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ABSTRACT: This paper deals with the 3-D stress field of a cylindrical fiber which is
embedded into a resin matrix. The composite is then subjected to a uniform tensile load
d,. The strain energy release rate is computed and the criterion is used to predict debond-
ing initiation at the fiber/matrix interface. The analysis shows that this failure is most
likely to occur at the free surface, i.e. the region where the fiber intersects a free surface,
for example a hole, an edge, or a crack. Moreover, it will occur at approximately (1/10) the
load value required for the same failure to commence at the center of the fiber length.

The results are also extended to include a doubly periodic array of fibers which are
embedded into a matrix. Based on 3-D considerations, the stiffness matrix is shown to in-
crease as the volume fraction of the fibers increases. Similarly, the stress o,, in the matrix
is shown to decrease as the volume fraction of the fibers increases.

INTRODUCTION

T IS WELL recognized that fiber composite materials are very attractive for use

in aerospace, automotive and other applications. These composites consist of
relatively stiff fibers which are embedded into a lower stiffness matrix. Although
in most designs the fibers are aligned so that they are parallel to the direction of
the external loads, it is almost impossible to avoid induced transverse stresses
which may lead to premature failure of the laminate. An excellent example of this
is the case of a filament wound pressure vessel in which the presence of a curva-
ture induces bending as well as transverse stresses (Folias, 1965). However, in
order to be able to predict their failing characteristics, particularly in the
neighborhood of free surfaces such as holes, edges, etc., it is necessary to know
the local stress behavior from a 3-D point of view.

An overall summary of some of the results, which are based on 2-D elasticity
considerations can be found in the books by Hull (1981) and by Chamis (1975). In
their pioneering work, Adams and Doner (1967) used finite differences to solve
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the problem of a doubly periodic array of elastic fibers contained in an elastic
matrix and subjected to a transverse load. Their results reveal the dependence of
the maximum principal stress versus the constituent stiffness ratio (E,/E..) for
various fiber volume ratios. A few years later, Yu and Sendeckyj (1974) used a
complex variable approach to solve the problem of multiple inclusions embedded
into an infinite matrix. Their results were subsequently specialized to cases of
two and three inclusions thus providing us with further insight into the strength
of the composite. On the other hand, the separation of a smooth circular inclu-
sion from a matrix was investigated by Keer, Dundurs and Kiattikomol (1973). By
using finite integral transforms, they were able to reduce the problem to that of
a Fredholm integral equation with a weakly singular kernel. Thus, extracting the
singular part of the solution, they were able to reduce the remaining problem to
a simpler one which lends itsclf to an cffective numerical solution. Their results
are very general and are applicable to various combinations of material proper-
ties and loads.

In this paper, use of the local, 3-D, stress field will be made in order to examine
the dependence of the stress a,,, in the matrix, on the ratio (G;/G..). The strain
encrgy release rate will then be computed in order to predict crack initiation at
the fiber/matrix interface. Particular emphasis will be placed in the region where
fibers meet a frec surface as well as at the center of a fiber's length.

FORMULATION OF THE PROBLEM

Let us consider a cylindrical fiber of homogenecous and isotropic material, e.g.,
a glass fiber, which is embedded into a matrix of also homogencous and isotropic
material. : '

Furthermore, we assume the matrix to be a rectangular plate with infinite di-
mensions 2w, 2¢, and 2k as defined by Figure 1. For simplicity, we assume
(w/a) > 8 and (¢/a) > 8. Such an assumption will guarantee that the boundary
planesx = xw,andy = =, will not affect the local stress field adjacent to the
fiber.! Thus mathematically, one may consider the boundaries in the x and y di-
rections to extend to infinity. As to loading, the plate is subjected to a uniform
tensile load o, in the direction of the y-axis and parallel to the bounding planes
(see Figure 1).

In the absence of body forces, the coupled differential equations governing the

displacement functions u{”’ are
1 de i
ﬁ;_‘ + V=0 i=123 j=1,2 0))

'y O0X,

where V2 is the Laplacian opcrator, v, is Poisson’s ratio, u«}'’ and «!*’ represent

the displacement functions in media 1 (matrix) and 2 (fiber), respectively, and

!

() —
e =
ax;

i=123 j=12 @)

'This can be scen from the results which were recently reported by Penado and Folias (1989).
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Figure 1. Geomsetrical and loading configurations.

