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ABSTRACT

This thesis concerns wave propagation in composite materials, and the effects
of these waves on interlaminar cracking. In addition to general results, there are
numerical examples for a specific material.

First, several types of waves in a layered composite material are examined. In
order to obtain explicit, if approximate, solutions, a perturbation method is used.
The apparently novel approach views the nonhomogeneous layering as a perturba-
tion on a homogeneous but anisotropic solid. Two waves are examined that travel
normal to the laminae. The longitudinal wave is a general travelling wave, while
the transverse wave has, for short wavelenghts, a surprising inverse quarter power
amplitude modulation by the perturbation function. Two waves that travel parallel
to the laminae are examined. These waves have a tumbling structure. All these
waves are also examined numerically, and there is excellent agreement between the
perturbation expansions and the numerical result. Expressions are then arrived at
for stresses along the interface between two layers.

Second, an interlaminar crack is “placed” in the material. The above inter-
laminar stresses, restricted to a short interlaminar segment, are taken to be the
boundary conditions for a new linear elasticity problem. The idea is to use this
solution to “cancel” the stresses from the previous problem along a short line seg-
ment. As this line segment is then free of stress it behaves as if it were a crack in
the material. The approach to this problem is the assumption of a Fourier form
for the solution, which leads to a dual integral equation, which leads to a Cauchy
singular integral equation for the displacements along the crack face. An explicit

solution for the homogeneous anisotropic crack problem is obtained in this fashion,



and the nonhomogeneous case is discussed.

It is thought that this information could be of use in choosing quality control

parameters for the manufacture of these composite materials.
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CHAPTER 1

INTRODUCTION

This thesis studies wave propagation in layered solids, and the effect of some
of these waves on a pre-existing crack. This introduction describes what will be

discussed, and also looks at some of the literature.
1.1 Wave Propagation

There has been some work done on wave propagation in layered solids. Some
early work was done with a view towards understanding earthquakes, as the earth
can be viewed as a layered solid and the earthquakes as a wave passing through
it. In [Ivakin 1960], the author studies wave propagation in a periodically layered
material by an analogy with electric circuits. It involves matching impedances
at each boundary and is rather tedious. In fact, the author concludes his book
with “ .. the determination of the velocity of propagation and of the amplitudes
of sinusoidal waves in fine-scale nonhomogeneous media constitutes a laborious
problem ...” (page 108).

More recently, some work has been done particularly with reference to artificial
materials such as carbon composites. In [SAH 1968], Sun, Achenbach and Her-
rmann present a continuum theory and display dispersion curves for various waves
in a layered material. They linearly expand the displacements about the midplanes
of the layers, and then require that some continuity conditions be satisfied at the
layer boundaries. An expression for the energy is derived, and Hamilton’s principal

is used to obtain (approximate) equations of motion.



In two papers, [HN 1973] [HB 1974], Hegemier and Nayfeh and Hegemier and
Bache develop a continuum theory for layered media with a similar approach. The
latter paper, in fact, attacked the problem of waves travelling at an arbitrary angle
in a layered solid and included phase velocity versus angle of propagation curves.

In a series of two papers in 1975, Ben-Amoz examined wave propagation in a
direction parallel to the laminae and normal to the laminae ([BA 1975]). This was
done by assuming relative orders of magnitude for the solution, and then discarding
the pieces of the solid equation which would then be negligible. He concludes
that the behavior of a laminated composite material is “predominantly that of a
macroscopically homogeneous medium” (page 43).

The above shows that the problem in this monograph has been examined. The
solution methods are tedious, and always use intermediate notions rather than
attacking the partial differential equations of linear elasticity directly. It is hoped
that this monograph will present a straightforward approach to the propagation of
waves in a layered solid, and that the behavior of such waves will be apparent.

The solutnion technique is to reduce a nonconstant coefficient linear partial dif-
ferential equation which describes the material to an ordinary differential equation,
and then apply perturbation theory to the latter. Linear elasticity is reviewed with
the aim of making sure the equations are set up correctly. Where, exactly, do
the coefficients of Hooke’s law lie in the equation? It is necessary to know this
as nonconstant coefficients cannot be pulled out of differential expressions. Also,
numerical solutions are found for the ordinary differential equation by Galerkin’s
method. The numerical results are compared with the perturbation results, and
good agreement is viewed as a sign of accuracy of both. The existence of a nonlinear

ordinary differential equation is discussed.



1.2 The Crack

As failure of materials usually occurs at pre-existing cracks, the way waves affect
the crack will be examined. The displacements on a pre-existing crack face will be
calculated. For more general information on fracture the reader is referred to some
excellent texts, such as [Broek 1978] and [Knott 1973]. Here, since the material is
brittle, crack opening displacement is taken as a measure of “badness” for a crack
situation.

The approach to the crack is rather interesting in that by assuming a Fourier
form for the solution, one is lead first to a dual integral equation and then directly
to a Cauchy singular integral equation. This approach gives the displacements for
the complementary crack problem directly for a homogeneous anisotropic material.
The complementary crack problem is one in which the tractions are specified on
the faces of the crack.

The homogeneous anisotropic crack is considered in detail, and an explicit ex-
pression for the displacements inside the crack and along the line containing the
crack is obtained. It is viewed as the lowest order perturbation term to the complete
problem, that of an interlaminar crack for the layered solid. This latter problem
has proved to be quite difficult, but is discussed in a qualitative fashion (an approx-
imate solution is given). There has been work done on the problem of a crack at the
junction of two isotropic half planes, and the reader is referred to [England 1965]

and [Rice and Sih 1965] for details.



CHAPTER 2

LINEAR ELASTICITY

First, the mathematical model to be used will be discussed. In linear elasticity,
one takes a Newtonian momentum balance and then, through a general Hooke’s
law, arrives at equations of motion. The general Hooke’s law, which is based on
experimental observation, relates the forces in the momentum balance to the metric
tensor of the map from the initial unstrained (undeformed) material configuration
to a strained (deformed) material configuration, and in linear elasticity all the
nonlinear terms of this metric tensor are discarded. The justification for this is
that if there is little change in the shape of the body, these nonlinear terms should
be negligible. This chapter breezes through these arguments and begins to set up
the equations which will be studied in this monograph. Throughout this chapter

the summation convention will be used.

2.1 The Momentum Balance

The section is mostly taken from Malvern’s book (see [Malvern 1969]). To apply
Newton’s third law, one looks at a mass and sets the forces upon it equal to the
change in momentum. Considered here is a continuous medium, so the mass will
be a small volume of material.

