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Abstract. A general method for the construction of a 3D solution applicable to the equilibrium of a linear elastic layer which 
is subjected to a general load of bending or stretching is discussed. In the special case of a layer with faces free of stress, the 
general solution is derived explicitly. The general solution has a sufficient number of arbitrary functions to allow it to be 
used to solve a whole class of practical 3D problems, e.g. an inclusion, a partial through-the-thickness crack, a cylindrical 
hole etc. 

1 Introduction 

Engineering fracture mechanics techniques are able to compensate for the inadequacies of  conven- 
tional design consepts based on tensile strength or yield strength. While such criteria are adequate 
for m a n y  engineering structures, they are insufficient when the likelihood of  cracks exists. Now, 
after approximately three decades of  development,  fracture mechanics has become a useful design 
tool, particularly for high strength materials. Interestingly enough,  this technological advancement  
was based on the 2D elasticity solution of  the crack problem. Once the classical stress field was 
determined, it was then integrated to form a physically meaningful  concept, the energy, release rate 
(G). Unstable crack propagat ion occurs when G attains a critical value, which is a material  constant.  

While this approach is well unders tood in two dimensions, it is less so in three. Moreover,  
configurations occur quite often in practice that  are inherently three-dimensional in nature,  e.g. the 
intersection of  a partially, through-the-thickness crack with a free surface. The objective, therefore, 
is to further our  unders tanding of  the role of  such three-dimensional features such as specimen 
thickness, re-entrant angle etc., within the context of  L E F M  and beyond. 

The mathemat ical  difficulties, however, posed by three-dimensional elasticity problems are 
substantially greater than  those associated with plane stress or plane strain. Previous work on the 
subject has been reported by Sokolnikoff  (1983), Marguerre  (1955), Sternberg (1960) and others. A 
most  comprehensive recent survey of  the various methods  of  solution is given by Panasyuk et al. 
(1980). To the best of  the author ' s  knowledge, such a general solution to the equilibrium of  linear 
elastic layers is not  available. However, based on work carried out  by Folias (1975, 1988a), it is 
now possible to construct  such a solution, which in turn may  be used to determine the stress field 
in a plate with a partial  through-the-thickness crack, or an inclusion, or even a void of  an arbi t rary 
shape. 

2 Formulation of the problem 

We shall restrict our at tent ion to the realm of  classical static elasticity in which it is assumed that  
the strains are small and that  the physical constants of  the solid under  considerat ion are independent  
of  posit ion and stress. We consider the elastic solid to be a layer bounded  by two parallel planes, 
x3 = 0 and x3 = h, and containing, e.g. in the plane x2 = 0 a crack 1 which may  or may  not  be all the 

1 Although our objective is to derive a general solution for the 3D equilibrium of linear elastic plates, for the sake of clarity 
and rigour we will specialize the discussion to the case of a plate that has been weakened by a plane crack. Two such plane 
cracks which are of great practical importance are (i) a through-the-thickness line crack and (ii) a partial-through-the- 
thickness elliptical crack. For simplicity, we assume that the crack is symmetric with respect to the x3-axis 
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way through-the-thickness. The surface of the crack will be denoted by Sc and the total volume of 
the body V. A typical point  of the solid will be denoted by the three rectangular Cartesian coordinates 
xi (i = 1, 2, 3), and the displacement vector by ui. 

In the absence of body forces, the displacement functions u i are governed by the well-known 
Navier's equations, i.e. 

1 
g 2 u i q- e,i = 0 for all x i E V, (1) 

1 - 2v 

where the quantity e represents the divergence of the displacement vector ui, V 2 the Laplacian 
operator, and v Poisson's ratio. Furthermore,  the stress-displacement relations are given by Hook's  
law as 

2v 
f f i j  - -  1 - -  2v Ge•ij q- G (Hi, j "~ Uj, i) (2) 

where G now stands for the shear modulus,  ~ij for the stress tensor and fiij for the Kronecker delta. 
As to boundary conditions, one must  require that (i) on the planes z = 0 and z = h, the 

appropriate loading conditions are to be satisfied; (ii) on the faces of  the crack all stresses must  
vanish; and (iii) away from the crack, the appropriate loading and support  conditions are to be 
satisfied. 

In treating this type of problem, it is convenient to seek the solution in two parts, the undisturbed 
or 'particular'  solution, u~ p), which satisfies equation (1) and the loading and support  conditions but 
leaves residual forces along the crack, and the 'complementary'  solution, u! ~), which precisely nullifies 
these residuals and offers no contribution far away from the crack. Particular solutions of this type 
can easily be constructed and consequently will be assumed as known. 

