. 

crack 
propagation 

/rt:rriace 

D D 
matrix ra t r lx  

Figure 7. Fiberhatrix interface crack under transverse loading. 
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tcrfacc crack problem, i.e., from a condition of perfectly bonded interface to that 
of a partially debonded interface. it does, howcver, provide a very good first ap- 
proximation to this complex phenomenon. Thc author is well aware of that and 
is presently continuing his work along such lines and with some promise. 

Upon rearranging, Equation (21) can be written in the form6 

( 2 8 )  -- - ( I  .2853)F(vi ,  Gi;P) 2Yl2 
U 2 l  

where F is a function of the material constants and the angle 0 of the debonded 
interface. A plot of this equation for conditions of plane stress, as well as of plane 
strain, is given in Figure 8. In both cases the maximum occurs at 0 = 60". 
Beyond this angle, the crack will gradually curve avay from the interface and into 
the matrix. 

In order for us to obtain an estimate for the critical stress for crack initiation 
we let 0 - 0*, i.e., very small but not zero. Thus, for our example 

(a&,- = 1.8186- at z = 0 (294 

On the other hand, in the neighborhood of the free surface, the applied stress is 
much higher bccause of the singularity presence. In order to overcome this diffi- 
culty, one may average the local stress over a distance equal to 10% of that of the 
radius, i.e. 

(4.0633~7.) ( :)0.2J*9 d [  = 9.5958~. ( 3 0 )  

Thus' 

Combining next Equations (29a) and (29b) one finds 

i.e., the critical loading stress which may cause Fiilurc closc to a free surface is 
approximately (UO) of the critical stress required to causc the same failure at the 

* I t  should k noted that at the cnck ends he stress field oscillrtes and h t  some o\crlap of Ihc crack faces ukes 
place. This matter is ucll rccognizrd and has b a n  documented by \Vdliams (1952). Rice ct al. (1965) and England 
(1965). The region uhcrc this occun. houcw. is so small (less thano x W) h t  Equation (28) provides a good 
approximation. 
7hc reader may notice that the right-hard side of Equation (29b) dillcn from (293) txcrme it is based on plane 
stress. 
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center of the fiber's length. Thus,'all things b c i g  equal, a crack will initiate at 
the free surface and will propagate along the pcriphcry of the fibcr/niatrix intcr- 
face as well as parallel to the axis of the fiber. 

Focusing next our attention on the advancement of thc cnek along thc periph- 
ery of the fibcr we conclude that the crack will advance itself to a critical angle 
of 0 = 60". Once the crack has reached 0 = 60". the local geometry is similar 
to that of a holc. This problem has also bccn investigated for the 3-D stress field 
close to a free surface (Folias, 1987). as well as in the interior of the plate (Folias 
and Wang, 1986). Without going into the details, at z = h,  it  w s  found that 

(32) 
ff2 -- 

( I )  - -(1 + v,) = -1.34 
O r ,  

suEgesting, thercforc, that the failure now is govcrned by the stress u::) which at- 
tains its nuximum value at 8 = 7d2. Thus, the crack will begin to curve into the 
matrix until its direction becomcs pcrpcndicular to that of the applied load. 

PERIODIC ARRAY OF FIBERS 
The previous results were based on the prcscncc of one fiber only. It is now 

desirable to extend these results to also include a doubly periodic array of fibers 
which are embedded into a matrix. For this reason, we assume a periodic ar- 

STRAIN ENERGY AND ITS RELEASE RATE 

GI 2.1 GPO, V I =  0.34 /G2= 35GPo. V2* 0.22 
400/Y10-'2 I 1 I 

350 

300 

2 5 0  

200 

150 

100 

5 0  

0 

Figure 8. Strain energy release rate for plane stress and plane strain conditions for Y ,  = 
0.34, v2 = 0.22 and (GJG J = 16.67. 
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0 0 0 0 0 0 0 0 0 0  

O O O O O O Q O O O  
0 0 0 0 0 0 0 0 0 0  

21 
1 

+ =o 
Figure 9. Periodic array of fibers of length 2h. embedded into a matrix. 

nngement of the type shown in Figure 9. Following the same method of solution 
as that of Pcnadoand Folias (1989), one finds8 at I = 0 the strcsses u!:' and u::), 
for vI  = 0.34, v2 = 0.22 and various (G21GI) ratios, shown in Figures 6 and 10. 
Two observations are worthy of note. First, beyond a certain ratio of (GJG,) the 
stress u!! )  reaches an asymptotic value. Such a trcnd was also found by Adams 