The material is described by

X.-(:z:?,zg,a:g,t), t=1,2.3
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where (29, 29, z3) is some original configuration which is time independent, and
t is time. Let the volume V(X)) of material be enclosed by a surface S (X). This
volume in the medium is arbitrary. It seems prudent to point out that this is a fixed
amount of material and it will be treated as if it were a “particle” when applying
Newton’s law. This is not a fixed volume in space. On the surface S (X) are certain
surface “tractions” ¢;, which are a force per unit area. These can be described by
introducing a stress tensor Tj;, where t; = Tjn; with n; being the unit normal to
the surface. With p being the density of the material, and writing external forces

such as gravity as f;, the momentum balance looks like
/3( tdSX)+/ ofidV(X )—dt/(x) LAV (X).

dX; : . . .
The 3 refers to the velocity of the material, and one can see that this equation

is just force equals the time derivative of momentum for a volume of material. In

the first term, replace t; by Tjin;, and use the divergence theorem:

X0+, 0 =2 v

/V(X)(ax dt Jvixy' dt

To deal with the rightmost term, needed is the following version of

REYNOLD’S TRANSPORT THEOREM: If A is a function of X and p is the density

of the material, then

d dA
d - 22 v (X).
& Jy, PAV(X) /V P VX

PROOF: First one transforms the integration to one which occurs over the original

configuration (z?). Let J be the Jacobian determinant

J = dt((( )))

Carrying out the change of variables gives

d d .
7t oy PAVX) = 5 /V o PAT AV ().
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As a fixed piece of material is being looked at, V(z°) is time independent and the

time differentiation can be taken inside the integration. So

d

& Jo i) PAT V(%) = /V( o %(pAJ) av (=) = [ AeD 4y, J) 4V (z°).

V(z0)  dt
Consider a fixed subpiece V'(X) of V(X). If M’ is the mass of the material, one
has

M= [ X)) = Sy P (DT V/(2)

Since it is a fixed piece of material, the mass does not change:

aM’ _ d 0 100\ _ d(pJ) .., 0
T =0 G fyy P ))JdV(x)_L’(ﬂ) £ avi(a0).

As the subpiece of material was arbitrary, this yields
d
5 (PJ) =0.

As an aside, this says that the density is inversely proportional to the Jacobian

determinant.

Using this and transforming back to the original variables X; gives

/;/(,o)( ai ==l E-J)dV(I)—/ dtJ dV(z°) = /(X) Edv(x)

which is the desired result. O

Using this gives for the momentum balance

8Tj,‘ ‘ ; . 2 X;
/V(X)(BXJ_)dV(XH/V(x)pf, dV(X) —/V(X)p —av(X).

As the original volume was an arbitrary one in the material, this yields Cauchy’s

equations of motion:

aT;; dZX;
0X; P iz

This will lead to the equation of motion which will be used.

(2.1)

The next step is to find a relation (by defining it) between the stress tensor and

the strains (deformations) in the material.



2.2 Linearizing the Metric Tensor

If the deformation of the material is viewed as a map (which can be time depen-
dent) from some initial configuration z; to some final configuration X;, then one
can view the resulting metric tensor as a measure of the deformation of the body,

or a measure of the “strains” as they are called. So let gij be the metric tensor of
Ty — X,’.

Now with solids the interest is in how much the body has deformed, or changed
from its original shape, so X; is written as z; + u;, where u; is the amount of

deformation. Writing gij in terms of u; gives

o 00X 0Xx _ (a(zk + uk))('a(a:k + uk))
9% = Bz, dz; Oz; Oz; ’

Carrying out the differentiation yields

8 0
9ii = (i + Uk)(af" + 6Uk)
J
~ a 6“]: 6u1¢ auk

au,- s Buj + auk 8uk
Bz,- a:l:.' a.’r.' 6a:,~ '

In linear elasticity, the nonlinear rightmost term is dropped, and the strains ¢;;

are defined to be

Ou; 3uj
&ij = 2(627, 52
to arrive at
gi; = 5.'J' + 26‘,'_,'. | (2.2)

The strains, the ¢;;, are the linear or first order deviations of the deformation

mapping as compared with the identity map.



2.3 A General Hooke’s Law

It seems reasonable to suppose that the material will respond with a force to try
and return to its original configuration. Writing these forces in terms of the Eijis a
general form of Hooke’s law for springs. Recall that Hooke’s law specifies a restoring
force by multiplying the distance of the spring from its equilibrium position by a
spring constant:

F = —kz.

The same thing occurs here. One specifies a restoring stress (a force per area of
the surface) as a linear function of the ¢;.

The way this is done is as follows. Let € be the matrix of the €ij. In a deformed
configuration, the eigenvectors of the ¢ are called the principal directions. If the
material is one such that when it is stressed along any one of the coordinate axes
the resulting principal directions are the coordinate axes, then one can write the

way in which the material will respond as follows (see [Malvern 1969]):

Ty, cn ¢z a3 0 0 0 €n

T, €1 C2 c3 0 0 0 €22

Tss | _| ca1 2 c;3 0 0 O €33 (2.3)
T23 0 0 0 C44 0 0 2¢e 23 '
T31 0 0 0 0 Css 0 2e 31

T1 2 0 0 0 0 0 Ceg 2¢e 12

where the ¢;;’s are material constants. The six terms are sufficient as the stress
tensor is assumed symmetric. For those familiar with the equations of homogeneous
isotropic linear elasticity, in that case the off diagonal terms are equal to Ev/(1 +
2v)(1 — 2v) where E is Young’s modulus and v is Poisson’s ratio, cu4, Css, Ces are
equal to G, the shear modulus, and ¢;3, ¢22, c33 are equal to ¢ + c4q.

To obtain the equations of motion, replace the stress tensor terms T; in Cauchy’s
equations of motion with the above linear combinations of €’s. This will be done in
a subsequent section, but first is briefly considered a surprising result which occurs

because of approximating the metric tensor as above.



