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This paper investigates the free edge effect on the stress field of a carbon fiber, which is embedded into an epoxy matrix. 
The fiber is assumed to possess cylindrical symmetry and to be transversely isotropic. The matrix is assumed to be of an 
isotropic material. The stress field is induced by a uniform tension applied on the matrix at points far away from the fiber 
surface. 

The displacement and stress fields are explicitly derived and a stress singularity is shown to prevail. The singularity strength 
is shown to be a function of the material constants of the fiber as well as those of the matrix. Finally, the displacement and 
stress profiles are plotted as a function of the angle q~ which is measured from the free surface. 

1. Introduction 

Quite often in engineering practice, structures are composed of two elastic materials with different 
properties which are bonded together over some surface. Such type of problem has been investigated from 
a 2D point of view by many researchers and the results can be found in the literature. For example, Knein 
(1927) considered the plane strain problem of an orthogonal elastic wedge bonded to a rigid base. Rongved 
(1955) investigated the problem of two bonded elastic half-spaces subjected to a concentrated force in the 
interior. Subsequently, Williams (1959) studied the stress field around a fault or a crack in dissimilar 
media. The work was then generalized by Rice and Sih (1965) to also include arbitrary angles. 

It was not until 1968 that Bogy (1968) considered the general problem of two bonded quarter-planes of 
dissimilar isotropic, elastic materials subjected to arbitrary boundary tractions. The problem was solved by 
an application of the Mellin transform in conjunction with the Airy stress function. The same author 
(1971) extended his work to also include dissimilar wedges of arbitrary angles. Shortly thereafter, Hein and 
Erdogan (1971), using the same method of solution, independently reproduced the results by Bogy. 
Finally, Westmann (1975) studied the case of a wedge of an arbitrary angle which was bonded along a 
finite length to a half-space. His analysis showed the presence of two singularities close to each other. 
Thus, elimination of the first singular term does not lead to a bounded stress field since the second 
singularity is still present. 

Based on 3D consideration, Luk and Keer (1979) investigated the stress field in an elastic half-space 
containing a partially embedded axially loaded, rigid cylindrical rod. The problem was formulated in terms 
of Hankel integral transforms and was finally cast into a system of coupled singular integral equations the 
solution of which was sought numerically. The authors were able, however, to extract in the limit from the 
integral equations the characteristic equation governing the singular behavior at the intersection of the free 
surface and that of the rigid inclusion. Their result was in agreement with that obtained by Williams (1952) 
for a right-angle corner with fixed-free boundary conditions. 

Haritos and Keer (1979) investigated the stress field in a half-space containing an embedded rigid block 
under conditions of plane strain. The problem was formulated by cleverly superimposing the solutions to 
the problem of horizontal and vertical line inclusions beneath an elastic half-space. By isolating the 
pertinent terms, the authors were able to extract directly from the integral equations the order of the stress 
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singularity at both corners. Both results are in agreement with the Williams solution. Moreover. the 
authors point out the importance of the second singularity to the results of the load transfer problems. 

With the advancement of composites and their extensive use in the aerospace industry, problems for the 
determination of the stress and displacement fields around inclusions have drawn considerable attention. 
For instance, Goodier (1933) investigated the disturbing effect of small spherical and cylindrical inclusions 
on an otherwise uniform stress distribution plate. Numerical results were presented for flaws, perfectly 
bonded rigid inclusions and slag globules cases. Hardiman (1952) used the complex variable method to 
treat the elliptic inclusion problem, he was the first to find that a uniform applied load at infinity induces a 
constant state of stress within an elliptic inclusion. The work was later generalized by Sendeckyj (1970) to 
include the solutions of the elastic curvilinear inclusions problems. It was not until 1979 that Tirosh, Katz 
and Lifschuetz (1979) studied the stress interaction of a single fiber, embedded in an elastic matrix, with a 
micro-crack situated near the interface. They found that the radial tensile stress component  or,. is higher 
than the tangential component  o00, and the location r at which the maximum stress takes place is not on 
the interface but at a small distance ahead, depending on the Poisson's ratio of the matrix. Dundurs (1989) 
noticed that the stresses in a body that contains rigid inclusions and is subjected to a specified surface 
traction depend on the Poisson's ratio of the material. If the Poisson's ratio is set equal to + 1 for plane 
strain, or + ~ for plane stress, the rigid inclusions become cavities for elastic constants within the physical 
range. 