The results are \did for all fibers uhich arc at lost four diamters awy from the h)undlng p 1 . m ~ ~ ~  = f wand 
J = f t. The solution and rhe & i d s  are similar to hose discusscd by Pcnado and Mi3s (1989) except that one 
now has cos(2nO). n = 0.1.2.. . .. uhcrc the rcrmining unknmn rocffiricnts arc Jstcrmincd from thc bounhry 
conditions of the gmmctrical cell configuration. The present rcsults are b3sed on n = 0.. . _. N = 20 tcrms ahich 
provide sccume rcsulrc in the region Idhl c 0.9. Hmc\er. m n y  mom tcrms arc ncedcd in odcr  to obnin ac- 
curate results panicularly in the neighborhood of z = *h.  We are presently uurking on this and th' results for this 
problem. as wrll as for he problem of stresses b e  10 rcmpenture misrmtch. will be reponed in the ncar future. 
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(1967) based on 2-D considerations. Second, as the volume of fibers increases the 
stress u! ! )  decreases by as much as 40% (see Figure 11). 

Returning next to the strain energy release rate, Equation (21) is still a good ap- 
proximation providcd that u. is replaced by the following effective load stress 

Thus Equation (29a) now becomes 

which is valid for small values of 0. 
Unfortunately, in order to obtain a similar expression for z = / I ,  one needs to 

establish whether the order of the singularity stmgth increases as adjacent fibers 
approach the fiber in question. In view of some previous work the author conjec- 
tures that this may very well be the case. Thus, the following fundamental ques- 
tions come to mind. How close must adjacent fibers be before the order of the 
singularity strength is affected? Does a certain separation distance or a certain 
periodic array of fibers exist which leads to an optimal state of stress? Based on 
3-D considerations, Penado and Folias (1989) have shown that when fibers are 
placed four fiber diameters apart, center to center, prdctically all fiber interac- 
tions have subsided, including those at the free surface z = h.  The author sus- 
pects, however, that when fibers are placed twodiameters apart, center to center, 
the singularity strength may be affected. Naturally, this is o conjecture that needs 
to be investigated. 
As a practical matter, if one uses the approximation given by Equation (30), the 

critical stress to failure at the fiber edge in a glass fibedepoxy matrix composite 
with the properties 

G,,, = 2.10 GPa v, = 0.34 nl = lo-' cm p = 60" 

GI = 35.00 GPa vf = 0.22 2y12 = 70 J/m' Vl = 0.70 
(35) 

becomes 

(u& = 20.582 F ( V f )  MPa 

= 2.985 F(V,) ksi at the fiber edge (36) 

a plot of which is given in Figure 12. Edge delamination may now be modeled 
as the progressiw failure of a row of fibers. 

 at UNIV OF PITTSBURGH on February 8, 2011jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


0.4 1 1 
0.21 1 1 1 I I 
0.0 0.2 0.4 0.6 0.8 1.0 

Figure 7 7 .  Stress o ~ I  at r = a, versus V,, for (G,/G J = 16.67 Y ,  = 0.34, v2 = 0.22. 

Figure 12. Critical stress to failure versus V, for (G,/Gl) = 16.67, Y ,  = 0.34 and 
0.22. 

= 

8 84 
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COKCLUSIOSS 
Based on a 3-D analytical solution, we have shown that fibcr/matrix dcbonding 

is most likely to occur close to a free surface. Thus, rcgions where fibcrs in- 
tersect free surfaces, e.g., holes, cut outs. edges, cracks, ctc. are potcntial trouble 
spots. Moreover, the strain energy release nte  [Equation (28)] may bc used to 
predict crack initiation in the center of the fiber length [Equation (29a)], as \veil 
as at the free surface [Equation (29b)l. Moreover, fibdrnatrix dcbonding at a 
free surface will occur at approximately (1110) h e  load value required for the 
same type of failure to occur at the center of the fiber length. Such information 
on crack initiation is particularly important for the proper understanding of 
damage evolution. 

Alternatively, the strain encrgy release rate for a periodic array of fibcrs of the 
type shown in Figure 9 may. at z = 0, be approximated by Equation (28) in con- 
junction ,with Equation (33). A siniilar expression applicable to the neighborhood 
of the free surface requires that one must first establish whether the strength of 
the singularity is indeed affected as the fiber volume increases. For v, 5 0.05, 
however. it has becn shown9 that no such interaction effects arc present. 

As a final remark, we note that if the bond at the interface docs not fail thc 
analysis shows that there exists a stress magnification factor in thc resin which at- 
tains a maximum between the fibers. This maximum stress magnification occurs 
along the line 0 = 0" and at a distance r = 1.20 from the center of the fibcr.'O 
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