3 M a t h e m a t i c a l  s t a t e m e n t  o f  the c o m p l i m e n t a r y  problem 

Assuming, therefore, that a particular solution has been found, we need to construct a displacment 
vector field u! c) such that it satisfies Navier's equations and the following boundary conditions 

a(c) -a(z~ for all x i a S c  (3) 2 i =  

o.(c) + a(f/) =f i  for all X i ~{planex3 0} "-(~) a(3§ ) = h} (4a, b) 3i = , ~,3i+ = g i  for all x i~{p lanex3  

wheref~ and gi are given functions of x1 and x2, and far away from the crack the displacements ul ¢) 
are to be bounded. 

4 M e t h o d  o f  solut ion 

For the construction of a solution to Eq. (1), we use a method that was first introduced by Lur'e 
(1964) and was subsequently extended by Folias (1975). It should be noted that the above symbolic 
method leads to the same form of a solution as that obtained by the use of  a double Fourier integral 
transform with the subsequent use of a contour  integration 2. This matter has been discussed 
extensively by Wilcox (1978). 

This object of the method of  Lur'e is to reduce the partial differential equations to ordinary 
differential equations that in turn may be solved by elementary methods. This can be accomplished 
if one introduces the following operators 

0 0 
- , , D 2 ~- 0~ + 0~, 0 1 -  Oxl 02---- ~x2 

which are to be interpreted as numbers. Thus Eq. (1) may now be thought  of  as a system of ordinary 
differential equations of the independent variable x3 

zq.}c  = 0 (5) 

2 The matter was investigated by Folias in 1977. As further verification, however, Folias posed the question of completeness 
to Professor Wilcox who independently arrived at the same eigenfunctions as those reported by Folias (1975) 
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where the differential operator l;j is symmetric and is defined by 

d 2 1 
111 = ~ Z  2 + D2 + 1 --  2~ 02 

1 
112 - -  0 1 0 2  

1 - 2 v  

1 d 

113 -- 1 - 2v 01 d~ 

d 2 1 
•22 = dz2 + D 2 +  1_2v~32 

(,  )d2 
/ 3 3 = 2  ~ dz2 + D 2  

1 d 
123 --  02 

1 - 2v dz " 

(6) 

Upon integrating the above system subject to the following initial conditions 
Oul c) 

ulC)=obli ,  --oU~ at x 3 = 0  
0 x 3  

(7) 

one has, after a few simple calculations 3, 

sin ( z D )  , u (c) = cos(zD)ou 1 z s in (zD)  010o + - -  oU 
2(1 - 2 v )  D O 

1_ V.sin_(zD) 
4(1 V) k D3 

ZCOS (Z 
D~_!)] 010o (8) 

D 2 J 

v (~) = cos (zD) oV 
sin (zD) , 1 z sin (z D) 02 Oo + - - -  o v 

2(1 --2v) D D 

1 ~ sin_(zD) zcos ( zD)~  0200 (9) 
4(1 - v) [_ 0 3 D2 ] 

w(~)-sin(zD)~ °w' + 2(1 -1 I s in /~D)2v)  z c ° s ( z D ) l O °  

1 z s in ( zD)  
l + cos (zO) oW 0o, (10) 

4(1 - v) D 

where, in order to avoid confucion, we have used the longhand notation for the displacement 
functions and 

/ ,  / 

Oo---- '01oU'+~2oV-{-o  W , Oo-----OloU' + O 2 o v ' - - O 2 o  W .  (11), (12) 

The reader should note that oHi and oU~ are still arbitrary functions of x 1 and x2 and are to be 
determined from the boundary conditions on the two plate faces x3 = 0 and x3 = h. In effect, we are 
perturbing the solution from the plane x3 = 0 to the plane x3 = h. 

It is worthwhile at this point to pose and examine a few special cases in which the displacement 
functions can be reduced considerably. 

Problem (i): a plate with a through-the-thickness line crack and under the action of a stretching 
load. This may be solved if one lets z = 0 be the middle plane and oU' = or" = oW = O. 

Problem (ii): a plate with a through-the-thickness line crack and under the action of a bending 
load. This can be solved if one lets z = 0 be the middle plane and oU = oV = oW' = O. 