2.4 Some Geometry

For those who enjoy differential geometry, the first job in a specific situation is

evaluating the Christoffel symbols. Recall (see [Kreyszig 1968))

. _ 1 0g;k | Ogix Ogij
F'Jk - 2 a.’I:.' + a:tj B 6a:k)

are the Christoffel symbols of the first kind. Evaluating them using Equation 2.2,

where the §;;’s are constants and have derivative zero, gives

1, 0% 0%u; 0%u; 0%uy 0%y, 0%u;
Lije = 5(6:1:.-6:1:1= + 0z;0z; * 0z;0zy + 0z0z; Oz,0zp 6x;61:k)'

On the right side the first and third terms cancel with the last two, and the re-

maining terms are the same, yielding the simple

82u,,

az.-ax,- ’

Lije =

This is, of course, the nice result. If one wants to find the curvature tensor,
one will need the Christoffel symbols of the second kind also. In terms of the first

Christoffel symbol and the metric tensor these are
F:-‘J- = g"’l‘;ﬂ.

Needed is g*' which is the inverse of the metric tensor.
If gi; is written as the square matrix g, §;; as the square matrix I, and €;; as the
square matrix €, then

g=1+42¢

is the equivalent of Equation 2.2. Since each of the ¢;; is assumed small, this is

easily inverted by a power series expansion:

g =T—-2+(2) - (26)°+---.
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To be consistent the nonlinear terms should be discarded (besides, they are sup-

posed to be small), which gives a simple expression for the inverse of g:

3 O, a
gv = 6i; — 2ei; = ;5 — (6 BZJ)

This is all one needs to calculate the curvature tensor,

Rirns = 3Fj1h BI‘,H,
shil Oz Jz;

If the u; are smooth enough to exchange the differentiation for third derivatives,

+ P;krhu Fj-grhki-

the first two terms on the right cancel, leaving
Rinet = DTt = T3 hki = g™ (TitemThti = Djim Cai)-

However, this does not turn out to be simple and will not be pursued.

2.5 The Solid Equations

The background has been developed to write down the equations describing the
behavior of a solid, according to the theory of linear elasticity. As will be seen, many
terms are yet to be discarded, and at times it might appear that one is knee deep
in approximations, but solutions to these equations agree well with experimental
observations. Two types of approximations are used: first, all the nonlinear terms

will be discarded; and second, it will be assumed that 2—- is small compared to 1,

0X;

that is
ou;

1+ 5% ~ 1. (2.4)

Recall Equation 2.1:
oT;; d"’X,»
0X; P

When the T;; are replaced by the expressions in Equation 2.3, the first difficulty

occurs. This is because the u; are in terms of the undeformed configuration z;, and

not the deformed configuration X;. Let A be some function, and one has

0A _ 8Adz; _ 0AN(X; —u;) _ aA( 3u_,)
6X 83:, 6X 6x,~ 6X, N 3.’13_7 I
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So if A = T, where T} is related to €;; by Hooke’s law (Equation 2.3), and then

all nonlinear terms are discarded, one has

0T _ 9Ty
BX,- - 6:::; '

This is the first approximation.

Second, the density p depends on the deformed configuration. Let J be the

Jacobian determinant
d(z:) Oz )
a(Xj;)

This is the opposite of the Jacobian used in Section 1, since now the map is from

J = det(arail

z; to X, while there it was from X; to z;. As the density is inversely proportional

to the Jacobian determinant,

=2
J
where po is the density in the original state. Thus
Po 9(X:) 9(u:) Fu
= — = ppdet det(r .
p= J Po ( ( )) Po e( +a(z1)) 0(1+6$,+ )
where the --- are nonlinear terms. After discarding these nonlinear terms one is
left with
6u1 a‘UQ 6‘U3
= po(1
P PO( ® 6171 T 6:::2 T 6.’23

and based on the above assumption in Equation 2.4, the equation will reduce to
P = po.
Finally, the X; in the last term depend on the z;, which are assumed time

independent, and ¢. So the derivative becomes a partial derivative with respect to

time, or
EXi _PXi _ P(zi+w) 9 (w)
2~ o2~ 8tz ot

Putting all these together gives

BTJ, 62u,-
6 + Pof- 3t2 .

(2.5)
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Now the equations are in terms of the fixed coordinate system and time.
Before using Hooke’s law to put the equations entirely in terms of the u; as

unknowns, some definitions will be made. It is customary to have
U=1u, V=1Up, W =us.

Also, to simplify the appearance of the equations, let

0

6_3:,-'

d;

Substitution into Equation 2.5 of Hooke’s law, Equation 2.3, now yields

O1(c11€11 + 12622 + C13€33) + 232(066512) + 203(css€13) + pfr = PlUse
201 (ces€12) + Oa(Cca1611 + 22622 + C23€33) + 203(cas€zs) + pf2 = pog (2.6)

201(csse13) + 202(caa€23) + O3(car€nr + cazeaz + cazeas) + pfa = pwy

. ) 0%u
where use has been made of the symmetry of the index in €ij, Uy means —, and

ot?

p has been written for po.
These are the equations of motion. The ¢;; may depend on z;. Also, recall the

definition of the strains
&ij = % -g-:—; + %f)
to see that these are three equations in terms of three unknowns.
In the next chapter these equations will be written out completely in terms of

the u; for the case being considered.



CHAPTER 3

COMPOSITE MATERIALS

In this chapter composite materials are discussed and the equations are set up

which will be used to examine them.

3.1 A Specific Material

The authorswereaware of experiments being performed on a carbon composite
manufactured by Hercules, Inc., namely Hercules A.S. 4/3501-6. The mathematical
analysis in this monograph applies to many composite materials, but in the numer-
ical work this is the specific material which will be considered. For other materials
the material parameters (“constants”) differ.

The material in question is made of thin carbon fibers (very thin — they are about
10 microns, or .001 centimeters, in diameter) which are placed in an epoxy prepreg
and pressed into thin sheets, where the fibers all run in one direction. These sheets
are then stacked so that in each layer the fibers run perpendicularly to the fibers
in the previous layer. At this point the sheets are heated and pressed together,
so that the epoxy is like a continuous matrix supporting fibers which run in two
different directions. Thus the material is of the form 0°/90°/0°/90° - - .. Each layer
is quite thin, as a plate of this material one quarter inch thick has about 25 layers.

To give the material constants for this composite, take a homogeneous block of

material in which the fibers run in only one direction, say z;. Experimentally the
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coefficient matrix for one batch of the material, corresponding to Equation 2.3, is

20.83 0.6233 0.6702 0 0 0

0.6233 1.557 0.5850 0 0 0

0.6702 0.5850 1.718 0 0 0 (3.1)
0 0 0 0502 0 0 '
0 0 0 0 071 0
0 0 0 0 0 0.7

-with the units being million pounds (force) per square inch. As the fibers only
run in one direction, there is nearly the expected symmetry for z, and z3 (as
the manufacturing process treats z; differently from zj, one direction being in
the sheet and the other normal to it, some differences are to be expected). The
density is 0.0571 pounds (mass) per cubic inch. Also, one should keep in mind that
these constants are only representative, as each batch of the material has different

material constants.