In the area of multiple or periodical inclusions problems, Adams and Doner (1967) obtained a 2D 
numerical solution by a systematic overrelaxation procedure for a plate containing a rectangular array of 
inclusions embedded in an elastic matrix and subjected to a uniform normal transverse stress at infinity. 
At the same time, Goree (1967) presented a solution for the stress and displacement distributions in an 
infinite elastic matrix containing two perfectly bonded rigid cylindrical inclusions of different radii. 
Subsequently, Haener and Ashbaugh (1967) used the displacement potentials method to express the stress 
distributions in a unidirectional multiple fibers composite plate under external and residual loads. Marloff 
and Daniel (1969) used a standard stress-freezing technique to determine the 3D stress distribution in the 
matrix of a unidirectional composite plate subjected to matrix shrinkage and normal transverse load. 
Based on Sendeckyj's previous work, Yu and Sendeckyj (1974) extended their study by means of the 
Schwarz alternating method to the case of an infinite elastic matrix containing a random number of elastic 
inclusions. Moreover, Adams and Crane (1984) studied a microscopic region of a unidirectional composite 
plate by the finite element micromechanical analysis using a generalized plane strain formulation. Finally, 
Keer, Dundurs and Kiattikomol (1973) studied the phenomena of the separation of a smooth circular 
inclusion from a matrix which is subjected to a uniform load. Using finite integral transforms, the problem 
of finding the extension of separation and the contact pressure is reduced to the solution of a Fredholm 
integral equation with a weakly singular Kernel. 

Recently, Folias (1989) examined the local stress field in the neighborhood where a fiber embedded into 
an epoxy matrix meets a free surface. In this analysis, Folias assumed the fiber and the matrix to be 
isotropic but of different material constants. The analysis showed that the stress field in this vicinity to be 
singular. Moreover, the 3D analysis showed that for the case of a cylindrical inclusion, the order of the 
singularity strength is precisely that which was reported by Bogy (1968) based on 2D consideration. In the 
present paper the analysis is extended to also include a transversely isotropic fiber, e.g. carbon fiber, and 
the explicit 3D displacement and stress fields are recovered. 

2. Formulation of the problem 

Consider the equilibrium of a cylindrical carbon fiber of radius a which is embedded into a 
homogeneous, isotropic and linear elastic matrix that occupies the space [ x ] < ~ ,  I Y I < ~ and [ z I ~< h. 
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Fig. 1. Infinite plate of arbitrary thickness with cylindrical inclusion. 

The fiber is assumed to be of a transversely isotropic material with different material properties than those 
of the matrix. Moreover, the axis of the fiber is assumed to intersect the bounding plane z = + h  
perpendicularly and the matrix to be subjected to a uniform tensile load % in the direction of the y-axis 
and parallel to the xy-plane (see Fig. 1). Perfect bonding at the interface is assumed to prevail. 

In the absence of body forces, the equilibrium equations, in terms of the stresses o~j, are: 

O o ~  ) 10T~(~  ) OTff"' Or(~ ' -- O0(~ '° 
Or + - - - -  + + r O0 ~ r 

argo ~> 1 0ct~ ') Ore(2 > 2r~o ~} 
Or + r  ~)----ff-+----~--z + - = O ' r  

0%~ m) 10cgJz m) O0(z m) "rz--(m) 
Or + - - - -  + + = O, r O0 ~ r 

-o, O) 

(2) 

(3) 

where superscript m = 1 represents the material of the matrix and m = 2 represents the material of the 
fiber. 
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The stress-strain relations for a transversely isotropic ], as well as an isotropic, material are given by 
the constitutive relations 

of 7 ') 

o(y) 

,r~7 ') 
yz(/n ) 

Tr (m) 

c~;" 

c(m) 
I3 

0 

0 

0 

c~;" c~;" o o o 

C(~) ¢(m) 0 0 0 13 "-33 

0 0 c47 ') 0 0 

0 0 0 C~4~ ') 0 

o o o o ~(c~; ~ , -  c~?') 

where the C;~ m) represent the respective material constants. 
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As to boundary conditions, we require that (i) the stresses on the planes z = _+ h 
that the displacements and stresses of the two materials must match at the interface, 

, (4) 

must vanish and (ii) 
i.e. at r = a. 