Problem (iii): a plate with vanishing stresses on the boundary z = 0 and under the action 
of either a bending or a stretching load (Fig. 1). This can be solved if one lets o U ' = -  01oW, 

v 
° v~ .~  __02oW , o w~ = _ _  0 o. 

1 - 2 v  

3 Xl, x2, x3 corresponds to x, y, z in the longhand notation and ul, u2, b/3 to U, v, w 
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In general, however, the unknown functions oU, or, oW, oU', or', oW' are to be determined f rom the 
boundary  conditions (Eq. 4), i.e. 

a(c) - -  a ( P i  ) -+-fi ~ Fi on the plane x3 = z = 0 (13) 3i~--- 

a(c) - a(a§ ) + gi = Gi on the plane x3 = z = h (14) 3i~-- 

where Fi and Gi are known functions o f  xl and x2 or x and y. Or, in view of  Eqs. (2) and (8)-(10), 
they may  also be written in the form 4 

dmn~n=Hm (m,n, = 1,2 , . . . ,6)  (15) 

where the ~n and Hn now stand for the vectors (oU, or, oW, oU', or', oW') and (F1,/72, F> G1, G2, G3) 
respectively, and the operators dmn are defined by 

d l l  = d12 = d15 = d16 = d21 = d22 = d24 = d26 = d33 --  d34 = d35 = 0 

d 1 3 = 0 i ,  d 2 3 = 0 2 ,  d 1 4 = d 2 5  = 1 

2v 2v 2(1 - v) 
d31 - 01, d32 - 02, d36 - 

1 - 2 v  1 - 2 v  1 - 2 v  

d41 _ sin,.. D ~  ~(h D 2 1 hcos(hD)02 
D 1 - 2 v  

sin (]7 D)  1 
d52 - D 2 - hcos(hD)02 

D 1 - 2 v  

d42 = d51 = 
1 - 2 v  

h cos (h D) 01 02 

1 
d43 = 01d* , d53 = 02d* , d* = cos(hD) + - -  (hD)sin(hD) 

2(1 - v) 

d44 = cos(hD) 1 hsin(hD) 02 (16) 
2(1 - v) D 

d55 = c o s ( h D )  1 hsin(hD) g~ 
2(1 - v) D 

1 h sin (h D) 
d45 = d54 = 0102 

2(1 - v) D 

d46 = 01d**  , d56 = 02d** , d** - s in(hD) __1 hcos(hD) 
D 1 - 2 v  

2v 1 
= - -  (h D) sin (h D) d61 = 01d** , d63 0 2 d ;  , d** - 1 - 2v cos(hD) + 1 - 2v 

1 
d64 = -01d***, d65= - 0 2 d * *  , d2**- 1 - 2 v  s in(hD) + - - h c o s ( h D )  

2(1 - v) D 2(1 - v) 

1 -__2v s i n ( h D )  1 hcos(hD) 1 D 2  

d63 = - -  2Dsin(hD) + L2(1 - v) ~ + 2(1 - v ~  

2v 
d66 = 2cos(hD)  + 1 - 2v 1 (hD)sin(hD)] - -  cos(hD) + 1 - 2 - - v  

4 In some cases, the oUr can by inspection be expressed in terms of the oUi. If that is the case, the reader should take advantage 
of this in order to reduce the dimension of the system (Eq. 15) and as a result avoid a lot of unnecessary algebra 



E.S. Folias and W.G. Reuter: On the equilibrium of a linear elastic layer 

c C 

CD-¢ 

O" 0 

L_2cJ 

/~0 

~o ~o 1~2cm 
i 

1 2 

463 

Figs. 1 and 2. Geometrical and loading configura 
tion 1 of a plate with a flaw of an arbitrary shape; 
2 of a partial through-the-thickness crack 

Next, we will construct a solution to the system (Eq. 15) in the form 

~n = ~(h)+ ~(p) (n = 1,2, . . .  ,6). (17) 

Thus keeping in mind that  the differential operators 01, 02, D 2 obey the same formal rules of addition 
and multiplication as numbers, the homogeneous solution of the system is 

~(h) = Zn(x,y), (n = 1 ,2 ,3 , . . .6)  (18) 

where the functions Zn satisfy the differential relations 

Qz,=O,  ( n =  1,2, . . .6)  (19) 

with 

Q = det [ din, [. (20) 

Moreover, the operator Q is an even function (hD), for example: 

2 (h D) 4 sin (h D) I sin (2 h D) 7 
in problem (i): Q -  1 - 2 v  h 2 (hD) L1 + (2hD) J (20a) 

1 (hD)2 I sin(2hD)-] 
in problem (ii): Q -  1 - v  h 2 cos(hD) 1 (2~D) J (20b) 

in problem (iii): Q l - V  (hD) 4 sin(hD) I 1 v 5 h 3 (h D) (h D) 2 - sin 2 (h D) . (20 c) 

It remains, therefore, for us to construct a solution of the differential Eq. (19). Using a Fourier 
integral formulation, we write 5 

~(h) = ~ ~ R(k) e +_ 1 / ~ y  eisx ds, 
oo k=0 

where the/~k's are the roots of the equation 

QID=~k=0. 