3.2 The Model Used

The material described above is considered as follows. Let z; and z3 be the
directions in which the fibers lie, and let the sheets be stacked in the z, direction.
The sheets each have a thickness /2 (so that two sheets have a thickness h).

In order to make the problem tractable, the choice is to look at a slice through
the plate in the z;,z; plane. So assume that none of the displacements (the u; or
u,v,w) depends on the z; direction, and that w = uz = 0. These assumptions

imply that €13 = €23 = €33 = 0, since, for example,

_1 Bul 6U3 _1 60 _
613—53—:1:3 6_3:1)—2(0+ l)—0.

This situation is called “plane strain” and effectively reduces the three dimensional

problem to a two dimensional one. Also, external forces (like gravity) will not be
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dealt with, so f; = 0. Equations 2.6 become
Oi(c11€11 + €12622) + 205¢66€12 = pus
201cs6€12 + Oz(c21611 + C2693) = poyg
0=0.
As can be seen, all the terms in the last equation drop out, and left are two equations

in terms of the two unknowns u and v. There are five material constants left. The

general Hooke’s law can be written

Ti1 e cz2 O €11
Tzz = C21 C22 0 €922 . (32)
Tl2 0 0 Ces 2612

With these assumptions, the problem has been reduced to this. There are two
~ different layers alternating with spacing k/2, which stack in the z, direction (see
Figure 3.1). Let layer 1 have fibers running in the z, direction, and layer 2 have

fibers running in the z, direction. Then their material parameters are as follows:

Th 20.83 .6702 0 €n
T22 = 6702 1.718 0 €22 ) (33)
T12 0 0 0.710 2612

layer 1,

——

90°
00
90°
00

-
b

Figure 3.1. The material set up.
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and layer 2,

Tu 1.557 0.5850 0 €11
Tz 0 0  0.502 2e12

In both cases the units are million pounds (force) per square inch.

Suppose one is trying to find waves travelling in the above medium. One way of
viewing the problem is as separate layers where the above sets of constants hold,
and trying to match the solutions in each layer at the layer boundaries. This is
very difficult, but it is the way the problem is usually attacked. Another approach
is to choose to write the parameters as functions which are position dependent.
Then there are no boundaries, but the partial differential equations no longer have
constant coefficients.

This latter approach is the method used here. The purpose of writing down the

above constants for a specific case was to show that they can be approximated as

follows:
Ty, a +dip(ay) cs+ dap(ay) 0 €1 o
Ty | = | ca+dap(ay) cz+ dap(ay) 0 €2 |, a=—.
Ty, 0 0 ce + dep(ay) 2¢e12
(3:5)

The position of each expression in the matrix is a definition of its value. The ¢;
are constants and are thought of as the average values of their corresponding terms
in layers 1 and 2. The p(ay) is a periodic function of y = z, which contains the

structure of the layers. For the two-layered case considered here,

_J1, 0Lay<n
p(ay)—{ -1, 7 <ay < 2n.

The d; are seen to be the deviations from the average of the coefficients in each

layer. For the material constants given at the beginning of the chapter, one would
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have
ca = 11.1900 d, = 9.6350
c; = 1.7180 d, = 0.0000
cz = 0.6276 d; = 0.0426
cg = 0.6060 ds = 0.1040

with the units being million pounds (force) per square inch. In the next chapter a
continuous p will be used for a perturbation expansion, so a Fourier sine expansion

is suggested
Psugg(ay) = E Pnsin(nay). (3.6)
n=0

Now it is seen why h is the spacing between two layers. So if the {pn} correspond
to the expansion of the periodic square function of amplitude one, as the above p,

then
= { 4/7mn, n odd

0, n even.

For an approximation to the periodic square function, one truncates this series.

So writing the coefficients as in Equation 3.5 the solid equations become
O1((e1 + dip)ers + (c3 + d3p)eaz) + 20;((cs + dep)erz) = pug
201((cs + dep)erz) + 92((cs + dsp)ens + (2 + dap)ens) = pog.

Noting that p only depends on y this becomes
(c1 + d1p)Oiens + (c3 + d3p)Br€az + 20;((cs + dép)e1z) = puy
2(cs + dep)Or€12 + 02((c3 + dap)ery + (c2 + dzp)ezz) = pog.

Finally the €;; terms are replaced with their corresponding partials of u and v to
yield

(e1 + d1p)37u + (c3 + d3p)010,v + 3a((c6 + dep)(agu + 01v)) = puy

(ce + dsp)O1 (Bau + 01v) + 02((c3 + dap)Oyu + (c2 + d2p)Bev) = poy.

These are the equations to be used. However, in both layer 1 and layer 2 the c,,

are the same, so it will also be taken that d; = 0.
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3.3 Possibilities

In this monograph the periodic square will be the “understood” underlying p(ay)
function. However, an approach using such a function to describe the inhomogeneity
of the material makes it possible to model many situations. By picking appropriate
p, one could describe layers of different thickness, layers with glue between the lay-
ers, or layers of completely different material. In the following chapters, periodicity
of p is assumed, namely a period of 2.

One can deal with a lot of structure with this simple device. The only caution
would be that the equations derived here assumed that the principal stresses aligned
themselves with the principal strains (see the sentences before Equation 2.3). So
for really complex structure, it may be that many of the constants assumed to be
zero in the Hooke’s law given here are not really zero, and the equations become
much more complicated. This occurs, for example, if a layer is placed at 45° to a

previous layer.



CHAPTER 4

SOME WAVES IN THE LAMINAE

In this chapter special cases of waves in the composite material are examined:
in particular, two waves that propagate parallel to the laminae and two waves that
propagate normal (perpendicular) to the laminae.

Recall from the previous chapter the solid equations: let u and v be the dis-

placements in the z and y directions respectively, and

(c1 + d1p)d}u + 05((ce + dsp)dau) + (c3 + d3p)0192v + 82((cs + dep)0iv) = puy
(ce + dep)010,u + 82((c3 + d3p)diu) + (¢ + dep)Biv + c202v = puy

(4.1)

where the ¢;’s, d’s, and p (the density) are constants. p is a function of ay and
a = 2r/h, where h is the spacing between two layers in the material. Thus the
function p(ay) represents the inhomogeneity in the solid and can be anything,
but recall the p,ugy(ay) which was a Fourier sine series. In general, u(z,y,t) and
v(z,y,t) are functions of z, y, and ¢, but each of the cases discussed below makes
some ‘assumptions on the form u and v can take.