3. Method of solution 

The primary objective of this analysis is to derive an asymptotic solution which is valid in the 
immediate vicinity of the corner points, i.e. the points where the interface meets the free surface of the 
matrix. Thus following the same method of solution as that of Folias (1989), one may write the equilibrium 
equations (1)-(3) in terms of the displacements ,;j" t,,) as 2 

° ~ " '  °2w(m' 02~'/" - o, (5) 
C~' )O(r_a)2  + (C~')  + C~m)) O(r---a)) Oz + C4C4~) Oz 2 

02u{om) 02u~om) 
+ C ~ 7 ' - -  - O, (6) ½(c~ ' ,  - c~7 )) O ( r -  0) 2 0~ 2 

02U~ m) 02W(m) 
02w(m) + (C~m) + C[; ')) O(r---a--)) az + "~33r'(m)--Oz 2 - 0. (7) C(m)O(r_a)2 

It is interesting to note that the stress field, at the vicinity of the fiber interface, leads to two coupled 
equations (5) and (7) for the displacements -r" (m) and w (m) and an additional equation (6) for the 
displacement u(6 m) 

Without going into the mathematical details, by direct substitution, one can show that the following 
displacement field satisfies the governing equations (5)-(7): 

0 2 H  (m) 

Ur'(m)= _ ( p ( m )  + c(44m) ) o ( r _ a  OZ 

w(.,,=(c~.) o 2 c(,.,o 2 ) 
0 ( r _  a)2 + 44 32.2 H(m), 

u(o~) = / ~ ( , - )  

(8) 

(9) 

(10) 

1 The mater ia l  of the fiber is assumed to possess a cyl indr ica l  symmetry .  
2 In wri t ing the fol lowing equat ions,  we assumed tha t  r - a << a. 
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Fig. 2. Definition of two local coordinate systems (a) and (b) at the comer. 

where the pseudo-harmonic functions H (m) and /~(m) satisfy the equations 

( 32 02( 02 c(")-- 1 o(m) ,('0__ / H (m) = 0 
3 ( r - a )  2 + ' Oz 2] a ( r - -a )  2 + 2 Oz 2] 

and 

with 

a2 

O ( r - a )  2 

0 2 
+ ~ m ) _ _  L g(,-) = 0 1 ~z 2 ] 

c ( m )  ~-. 1 C 1 2 ~,2 ~ ., + ~ }/c,. - 4din,  

2C~,.,) 
~m, = (C}~'- C~7')' 

qT)' 
q 7  ~ 

Cm c(m) 
C~7 ? 2C[7 ) 

c(m)r(m) C[?)" 11 ~ 4 4  

It is found convenient at this stage to introduce the local coordinate system (see Fig. 2), 

r - a = p c o s ~ ,  
h - z = p sin 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
(18) 
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and to adopt the following definitions: 

~/  sin20 
O~=O c°s20+ /-{m~' 

~ /  sin20 
102 = p COS20 + Clm---- ~ , 

tan 0 ] 
0~ = tan-  ~ ] '  

( t a n 0  t 
02 = t a n  11 c i - ~  ], 

in view of which, one may now construct asymptotic solutions for the functions 
ascending powers of O, i.e. 

H ( m ) - -  P2a+l cos(/30){ A(f , )cos[(a  + 1 ) 0 2 ]  + B~ m) s in[(a  + 1)021 

1 foq2+(m)(~) s in[(a  + 1)(02 -- ~)] d~ + 

and 

where 

(19) 

(20) 

(21) 

(22) 

H ~'~) and /-](") in 

+ O(03 +z) (23) 

H"~)=  0~ +1 cos(/~0){AI m) cos[(a  + 1)0,] + B~ m) s in[(a  + 1)01] } + O(p~+2), 

q/m)(~) = A~,,,)cos (a - 1) tan t e(-~5 tan 

E )]ltx+i )tan2, 
+B~ m' sin (a  - 1) tan-  V e~m---~ tan ~ 1 + tan2~ 

(24) 

c~/2 1 

(25) 

and a, AI "), B~ ''), A(f '), B~ m), A(3 '') and B~ m) are unknown constants to be determined from the 
following boundary conditions: 

at 0 = 0: %~) = ~'~(~) = ~'00 ) = 0, (26) 

at 0 = "~: o~ ) = T~ 2) = ~-0 (2) = 0, (27) 

at 0 = 'rr/2 : "r" (1)-----Ur(2) , U(01) = b/(2) , W (1) = W (2) , (28) 

or(i ) = or?, ~.~) = r~2), rr~)) = ~2). (29) 

Substituting the previously constructed displacement field into the boundary conditions (26)-(29), we 
arrive at a system of twelve algebraic equations, the determinant of which must vanish. This latter 
condition leads to a transcendental equation for the characteristic value a. 