(21) 

(22) 

5 Note that any multiple roots must be handled in the usual way. Also, for a plate with finite dimensions in the x-direcction, 
a Fourier Series formulation must be used. Thus, three dimensional beam problems may also be solved by the same 
method 
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This equation, in general, has an infinite number of complex roots which appear in groups of four, 
one in each quadrant of the complex plane and only two of each group of four roots are relevant 
to the present work. These are the complex conjugate pairs with Re (ilk) > O. 

Returning to Eq. (21) we see that not all cofficients R~ k) are linearly independent. Upon substitut- 
ing Eq. (21) into the homogeneous part of equation (15) we rescover the corresponding relationships. 

On the other hand, the particular solution can be expressed in terms of the Green's function 
Gmn (s,y; tl, ~) of the system (Eq. 15), in particular 

{ ~ ) = i l  ~, Gmn(X,y;rh~)Hm(~h~)dqd~ ( m , n =  1 , 2 , . . . , 6 ) .  (23) 
0 0 m = l  

Finally, in view of Eqs. (23), (21), (17), (8), (9), (10) and the definition of {,, the complementary 
displacement functions can be written in the form 

ul c)= I Z Mi(R(~k),flkZ) e+-~yei'xds 
-oc k=O n-1  

+ ~N~(x,y,z;rl,()drld( ( i =  1, 2, 3 and n = 1 ,2 , . . . ,  6), (24) 
00 

where the functions Ni are known and the remaining coefficients R(~ k) are to be determined from the 
boundary conditions (Eq. 3) and the appropriate continuity conditions. Moreover, if the stress o-3i 
vanish on the two planes z = 0 and z = h, ~ )  = 0 and consequently Ni = O. 

Once the coefficients R(n k) have been chosen so that the remaining boundary conditions (Eq. 3) 
are satisfied, the displacements u~ ~) and the stresses G~) can be determined. For example, without 
going into the mathematical details, the general solution for the case of a uniform elastic layer with 
zero stresses on faces z = 0 and z = h becomes: 

(i) the displacement field 6 : 

u(C) -- ~ I  1 ~213 3m -- 2 Z2 ~2I 4 m z2 (0311 ~312~ c~I4 
8y+ZSy2 + 2(m--1) 8y 2 2(m--  1) \By 3÷ 8y3j--lYlc37 

÷ OH~ {1-cosfi~h E m fl~zsinfi~z] 
~ l ~ - x  fiZh cosfi~z 2(m 1) 

m - 2 1 Fsin 
k z) - 7  i )  Bo 

_ _  m flvzcos(fi~z)l} + ~ OIJ~ { l + c o s T ~ h  [cos(y~z)_  m 
- -  ~ 7{h 2(m 1) m -  v=l - 

7, z sin (2~ z) 1 

m - 2  1 sin(Tvz) + - -  2~zcos(7~z) + cos(~,z) 
2 (m--  ]) 7~ m - 2  ,=1 

(25) 

v(~) = 812 8213 3 m - 2 z2 8314 m z2 (_ 0311 8312 ~ 8I 4 
- 8~- - z OxO~ 2(m - 1) 8 x 2 ~  + 2(m - 1) \SxOy 2 + ax@U + lyl ax 

_ all= 8 H .  [cos(/Lz) 
.=, Vx  + ,--21G m flvzsin(fi~z)l 

2(m - 1) 

m - 2  1 sin(fl~z) + -- fl~zcos(fl~z) + ~ ~-y 72 h 
2 ~ - - 1 )  fl~ m - 2  v = l  

] E " ]} m m - 2 1 sin (Tvz) + ?vz cos (Tv z) (26) 2(m - 1) 7vzsin(7~z) 2 ~ - - -  ]) 7v m - 2 