Finally some notes on waves. The form of the solution will generally be
f =sin(m(p(y) - t)).

where in this case the wave is propagating in the y direction. The frequency v of

the wave, or number of oscillations per unit time for a fixed point in space is then
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2rv=m -1 or

frequency = v = —
27

The wave speed is found by following a constant angle or phase in the sine term,

and is often called the phase speed. So with
m(p(y) —t) = constant

one has

dpdy _

@dt"l

or

wave (phase) speed =

1
dt ¢

where the prime denotes differentiation with respect to y.

4.1 Normal Longitudinal Waves

The simplest case is a longitudinal wave travelling normal to the laminae. Here,

assume u = 0 to reduce Equation 4.1 to

(c3 + d3p)010;v + 02((cs + dep)O1v) = 0

(ce + dep)F2v + 202v = puy.
If it is assumed that there is no z dependence in v, this equation reduces to

2
€203V = puy

v= f(\/gy —t), (4.2)

f being a twice differentiable function.

which has the simple solution

So longitudinal waves travelling normal to the laminae are general travelling

waves.
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4.2 Normal Transverse Waves

The next case is a transverse wave travelling normal to the laminae. Assuming

a solution of the form

v = 1(y)f(e(y) —1)

v = 0. (4.3)
Equations 4.1 yield

02((ce + dep)F2u) = puy,.
Carrying out the substitution u = 5 f gives
0((cs + dsp){n'f + nf'¢'}) = pn f"
where the prime denotes differentiation. Expanding the left hand side gives
dep'{n'f +nf'¢'} + (co + dsp){n"f + 20/ '¢' + n(f"(¢')? + f0")} = pmf". (4.4)

The next step is to remove the f’ term. To do this requires that the coeffient of

the f’ term be zero, or that

dsp'ne’ + (cs + dep){2n'¢’ + 19"} = 0.

If this is divided by (cg + dsp)n¢’ one obtains

dﬁp, T’, (P”
—+2— 4+ —==0.
cet+dsp ¢
This can be integrated to give
. A
77 (oo + dop)r?

where A is a constant of integration (A is nonzero as it is the exponential of the
actual integration constant). Placing this rather nice result back in Equation 4.4
gives

dsp'n'f + (cs + dep){n" f + nf" = 7 )} = pnf"

((Ce + dsp
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and with some gathering of terms and cancellation gives

2

(ce + dep)nsf = pnf.

((cs + dep)n’)' f +

This equation has periodic boundary conditions with period k. To proceed
further, some assumptions on f must be made. Suppose that f” = —m?2f as it
would if it were complex exponential. This yields

A?m?

cs + dep(y))n®

((cs + dsp(ay))n’) — ( +m?pn =0 (4.5)

as an equation for n(y). Now fix m, where m can be any real number.

In this case the wave (phase) speed is

1 . d
wave speed = — = l-(cs—+§p—).
7 A
This leads one to wonder about the effect of the constant A in the 5 equation. Let
n be a solution with A, as the constant, and let 4 be a solution with A, as the
constant. Clearly A, = cA, for some c (recall that A is nonzero), and making the
substitution in the u equation gives

c?A2m?
(co + dep)p

If this is divided by +/c it is concluded that p/\/c = and that

((cs + dep)p’) = +m?pp = 0.

A, cA, A,

W e
so A is quite arbitrary as far as physical meaning goes. In the following, therefore,
let A=1.
As nonlinear equations are hard to solve, a perturbation approach is used to
linearize the equation and glean some information on 7. € will be used as an
expansion parameter to obtain equations in various powers of ¢, after which ¢ will

be set equal to 1. Suppose

n=n°+enl.
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This leads to

1 1 n?

7 {nb 13 ~ 7o (1 )

7 (1% +ent) (n )

Using a similar expansion for the coefficient involving p (let p be written ep), one

has
1

o ey (1 = E—P(ay))

Putting these in Equation 4.5 gives

((co+edsp)(n® +en?)') —m?{ = (1—6 p)H

" 0)3(1—36 )}+m p(n°+en') = 0.

Separating and equating powers of ¢ yields

2

" m
€0 = 06(7)0)’ - -CG—(no_)s -+ mzpr)o = 0
i m?  dg 3
s cs(n')" + (dsp(n)) + W( =p+ el Y+ m?pn! = 0.

There is a simple solution to the €° equation, namely

n° = (pee) ™A,

a constant. This of course simplifies the ¢! equation giving

m2d
co(n')" + 4m?pn' = —p*/* cg/fp

This equation has periodic boundary conditions of period .
This equation, then, is of the form u” + Au = f and a Green’s function may be

built for it. Ao = 0 is an eigenvalue with ug = 1/v/% an eigenfunction. Also

A2y 3 2 onr 2 2nw
=T U s \/; cos(FY), tn = \ﬂ‘ 7Y

are eigenvalues and eigenfunctions. So the Green’s function is

G(y7 6 ’\) b i M hlA + = E cos nay) COS(naC) =+ Sin(nay) Sin(na()

A=A - A —n2q?

n=0
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2
recalling o = 27 /h. With A = 4% this can be used for any p, in particular for
the one suggested in Equation 3.6 to obtain

m2d6 P
') = -p’'—n / G(Y> € 4= )Paugg () d
Cs
_ 3/4m d6 .
= 7 ,;lp"#-"iﬂ o sin(nay).

Of course there is an easier way to arrive at this last result if one is using the
Psugg Fourier sine series. Assume a form of solution for 5!, namely
(o]
n'(y) = Y_ ansin(nay).
n=1

A substitution and use of orthogonality of the sin(nay) gives

2d
—cen’a’a, + 4m?pa, = -P3/4 m5/46Pn
Ce
or that
. de 207
a, = /)3/462/‘1 (4[) (&3 -T;l-;) lpn. (46)

As will also occur for the parallel waves, n% always occur together. a/m is a
measure of the frequency of the wave to the “frequency” of the material. « is large
for thin layers and m is large for high frequency. For this case the perturbation is
expected to be good for both large and small n=. Equation 4.6 implies that a, is
: . am i .

approximately a constant times p,, for small n—, and that a, is roughly inversely
proportional to n= for large n—=.

m m

The only problem is when nZ is around 2y/p/cs. To come up with a physical
m

interpretation for this, consider for the €° perturbation:

(,’01)206"3/ —t)= m(\/gy —1).