Without going into the mathematical details, these characteristic values a may easily be determined 
with the aid of a computer. Although the transcendental equation has an infinite number  of real roots, 
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only those values which lie in the interval 1 < a < 2 are of practical interest. Furthermore, in this interval 
there are no complex roots present. In general a depends on the respective material properties of the 
matrix as well as of the fiber. 

The displacement and stress fields may now be computed in terms of one unknown constant which in 
turn is to be determined from the loading conditions far away from the fiber-matrix interface. Without 
going into the mathematical details, the explicit displacement and stress fields are found to be: 

(i) displacement field: 

u ( m )  _ 1 , - ~ (C~"  + CA"))a(u + 1)p~-' cos(BS) 

[ 
X I-A(2 m' s i n [ ( a -  1)+2] + B2 ('> cos[(a - 1)q~2] 

1 
f o ~ ( ' ) ( ~  ") cos[(a - 1)q~ 2 - (a + 1)~'] d~" - + ( a + l )  

+ o(o~), 
w ('~= a(a + 1)p~-' cos(B0) 

cos q~2 sin q~2 } 
a(a  + 1) ~k("(q~2) 

x{(C~{ n)- C('44m')elm) ]llA(m)~ 2 COS[(a--1)+2] +B2 (', sin[(a-1)+2] 

1 So*Zip°")(g') sin[(a - 1)q~2 - (a + 1)~] d~" } + ( a + l )  

[ sin2q'2 CA') c°s2~2 } 
+ C( l~ ' )a (a+l )+ e~ '') a ( a + l )  "4/')(q~2) +O(p~) ,  

uS " ) =  a (a  + 1)O~-' cos(BO){Ai '') cos[(a - 1)•,] + BI '') sin[(a - 1)q,i] } + O(p~); 

(ii) stress field: 

1 c~.m'(~-- 1)~(~ + 1)pV 2 cos(C0) °,7'= 

(30) 

(31) 

(32) 

×{(cl;',+ c;7' I B~', )t AT"> sin[(,~ - 2)<]  - cos[( , , -  2)<]  

1 fo%,m,(~.) COS[(,~_ 2 )<  _ (,~ + 1/~1 d~} ( a + l )  

[( si. O  C'cos:.:sin.   

[ sin2q}2 COS (/12 Cl(~n) c°s3(/12 ] } 
+ - C ~ { " ~ ( a - 1 ) a ( a + l )  + c~ " ~ ( a - 1 ) a ( a + l )  *(';(eP2) +0(0~-1)  ' 

(33) 
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° 0 7 '  = - - -  

o ) 7  ') = _ _ _  

X 

X 

I ( . - i ) , ~ ( . + 1 ) o ~  -~ cos(ri0) 

--12 ~-~,~ + c~ ~ )  - c~;" c~°" 
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1 q'2~(,,,) (~.) + } (a+ l )  fo cos[(a-2), 2-(a I)~'] d~" 

([/'~(rn)[/"(rn)"t- C(4n)) -"-'13 t"-'ll -- {{m)]] ~(O~q- 1) +/['-q2 , ~ , 3  - ,'-(,,,,It(m, Cg")l] sin 2*2 c°s *2 

+ [_,"(-')it(-,)+ C~")) + EU,,)p(m)] sin3*2 
"~12 ~'q3 "q3 "~11 I c~(a + 1) 

C{~n}C {m) C0S2,2 sin *2 } ~{pa}( 
+ ,I~, ~ ;  -T- T)- < )  
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q_ [ __/"{re'IF(m) -t- c { m ' ) +  r(~}c{~}! sin3*2 
"'~ ~'~" - "~" "" J , d ~ 7 ] )  

C3 ('~r'('} c0s2,2 sin *2 } 3 ',.~,44 
+ {{") a(a + 1) ~b{m)(*2) 