The stress-displacement relations are given by Hooke’s law as
o = Nelsy + 2GWe, )
where )\, and G, are the Lame constants describing media 1 and 2.

THE SOLUTION FOR ONE FIBER

A. Region Where Fiber Intersects the Free Edge

871

A)

This problem was recently investigated by the author (Folias, 1989) who was
able to recover, explicitly, the three-dimensional stress field adjacent to the sur-
face of the fiber.? Without going into the mathematical details, the displacement

*A similar analysis for a transversely isotropic fiber meeting a free surface has recently been completed and the

results will be reported soon.

Downloaded from jcm.sagepub.com at UNIV OF PITTSBURGH on February 8, 2011


http://jcm.sagepub.com/

872 E. S. FoLias

and stress ficlds for the matrix arc given in terms of the local coordinate system
(see Figure 2) by:

1. DISPLACEMENT FIELD
u™ = A,0°" sin 0{B[2(1 — »,) cos(a — 1)¢
— (@ — D) sin ¢ sinfle — 2)¢] — (a + D] — 2») sin(fa — 1)
+ (x — 1) sin ¢ cos(a — 2)@ ]} cos(2nb) 4)
vt = A0 cos O{B[2(1 — v,) cos(a — 1)
— (a — 1) sin ¢ sin(e — 2)$] — (@ + D[] = 2v,) sin(e — D¢
+ (@ — 1) sin ¢é cos(a — 2)¢ ]} cos(2nb) %)
wi = 40 B[—(1 = 2»)sin(a — 1)¢ + (o — 1) sin ¢ cos(a — 2)¢)
— (ax + DR — ») cos(a — 1)¢

+ (@ — 1) sin ¢ sin(a + 2)¢]} cos(2nb) ©)
2. STRESS FIELD

ol =2G"a — 1)4.0°*BI2 cos(a — 2)¢ — (a — 2) sin ¢ sin(a — 3)¢}
— (o + Dsin(@ — 2)¢ + (@ — 2) sin ¢ cos(@ — 3)¢]} cos2nf) (7)
of’ = 4r,G"(a — 1)A,0* B cos(ax — 2)¢

— (a¢ + 1) sin(a — 2)¢} cos(2nf) 8)

o' =2G"(a — 1)A.e**{B(a — 2) sin ¢ sin(e — 3)¢
+ (@ + Dl(e — 2) sin ¢ cos(ee — 3)¢ — sin(a — 2)¢]} cos(2nb) (9)
i = 2G " a — 1)4,*B[sin(a — 2)¢ + (a« — 2) sin ¢ cos(a —3)¢)
— (@ + 1)@ — 2) sin ¢ sin(a — 3)¢} cos(2nf) (10)
T =78’ =0 (11)-(12)

where n = 0,1,2,. . . and B is a function of thc material constants and A, is a
constant to be determined from the boundary conditions far away from the fiber.?

For one fiber n = 0,)., while for a periodic extension n = 0,,2.. ..
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Figure 2. Definition of local coordinates.

BACK SURFACE A

In general, the characteristic value of « depends on the material constants of the
fiber as well as of the matrix. A typical example is given in Figure 3.

Upon examination of the stress field, the following remarks are worthy of note.
First, the stress field in the neighborhood where the fiber meets the free surface

is singular. Moreover, in the limiting case of a perfectly rigid inclusion this sin
larity strength reaches the value of 0.2888. Second, boundary conditions ¢
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Figure 3. Singularity strength for isotropic fiber and isotropic matrix versus G,/G,.
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which points to the presence of ‘a boundary layer solution as one approaches the
free surface. Third, on the free surface the radial stress is (1/v,) times the circum-
ferential stress. This suggests, therefore, that if a crack was to initiate, it would
propagate along (or very, very close to) the fiber/matrix interface. Clearly, the
occurrence of either adhesive or cohesive failure will depend on the relative
strengths of the interface, of the fiber, and of the matrix. All things being equal,
the analysis shows the stresses to be highest at the interface, thus pointing to an
adhesive type of failure.