The peak to peak distance (“wavelength”) of this wave is given by

[p
m ; Ypeak to peak = 2.

m(p(y) — t) = m(p°% — t) = m(
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So
cg 2T

Ypeak to peak = .
P pea p m

Now at the zero in the denominator of a, one has

2
ne=2(2 =2 T :
m Cg ™M * Ypeak to peak

or that, since a = 27/,

2

Ypeak to peak = ;l-h

Thus the perturbation fails when the wavelength is about 24 /n, which is admittedly
rather odd, since 2h is four layers. This will be examined, in a mathematical way,
in a later chapter.

This at least gives a better feel for the solution. It is interesting to note that for

high frequencies (large m), Equation 4.5 gives

n = (p(cs + dep(ay)))~+ (4:7)

and for low frequencies one has  ~ (pcg)~1/4. An interesting sidelight from Equa-

tion 4.6 is that for large m and small n,

d
[~ _1/4.__6
an = —p 4Cg/4pn7
which gives
S | N, gy -1/4 -1/4 ds : ~ -1/4 ds
nRnHn = (pes) A= 3T p s/ Pnsin(nay) ~ (pes) ~ TagrP(ey).
truncated % P Ce

This is the first term of the Taylor’s expansion of Equation 4.7. Thus the pertur-
bation solution agrees with the large m limit solutions.

In summary, it is of some practical interest to note that at high frequencies there
is a surprising inverse quarter power amplitude modulation of the wave, while at

low frequencies the wave hardly notices the inhomogeneity of the material at all.
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4.3 Waves Propagating Parallel to the Laminae

Here there do not exist purely longitudinal or purely transverse waves, but the
same idea applies. A perturbation method is used to obtain some approximate
solutions.

First, the following form of the solution is assumed:

u = n(y)cos(m(Az — 1))

v = u(y)sin(m(Az — 1)) : (4.8)

where A is a constant. This form is chosen since a travelling wave is being looked
for, and the solution is expected to have a y dependence in the amplitude.

It seems wise to elucidate some assumptions in the above equations. It has been
assumed that the actual solid “particles” follow an elliptical path. To see this, fix

y and note that

2 2

n(y)? * 1(y)?

As will become apparent, the “longitudinal” wave will have a major axis in the

= 1.

direction the wave travels, while the “transverse” wave will have a major axis normal
to the direction of wave propagation. At the end of the chapter this assumption
will be loosened somewhat. On a physical note, it has been assumed that the
frequency is not so high that the layers are acting as waveguides. Waveguiding will
occur at high frequencies, meaning the wave will separate in each of the layers, the
wave in one layer travelling faster than the wave in the other layer. Though the
assumed form of solution leads to solutions of the solid equations, in an experimental
situation these type high frequency waves would be very difficult to produce, as
waveguiding would more naturally occur.

The assumed u and v are placed in the original solid equations, Equation 4.1,
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to give
(e1 + dip)(—=m?A?)7 cos(-) + y(cs + dep)n’ cos(-)
+ (c3 + dap)mAy’ cos(-) + Ba(cs + dsp)mAu cos(-) = —m?pncos(-)
(cs + dep)(—mA)n'sin() + Oz(cs + dap)(—mA)y sin(-)
+ (co + dep)(—m2\ ) sin(") + exps”sin.) = —mppucos()
where - corresponds to m(Az —t) and the prime denotes differentiation with respect
to y. The cos(-) can be factored out of the first equation and the sin(:) can be

factored out of the second equation, since they do not depend on y.

This is what is left:
(c1 + dip)(=m? ) + ((cs + dep)n’)’
+ (c3 + dsp)mAp’ + mA((cs + dep)u)’ = —m2py
(c6 + dep)(—mA)n' — mA((ca + dap)n)’
+ (cs + dsp)(—m?A?)p + cop” = —m?pp.

These are coupled ordinary differential equations, with periodic boundary condi-
tions.

Once again the system only seems amenable to a perturbation approach, so this
is what is done. Think of inserting an ¢ in front of the p term, and use an expansion

of the form

7 ~ n°+en’
po~ ul+epl.

The zero order (€°) equation is

—am® 0 +c(1°)" + (ca + ce)mA(p®) = —m?py°

—(cs + c3)mA(n°)' — cem® A% + c2(4°)" = —m2ppl. (4.10)
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Let @ = c3 + c¢ as this term will occur again. The first order (e') equation is
—C1m2/\2771 + cﬁ(nl)” + am/\(#l)l + mzpnl
= m2X%dypn° — (dep(n°)')’ — mAdap(u®) — mA(dspu®)
—amA(n) — cem2A?pt + cp(ul)” + m2pp!

= mAdsp(n°)' + mA(d3pn®)’ + m2\2dgpu®.
(4.11)

There are two simple solutions to the equations, first

M=1 8=0, &=,/2 (4.12)
1

where the 7{ =1 is an arbitrary selection as the equations are linear, and

2=, °=1,,\=\/Z, 4.13
M2 Ha 2 o ( )

Similar to the normal wave, A is inversely proportional to the wave speed, and it is
immediately seen that the above two solutions are two different types of waves, as
they travel at different speeds. This is, of course, not unexpected: transverse and

longitudinal waves in a homogeneous, isotropic solid also travel at different speeds.

4.4 Parallel Longitudinal Waves

This section examines the longitudinal waves, or those arising from Equation

4.12. The first order perturbation equation (Equation 4.11) becomes
d

co(m)” + amy [2(uly = m*=p(ay)
C Ci

Ce
—am\/;’:-(n})' + ca(py)” + (1 - a)m’pﬂ%

m é%d;;p’(ay). (4.14)

For the suggested p,ugy(ay) one has a solution by assuming the following forms:

7)) = 3 ansin(ney)
pY) = 3 bucos(nay)

n=1
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Placement of these in the first order Equations 4.14 gives a system for the a, and

b,, namely

/ d
—cgn’a’a, — am —p—nab,, = mzp—lpn
(51 (5]

—am, /—p—naan + {—can?a® + (1 — E)mzp}bn m‘/ﬁdgnap,,.
C1 1 ¢

Solution of these gives the first order perturbation for the longitudinal case. Di-

viding both equations by m? leaves the equations in a form where m and & do not

exist independently, but only the ratio Z occurs,

—cw’gi2 —-a\/an pﬂpn
—-a@n% —c2n2—n§ +(1- a)p \/gdsn'nqpn
Solution of this system gives the a, and the b,.
Thus the coefficients a, and b, only depend on the ratio a/m, which measures
the wavelength of the wave in comparison to the spacing of the layers of material.