[ I~{m'[l~(m)q- C (m,)  -I- r{rn)/'~'m)] sirl2*2 COS *2 
+ - "-~ ~ "  " ~  " ~  ] ( ~ -  1 ) ~ ( ~  + 1) 

3 m)f'(m) C0S3,2 } } 3 ''44 
+ {~-o ( a -  1)a(a + 1) ~{"}'(*2) + O(p~ 1), 

(341 

(35) 
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,rr(~ ) = C(44m)('ot - 1 ) o t ( a  + 1 )p~  - 2  c o s ( f l 0 )  

× C[~)+ ,~m-----5-](AV) cos[(a-2)e02]+ s i n [ ( a  - 2)¢2]  

1 4,:+~,,,)(f s in[(a  (a  1)f]  d r}  + ( ~ + 1 ) £  ) -2)~,2-  + 

I( C~'° 1 sin 2q~2 sin q~2 C I ~  c°s3qa2 ~°"} sin2q~2 c°s q~2 
+ ~. C(1~') + c~ "--'----7 ] a(a  + 1) c~ ~ a(a  + 1) + '~" a(a  + 1) 

sin3~2 
+ - C [ ~ ' ) ( a -  1 ) a ( a  + 1) 

C~7 ) cos2d02 sin*2 ]t~(m)' ( } O(o~ -1) 
+ ,~---v ( , ~ - - / y ) ~ 7 1 )  *2) + , 

~0(m) - 1 C~m)(a - 1 ) a ( a  + 1)p~ -2 cos(flO) 

X ( - A ~  '') s in[(a  - 1),1] + B~ '') cos[(a  - 1)~,1 } + O ( p ~ - ' ) ,  

• / 7  ) = ~ ( c ~ 7  ) -  c~7' ) (~  - 1 )~(~  + 1)oV 2 cos(S0)  

x { A~ m' cos[(a  - 1)~1] + B[ m) s in[(a  - 1),,] } + o ( o v ' ) .  

(36) 

(37) 

(38) 

4. Discussion 

As a practical matter, two different types of fibers embedded into an epoxy matrix were considered, a 
carbon fiber and a glass fiber defined by the elastic properties given in Table 1. 

Omitting the long and tedious numerical details, the characteristic values of a were found to be 
a -- 1.693 and a = 1.737, respectively 3. The analysis suggests that the presence of a carbon fiber induces a 
slightly higher singular stress field than that of a glass fiber and consequently is more prone to failure. 
Moreover, in the limit, one recovers precisely the corresponding isotropic solution derived by Folias 
(1989). In Figs. 3-6, the behaviors of the local displacement and stress fields as a function of angular 

3 It may be noted that a second real root exists within this interval, however it leads to a slightly weaker stress singularity (see 

Westmann, 1975). 

Table 1 
The material properties for carbon fiber, glass fiber and epoxy matrix 

Carbon fiber Glass fiber Epoxy matrix 

Cln = 20.40 MPa C n = 99.19 MPa C H = 6.62 MPa 
C12 = 9.40 MPa C12 = 27.69 MPa Clz = 3.41 MPa 
C13 = 10.50 MPa 
C33 = 240.00 MPa 
C44 = 24.00 MPa 
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distribution ~ are depicted for both fibers considered above. The reader may note that for simplicity we 
have adopted the definition 

C(O) = A(22)c~(a + 1) cos( /30) ,  (39) 

which in the limit, as the material constants 

Co--' Cu . . . . . . . .  0,~' (40) 

t h e  function 

C(O) --, C*(O). ( 4 1 )  

It is noteworthy that, although the displacement and stress profiles corresponding to the two different 
fibers are very similar, their respective magnitudes are different. Similar trends are also expected to prevail 
at locations further away from the free surface. Finally, it remains for us to relate the unknown constant 
A~22) to the applied load far away from the vicinity of  the fiber. This matter is presently under investigation, 
and the results will be reported in a future paper where we will also take into account other effects such as 
stresses due to a temperature mismatch, mechanical loads along and perpendicular to the fiber axis, and a 
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correction factor to account for the presence of a periodic array of fibers embedded into a matrix. Finally, 
the variation of the exponent a as a function of the material ratio "---33['(2)/[-'(1)/',-~33 is given by Fig. 7. 
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