B. Interior Region

The 3-D stress ficld for this region has also been recovered by Penado and
Folias (1989) and the results for various (a/h) and (G,/G,) ratios may be found in
the literature. The results have subsequently been extended (Folias and Liu,
1990) to also include a layer of modified matrix around the fiber. Thus for
v = 0.34, v, = 0.22 and (G,/G,) = 1667 the stresses ¢!}’ and 0fs’ at r = a
and for all |z| < h are given in Figures 4 and 5, respectively. Finally, Figure 6
(for A = 0) shows the variation of the stress o!!’ as a function of the ratio
(G./G).

INTERFACE FAILURE CLOSE TO THE FREE SURFACE

A closer inspection of the local stress field shows that a crack is most likely to
initiate at the location § = 0 and subsequently propagate along the fiber/matrix

145
ah=0.05 v1=034 v220.22 raa
G2/G1-16.67
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Figure 4. Stress o atr = a, 6 = 0and for v, = 0.34, v, = 0.22 and (G,/G,) = 16.67,
across the thickness.
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Figure 5. Stress of)atr = a, 6 = 0 and for v, = 0.34, v, = 0.22 and (G,/G,) = 16.67,
across the thickness.

interface until jt reaches a nominal value of the arc length beyond which it will
advance into the matrix. Moreover, once the crack begins to propagate, it will si-
multancously propagate along the interface and parallel to the axis of the fiber
(mode III). Thus, crack propagation will be governed initially by a mode I failurc
and subsequently by a combination of mode I and mode 111 failure. It is now pos-
sible for us to examine the first stage of the failing process and to obtain an esti-
mate of the debonded arc length as well as an estimate of the critical transverse
stress for crack initiation.

As a practical matter, we will consider the special case of a glass fiber em-
bedded into an epoxy matrix with the following properties

G, = 2.10 GPa vy = 0.34

(13)
G: = 35.00 GPa vy = 0.22
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Without going into the numerical details, the constants «, A and B for this exam-
ple are found to be*:

a = 1.7511 GMAa~? = 0.63490, B= 2.1302 (14)
wherc g, now has the units of GPa. Thus, from Equations (7)-(12) one has

() At¢ = 0and 6 = O

_ -0.2489
oV = 4.06330,(r “) (15)
ol = vo!l) (16)
(2)At¢ = w/2and 6 = O:
h - -0.2489
ol = 1.91630,( ! - Z) a7
od' = 0484442 18)
Y = —029300" (19)

It is clear now from Equations (15) and (16) that crack failure is most likely to
initiate and subsequently propagate along the fiber/matrix interface rather than
perpendicular to it. Similarly, Equations (17) and (19) suggest that failure in the
direction parallel to the axis of the fiber is dominated first by a mode I and second
by a mode III type of failure. It may also be noted that ¢!}’ attains a maximum
at 0 = 0 and decreases as one travels along the surface of the fiber.

Finally, based on 3-D considerations, the stress field away from the edges,
z = =/, and in the interior of the plate was shown to be non-singular (Penado
and Folias, 1989; Folias and Liu, 1990) with®

o’ = 0.4090 0!}’ = 0.4090(1.42810,) = 0.58410,
atg =0 (20a)

atr = aand z = 0. Comparing this value with that of the corresponding planc
strain solution

Vi

=7 o =051520,  atf=0 (20b)

“The constant 4 has been determined by comparing the displacement s, as well as the stress 0! at 8 = 0, at
2 = h and for (a/h) = 0.5 with the work of Penado and Folias (1989). A = X, A..

*These results are valid for a ratio of (a/h) = 0.05 and subject to the assumption that (w/a) > 8 and (¢/a) > 8 in
which case the end boundaries in x and y have insignificant effects on the local to the fiber stress field.
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Figure 6. Stresso!’atr = a,0 = Oand for v, = 0.34, v, = 0.22, versus the ratio (G,/G,).

one notices that it is approximately 13% higher in value due to the presence of
the stresses in the third dimension.

It is now possible for us to obtain an approximate criterion for debonding along
the fiber/matrix interface based on Griffith’s theory of fracture. Thus, following
the work of Toya (1974), if one assumes the presence of an interface crack of
length 2ap and if furthermore takes into account the local 3-D stress field, then
Toya’s result may be written as

(1/16)(1.13370,)*kaA,(1 + 4e)nN,N, sin B exp[2e(r — B)] = 212 21

where

I+ &
k=1 + 0+ L)(GJIGY (22)

3 — 4y, for plane strain

k, = (23)

3 . f pl t S
or anc stres
] l } i
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- k .