For large a/m, meaning low frequencies, the a, and b, are given approximately by

p adz m?
a, X —————p,
(5] CgC(;‘I'I.za2
pdgm :
bp = —/=———p,. 4.16
b P (4.16)

The perturbation terms a, and b, are small when a/m is large, or when the wave-
length of the wave is large compared to the spacing of layers.
The wave travels at the root mean square average speed in the material. To see

this, recall ¢, is the average of the ¢;; in the layers, and

(@)2 - (l)z = ﬁ — Cll,la.yerl + C11,layer 2
dt A p 2p '

The wave has a tumbling structure. It travels in the high speed layer and then

tumbles into the low speed layer, which results in the average wave speed observed.
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To justify the statement about the longitudinal waves corresponding to ellipses

with the major axis parallel to the axis of propagation, n! and x! are small, and

m(y) = 1+n1(y)

my) = pi(y)-
Recalling that
2 2

e G !

it is seen that u is the major axis, and u corresponds to material displacement in
the z direction.

4.5 Parallel Transverse Waves

For the transverse wave, from Equations 4.11 and 4.13, the first order perturba-
tion is

1\m 2 €1y 1 14 1V/ p ’
+ l1——=)np;+am,/— = —m,/—d
ce(n3)" + m*p( 66)172 \/%(#2) \/66 6P’ (ay)
P/ 1y 1\n dg 2
—am\/a(ﬂz) +ca(py)’ = m*p(ay)

p—
Ce

and, proceeding as above save that the roles of 5! and u! are reversed, let
o0
N2(y) = _ an cos(nay)
n=1

pa(y) = i bn sin(nay)

n=1
and the equation solved by the coefficients is (already dividing through by m?)

2
a p «a p «
—en? it p(1- L) fEnl _ [EnZ g,
m? Cs cg ™M a
P2 anagb (b:)z s
a cenm 2 2 0n

(4.17)
ds
™ Pcspn

As in the longitudinal case, the wave speed is the root mean squared average of the

wave speeds of transverse waves in the two layers.
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Here, as

n2(y) ~ n3(y)

pa(y) =~ 14 py(y)

the major axis of displacement is v, or perpendicular to the direction of wave

propagation, which is why these waves are called transverse waves.

4.6 The Other Cases

This section records the results supposing one had started with

v = n(y)sin(m(Az —t))

v = u(y)cos(m(iz —t)).

It is seen that the above results go through if one replaces
‘/ 4 by - | /ﬁ
C (5]

m(y) =~ 1+ Z a,sin(nay)

pa(y) =~ E b, cos(nay)

So the longitudinal wave is

where the a, and b, are given by Equation 4.15 with the stated replacement. The

transverse wave is

n4(y) = Y_ancos(nay)
pa(y) = 14 b,sin(nay)

where the a, and b, are given by Equation 4.17, this time with
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4.7 The Parallel Wave

To summarize the preceding sections, let

_ [m@ o0
w6 = (" 0
0

)
0 pa(y) )
)

H(y) = (nz(y)
) = (#a?y) i3
Hly) = (m(()y) m(()y))

where H is a capital 7. Then a more general wave travelling parallel to the laminae

(2) = Sonin (imz=9)

where the a; are constants.

can be written

This completes analytical analysis of the waves in the material.



CHAPTER 5

A NUMERICAL SOLUTION FOR
THE NORMAL WAVE

This chapter involves the numerical solution of Equation 4.5, in order to verify
the perturbation solution obtained previously and for interest in its own right. The
solution will be based on the Galerkin method.

As a first step, the change of variable z = ay gives

1
(ce + dsp(z))n®

‘:;_Z((Cs + dsp(2))n')' — +pn=0 (5.1)

with periodic boundary conditions of period 27, and where the prime denotes dif-
ferentiation with respect to z.

A note on the choice of the numerical method. There are three basic approaches
to solving a nonlinear boundary value problem. One is shooting, another relaxation,
and then the Galerkin approach which gives rise to nonlinear algebraic equations.
All these methods involve iteration to obtain a solution. The authorsprefer the
latter approach, as it separates the iteration process from the solution process of

the differential equation.

5.1 In a Weak Sense

Let {2 be a region, and ¢ be a member of F(Q2), which is some set of functions

on (). Then one says f = 0 in a weak sense (with respect to F)if

/Qcpfdﬂ =0, allye F(Q).
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Below f will be a differential operator L(u). f = 0 in a weak sense does not imply

that f = 0, but if one chooses a suitable F(Q), f should be “close” to zero in some

sense.

5.2 The Galerkin Method

Galerkin’s idea was to take a set of functions and producc_e a weak solution of
the differential equation in the linear space spanned by those functions. So if {pi}
are the basis functions, 3" aip; is a function in the linear space spanned by the
basis functions. With L(f) = 0 the differential operator, Galerkin’s method then
requires |

| aipi LT eipi) d2 = 0.

As this must hold for all {a;}, this gives

[ eil(Capydn =0, ;.

For a finite basis set with N elements, this leads to a system of N equations for the
N ¢’s. If L is a linear operator, then the equations are linear. If L is a nonlinear

operator, then the equations are nonlinear.

5.3 Setting Up the Equations

In the case studied here, the operator L is nonlinear and is

1
(ce + dep(2))n®

Ln) = 5 ((eo + dop(:))) - i

Assuming u and v are periodic with period 27, an integration by parts gives

ce + dep(z))u

2w a? 2 , , 2w
,I{) vL(u)du = —m/; v'(ce + dep(2))u’ dz —/0 (( 3 — pvu)dz.

To use this, assumé the ; are periodic. The weak solution in the subspace is

written as

N
n(z) = Z cipi(z).

=1
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It is best at an early stage to put this into a matrix notation, so let

(5]
2= (¢1 - on), &=
CN

With the usual definition of matrix multiplication, this gives
n(z) = ®(2)¢

as the approximate solution. With &7 meaning the transpose of ®, Galerkin’s
equations can be written
27 -
/ ®TL(®&)dz = 0,
0
or

1

(co + dap(y)(@ep P24 =0

- [ ek deplen(@) (@ az - [ a7

These are N equations for N unknowns.