6 In writing Eqs. (25)-(33), we assumed symmetry with respect to the x-axis 



E.S. Folias and W.G. Reuter: On the equilibrium of a linear elastic layer 465 

w(C) = 013 1 ( 0211 0212 

Ox + m - 1 ~ keTb7 + ~NbT/ 

1 014 { 1 -  cos (fl~ h) E m - 2  
m -  l Z ~xx + ~ f i~h 2 ( m - l )  

sin(flvz) 

m 

2(m -- 1) 
#vzcos(fivz)] + cos(#.z) + < l) fl~zsin(fl~z)} + ~ & {l +cos(7~h) 

2(m ~=a 7vh 

E m--  2 sin z) m 
x 2 ( m -  1) (7~ 2(m-- 1) 

y,,zcos(y,,z)] + cos(y,,z) + 
m } 

2(m - 1) 7~zsin(7~z) (27) 

(ii) the stress field: 

O'(x c) _ 0211 0313 1 
2G Ox@ + Z~-y2y2 + m + l 

Z2 0314 

Ox 0 9 

0214 02Hv [ -- cosfl~h 
lyl ~ j y  + ~ L v=~ 072x 2 #~h E cos(#oz) 

m #~ z sin (#. z)] 
2(m Z 1) 

[ m ]] 
m - 2  1 sin(fi~z) + - ~fi~zcos(fi~z) 

2~- - -  i) #v m -  

_ _  
m 1 v=l 

02/J~ [-1 + cos(y~h) 
1 Hv[(1 - cos(fi~h))cos(#~z) - fl~hsin(fi~z) + ~ ~2x2 k h v=l ~2 

X 
m Ecos(TvZ) 2(m_ l) Tvzsin(yvz)l [ m ]] m-- 2 1 sin(Tvz) + - cos(yvz) 

2(m-- 1) y~ m--~?vz  

02Hn 1 ~ 1 & 
+ - -  E = & [ ( 1  + cos ( ~  h)) cos ( ~  z) - 7ohsin(~,v~)l + L COS (5~nZ) 

m 1 ~=l h .=1 OxOy 
(28) 

O'!c,), 02/2 0313 Z 2 0314 
Y~ -- Z 

2 G 0x 0y 0z 0y 2 m + 1 0x 0y 2 

1 1 H  _ 02Hv  V 1 -  cos(flvh) 
+ - -  ~ [(1 cos(fivh))cos(#~z)- [3~hsin(fl~z)] + ~ ~ L h 

m - 1  v=i h v v=i 

X [ cos(#~z) m 1 m - 2  1 I s in ( f l v z )+__  
2(m ~- 1) fl~zsin(fi.z) - 2 ( m -  1) fl~ 

o ] 
m _ ~ fl~zcos(fi~z) 

__ ~ 02On COS(C~nz)+ _ _ 1  ~ hl/J~[(1 +cos(7vh))cos(yvz)-y~hsin(g~z)] 
.=l OxOy m - 1  ~=i 

+ ~=1 ~ ~y2 72h 2(m-1)7vsin(7~z) 

m - 2  1 l s in (7~z  ) +  m 
r -  

2~-Z i) 7~ k m - 2  
~,.zcos(~,vz)]] 

G(zCz ) m ~ _1 H 2G - 2(m - 1) ~=1 h v[(1 - cos(fl.h))#~zsin(#vz) - fl~hsin(#~z) + fivhflvzcos(fi~z)] 

+ 2(m -- 1) v=l h v[(1 + cos(y~h))?~zsin(y~z) - 7~hsin(7vz) + ?~hy~zcos(7~z)] 

(29) 

(3o) 
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z(ffy) _ (~211 0212) 0313 2 ~314 
= \ 0 y  2 - 0 9 ]  + 2~ ~ + m + l  z2 aTy 3 

G 
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(31) 

- -  - 21Yl a214 aI4 
~y2 ~y 

-t-~ ~2Hv E-l-c°sfl~h ( m ) m - e  1 ( 
~=~ ax@ fl2h 2cos(fl~z) m-l-- fi~zsin(fl~z) m - l B ~  sin(fi~z) 

m )1  ~ 02/g~ I I + c ° s y ~ h (  m ) + --~flvzcos(fi~z) + 2cos(?~z)- - - 7 ~ z s i n ( 7 ~ z )  m-- ~=1 8xSy ?2h m -  1 

( m )1 ( ~-y2) m - - 2  1 s i n ( ? ~ z ) + - - 7 ~ z c o s ( ? ~ z )  + ~ 82H,, 82Hn'~ 
m - 1  7~ m - 2  - - -  .=1 \ 8x 2 + cos(~.z) 

m ~ 8H,, I1-cos(f i~h)  (sin(flvz)+fi,,zcos(fi,~z))-fl, zsin(fi~z)] 
m - 1 V = I G  j~vh 