A = E: (1 + &k + (I + k)XGJ/GY)) 249
_ b 1 + k(G\/Gy)

€= T2 “[ k + (G./G)) @
B 1 200 =k 1+ k(G/G))

Ne =G = ¥ = =% &+ (GG PR — D] 20

1 — (cos B + 2¢sin B) exp[?e(w - B
G, + (1 = b + 4¢¥) sin? 8 @7

T2k - k(cos B + 2¢ sin 8) exp[2e(w — B)]
where N, is the complex conjugate of N,, v, is the specific surface energy of the

interface and B the angle of debonded interface (see Figure 7). While it is true
that this type of approach does not provide results for the exact initiation of an in-

.
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Figure 7. Fiber/matrix interface crack under transverse loading.
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terface crack problem, i.e., from a condition of perfectly bonded interface to that

of a partially debonded interface, it does, however, provide a very good first ap-

proximation to this complex phenomenon. The author is well aware of that and

is presently continuing his work along such lines and with some promise.
Upon rearranging, Equation (21) can be written in the form®

2y _ )
1 = (1.2853)F (v, Giif) (28)

where F is a function of the material constants and the angle 8 of the debonded
interface. A plot of this equation for conditions of plane stress, as well as of plane
strain, is given in Figure 8. In both cases the maximum occurs at 8 = 60°.
Beyond this angle, the crack will gradually curve away from the interface and into
the matrix.

In order for us to obtain an estimate for the critical stress for crack initiation
we let 8 — 0%, i.e., very small but not zero. Thus, for our example

(0.)oV2aB = 1.8186V7:G, atz = 0 (29a)

On the other hand, in the neighborhood of the free surface, the applied stress is
much higher because of the singularity presence. In order to overcome this diffi-
culty, one may average the local stress over a distance equal to 10% of that of the
radius, i.e.

0.la

1 -0.2489
(o) = m S (4.06330.) (5) d§ = 9.59580, (30)

0
Thus’

(9.59580,).,v2aB = 1.8146V7,,G, atz =~ +h (29b)
Combining next Equations (29a) and (29b) one finds

(0)rtatz =h

_——(a.,),,latz —— = 0.10 (€3]

i.e., the critical loading stress which may cause failure close to a free surface is
approximately (V10) of the critical stress required to cause the same failure at the

*It should be noted that at the crack ends the stress field oscillates and that some overlap of the crack faces takes
place. This matter is well recognized and has been documented by Williams (1952), Rice et al. (1965) and England
(1965). The region where this occurs, howerer, is so small (less thana x 10°?) that Equation (28) provides a good
approximation.

"The reader may notice that the right-hand side of Equation (29b) differs from (29a) because it is based on plane
stress.
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center of the fiber’s length. Thus, all things being cqual, a crack will initiate at
the free surface and will propagate along the periphery of the fiber/matrix inter-
face as well as parallel to the axis of the fiber. )
Focusing next our attention on the advancement of the crack along the periph-
cry of the fiber we conclude that the crack will advance itself to a critical angle
of 8 = 60°. Once the crack has reached 8 = 60°, the local geometry is similar
to that of a hole. This problem has also been investigated for the 3-D stress field
close to a free surface (Folias, 1987), as well as in the interior of the plate (Folias
and Wang, 1986). Without going into the details, at z = 4, it was found that

)
(27

P -1 +v)=-134 32)

rr

suggesting, therefore, that the failure now is governed by the stress o4’ which at-

tains its maximum value at § = #/2. Thus, the crack will begin to curve into the
matrix until its direction becomes perpendicular to that of the applied load.

PERIODIC ARRAY OF FIBERS

The previous results were based on the presence of one fiber only. It is now
desirable to extend these results to also include a doubly periodic array of fibers
which arc embedded into a matrix. For this reason, wec assume a periodic ar-

STRAIN ENERGY AND ITS RELEASE RATE

400/710°%? T T T T
Gl: 2.1GPa,V1-0.34/G2+-35GPa,V2:0.22
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Figure 8. Strain energy release rate for plane stress and plane strain conditions for v, =
0.34, v, = 0.22 and (G,/G,) = 16.67.
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Figure 9. Periodic array of fibers of length 2h, embedded into a matrix.

rangement of the type shown in Figure 9. Following the same method of solution
as that of Penado and Folias (1989), onc finds® at z = O the stresses !}’ and o3’

for v, = 0.34, v; = 0.22 and various (G,/G,) ratios, shown in Figures 6 and 10.
Two observations are worthy of note. First, beyond a certain ratio of (G,/G,) the
stress a!}’ reaches an asymptotic value. Such a trend was also found by Adams

*The results are valid for all fibers which are at least four diameters away from the bounding planes x = +wand
¥y = =l The solution and the details are similar to those discussed by Penado and Folias (1989) except that one
now has cos(2n6), n = 0,1,2,. . ., where the remaining unknown cocfficients are determined from the boundary
conditions of the gcometrical cell configuration. The present results are bascdonn = 0.. . ., N = 20 terms which
provide accurate results in the region |2/h| < 0.9. However, many more terms arc needed in onder to obtain ac-
curate results particularly in the neighborhood of z = +h. We are presently working on this and the results for this
problem, as well as for the problem of stresses due to temperature mismatch, will be reported in the near future.
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(1967) based on 2-D considerations. Second, as the volume of fibers increases the
stress 0!} decreases by as much as 40% (see Figurc 11).

Returning next to the strain energy release rate, Equation (21) is still a good ap-
proximation provided that g, is replaced by the following effective load stress

0::’|x
o a0

(oa)cﬂccmeptnodlc = { ] g, = {F(l,/)]-lao for = 0 (33)

Thus Equation (292) now becomes

(0 = 1.8186F (V) ,/%!GB"' (34)

which is valid for small valucs of 3.

Unfortunately, in order to obtain a similar expression for z = /1, one needs to
establish whether the order of the singularity strength increases as adjacent fibers
approach the fiber in qucstion. In view of some previous work the author conjec-
tures that this may very well be the case. Thus, the following fundamental ques-
tions come to mind. How close must adjacent fibers be before the order of the
singularity strength is affected? Does a certain scparation distance or a certain
periodic array of fibers exist which leads to an optimal state of stress? Based on
3-D considerations, Penado and Folias (1989) have shown that when fibers are
placed four fiber diameters apart, center to center, practically all fiber interac-
tions have subsided, including those at the free surface z = h. The author sus-
pects, however, that when fibers are placed two diameters apart, center to center,
the singularity strength may be affected. Naturally, this is a conjecture that needs
to be investigated.

As a practical matter, if one uses the approximation given by Equation (30), the
critical stress to failure at the fiber edge in a glass fiber/epoxy matrix composite
with the properties

G, = 2.10 GPa v, = 0.34 a=10%cm g = 60°

G, =3500GPa v =022 29,=70lm* V,=0.70 )
becomes
(0.), = 20.582 F(V;) MPa
= 2.985 F(V,) ksi at the fiber edge (36)

a plot of which is given in Figure 12. Edge delamination may now be modeled
as the progressive failure of a row of fibers.
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CONCLUSIONS

Based on a 3-D analytical solution, we have shown that fiber/matrix debonding
is most likely to occur closc to a free surface. Thus, regions where fibers in-
tersect free surfaces, e.g., holes, cut outs, cdges, cracks, etc. are potential trouble
spots. Moreover, the strain energy release rate [Equation (28)) may be used to
predict crack initiation in the center of the fiber length [Equation (29a)], as well
as at the free surface [Equation (29b)]. Moreover, fiber/matrix dcbonding at a
free surface will occur at approximately (1/10) the load value required for the
same type of failure to occur at the center of the fiber length. Such information
on crack initiation is particularly important for the proper understanding of
damage evolution.

Alternatively, the strain encrgy release rate for a periodic array of fibers of the
type shown in Figure 9 may, at z = 0, be approximated by Equation (28) in con-
junction with Equation (33). A similar expression applicable to the neighborhood
of the free surface requires that one must first establish whether the strength of
the singularity is indeed affected as the fiber volume increases. For ¥, < 005,
however, it has been shown?® that no such interaction effects arc present.

As a final remark, we note that if the bond at the interface docs not fail the
analysis shows that there exists a stress magnification factor in the resin which at-
tains a maximum between the fibers. This maximum stress magnification occurs
along the line 0 = 0° and at a distance r = 1.2a from the center of the fiber.'°
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