+ - -  ~ (sin(7~z) + 7~zcos(?~z)) - ?~zsin(7~z) 
m - 1  ~=1 ~ y  7~h 

--n__~l ~ - x  sin (~z) (32) 

G m - 1  ~=1 

m 

m--1  v=l 

8H'~ [ 1 -  c°s fi'~h (sin (fi,~z) + ~Svz cos(,Svz)) _ ~8,~z sin (B,,z) ] 
7xx ~ h  

|1 + cos oh y zcos(7.z))- 
~-X L 7v h d 

,=* ~ y  ~s in (~z )  (33) 

where m =- l/v, v is Poisson's ration, ~n = n h (n = 0, 1, 2 . . . .  ) and fi~, 7~ are the roots of the transcen- 
dental equations: 

sin(fi~h) = (fl~h); sin(7~h) -- - (7,h), (34), (35) 

and the functions 1i,/2,/3,/4 are 2D harmonic functions 7 and H~,/1~, H~ satisfy the equations: 

•2HO2H {f12} 
8x~ 5 - + - -  o~ 2 H = 0 .  (36) 0y 2 y2 

It may be noted that the above complementary displacement field is very general and can be used 
to solve a whole class of 3D elastic problems, including the partial through-the-thickness crack (Fig. 
2). By virtue of its construction, the solution satisfies the governing equations as well as zero stress 
boundary conditions at the top and bottom surfaces of the layer. The remaining arbitrary functions 
H~, H~, H, and I i (i = 1, 2, 3, 4) are to be used in order to satisfy the remaining boundary conditions 
on the surface of the discontinuity. 

The general 3D solution has been used successfully to construct an analytical solution for a 
plate, of an arbitrary thickness 2h, which has been weakened by a cylindrical hole. For the case of 
an extensional load, the details have been worked out by Folias et al. (1986). The work has also 
been submitted as a follow up paper. 

The general solution has also been used to solve the problem of a cylindrical inclusion embedded 
in a plate of an arbitrary thickness (Folias et al. 1987a). The results of this analysis are of great 

7 For a definition in terms of the Fourier integral transform see Appendix 
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pracitcal importance to the field of composites and are presently extended to also include a compres- 
sive load along the axis of the inclusion. 

Other papers which are being completed and will be forthcoming are: 
(i) a plate weakened by a hole and subjected to a uniform bending load 
(ii) a periodic distribution of anisotropic inclusions embedded in a plate of an arbitrary thickness 
(iii) a laminated plate with a cylindrical hole (laminates are isotropic but of different material 

properties) 
(iv) a plate of finite thickness containing a partial-through-the-thickness crack. 

Perhaps it is noteworthy to point  out another important  feature of the general 3D solution. 
It reveals the inherent form of the solution, particularly in regions where a geometrical disconti- 

nuity intersects with the free surface of a plate, and permits a simplistic approach, a la Williams 
(1952), for the construction of such stress fields. For  example, Folias (1987b) utilizes the form of 
the general solution in order to extract the explicit, 3D, analytical stress field in the neighborhood 
of the intersection of a hole and a free surface. The results were subsequently extended (Folias 
1987 c) to the case of a cylindrical inclusion. The analysis shows that  the stress field is singular and 
that the order of the prevailing singularity depends on the material properties. The limiting cases 
of a soft, as well as a rigid inclusion, are also discussed. In a recent paper, Folias (1988b) derived 
the explicit 3D stress field in a laminated composite plate particularly in the vicinity of the intersection 
of a hole and a material interface. The analysis shows the stress field to be singular and provides a 
better understanding of the dependance of the interlaminar stresses on the material constants of the 
two adjacent laminates. 
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Appendix 

Let: 

11 = 
0 

I2=  0 
13=  

0 

I4=  
0 

Pt  e-'lYl sin (xs) ds 
s 

P2 e- slyl sin (x s) ds 
s 

P3 e_Slyl sin (xs) ds 
s 

Q~ e -'lyl sin (xs) ds 
s 

Hv = S Rv e-1/~2+~"~cos(xs)ds 
o 

ffI~ = ~ Rv e-VX2+~?l"cos(xs) ds 
o 

Hn = ~ s~ e - ~ l " s i n ( x s ) d s  
o 
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