The equations will be broken into linear and nonlinear terms to give

! d
(s + dop(2))(93)°

Introducing some notation, let the following N x N matrices be:

z=0.

dir 02 NT &’ Try= w T
/0 (= (0o + dep(2))(®)7®' + p070)cdz - [ @

27 2% %1
Bi= [T@Tod=["| i |(¢h o) de
0 0 ,
YN
o [ PPt PN
=[] I
0
ONPL PN

2r
- NT &/
PBr = [ p()(®)7 9 dz,
27
B, = / 87 dz,
0
27
pBy = / p(2)®7T® dz.
0

Finally, letting the N x N matrix A be

2

a
A= _;;(CGBI + dspB,) + pB,
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one obtains

. 27 Tb 1 ,
fe= ) T A =

This is the nonlinear algebraic equation which must be solved.

5.4 The Fourier Basis

Clearly, the method works best with orthogonal functions, and since the problem
is periodic, a Fourier basis seems a natural choice. The natural differential equation
is u” + Au = 0 with periodic boundary conditions of period 2r. The resulting

functions are sines and cosines. Assuming N is odd, let

( 7<-) \ [ sls) )
3T = L sin(-nz) , (T = L ncos:(nz) ,n = u
VT cos(2) v —sin(z) 2
\ cos(nz) ) \ —nsi;l(nz) ),

A nice occurrence with this basis is that the differentiation may be written as a
matrix. It might be thought unfortunate that it involves multiplication on the
right, but actually this results in only two sets of integrals needing to be evaluated

instead of four (and in the parallel case, six). Let

(0 0 0 \
-1
0 0
D = —-n
1
0 0
\ n /

and one can easily verify that

®' =oD.
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As the basis is orthonormal on [0,27], By is the identity matrix. Next,

2r 27 27

— NT (&7 _ T — T&T
B = /0(;1;) (®)dz = /o (8D)7(#D)dz = /0 DTeT&D d;
= DT / ®"®dzD = DTB,D,
0
SO
0
( . )
1
Bl= n2 N B4= = [
12 1

\

n? |

are diagonal matrices.

The pB, matrix is more difficult. To start,

27 2r
pB, = /0 p(®')7(8")dz = DT /0 p®T®dzD = DTpB,D

and so pBy will be calculated first, it being somewhat simpler.

The pB4 matrix breaks into four blocks:

TP = %x
3 s sin(z) - ~=sin(nz) 75 cos(z) - -- 75 cos(nz)
7zsin(2) [ [ sin(z) ) ( sin(z)
: : (sin(z) - - - sin(nz)) : (cos(z) - - cos(nz))
~ Zesin(nz) | \ sin(nz) \ sin(nz)
VIECOS(Z) ( cos(z) \ ( cos(z)
: : (sin(2) - - -sin(nz)) : (cos(z) - - - cos(nz))
\ 7zcos(nz) |\ cos(nz) \ cos(nz)

With p being the square periodic function, the integral breaks into two pieces,

2x * 27
pB, = / p0Td dz = / oTd dz — / o7 dz.
0 0 Ld

/

The upper left hand block of sine terms is orthogonal on [0,7] and [r,27], as is

the lower right hand block of cosine terms. So these integrals are easy to compute.

The mixed blocks are a bit more difficult. With
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® 2r
(pBa)i; = /; pip;jdz — | pipjda.

and using

s . _ _cos((i—j)z)  cos((i +7)2) 2
/sm(zz) cos(jz)dz = 20 =7) T # 3

one has in the upper left mixed block

g ™
r/(; Pit1Pj4nt1 42 = /Osin(iz)cos(jz)dz

_ [ #%s, i+ odd
- 0, 1+ ) even
27 27
T Pit1Pj4nt1dz = / sin(zz) cos(jz) dz

_ [ =75, i+ odd
- 0, t+) even.

Now define an n x n matrix P to be

l(P)--: 1——-,—'2_‘1, i+J odd
2 0, 1+ 7 even

and an n-vector @ to be

1 (@), = { V2/i, i odd

2 0, t even
as
sin(z) sin(z)
sin(2z) sin(2z)

lfi = /« 1 : dz = — — : dz.
£ ° V2 sin('(n(—- l))z) - V2 sin(gn(— 1))2)

The cosine terms on the upper border and left border of the ®7® matrix all give

zeros upon integration. With these pB, can be written

® 27
pB, = /O(DT(I)dz—/r oT® dz



(0] 3" 0o )\ [(_o —3d" 0 )
1| 2% 3 2P 1| —3 2! -3
T T
0| ipT 17 0 ~1pT 17
\ /J \ /
(0] & 0
L] & o P
T or
o| PT 0
\ /

The above gives all the matrices need for the computations. With this periodic
basis the periodic boundary conditions are automatically satisfied. If one has a

different p, all that need be done differently is a calculation of the pB4 matrix of

integrals.

5.5 A Specific Numerical Result

Using the above basis, the nonlinear equations were solved using the Hybral
path in double precision MINPACK. This takes a user supplied initial guess and
makes its first step by way of a Jacobian it calculates by forward differences. After
this, the path uses a modification of the Powell hybrid method (see [Cowell 1984]).
As to specifics, the integration on the right hand side of Equation 5.2 was done
with the trapezoidal rule, with 10N point evaluations. With N = 19 convergence
took about one minute of CPU time on a VAX 8600. The units of the constants

were pounds (force) per square inch, so
ce = .606 x 10°, dg =.104 x 108,

To make the units of p consistent with these, use

_ 32.2pounds(rna.ss) feet

1 pound(force) e
secon
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to yield ,
p =148 x 10~ p°“ndsifz£fe) iy
The initial guess was 7°, or
1
& = (pee)™/* ?
0

The Lz norm of the residuals 7 is used as a measure of accuracy after convergence,

where

27 1
F = AC— oT dz.
ety M e e

In Table 5.1, the results are listed for a specific case, namely for a/m = .0001.
Shown is the comparison of the computed solution with the perturbation expan-

sion truncated at two terms, n° and one term of 5!,
n~n°+n' x (pes) V* + aysin(2),

and six terms, 7° and five terms of 5!,
9
1=’ +n' x (pcs)” M4 + > ansin(nz).
n=1
There are six terms since the Fourier sine expansion of the periodic square function

has p, and therefore a, equal to zero for even n. The percentage error is simply

0 armor = 100 % Tperturbation — Thornputcd.

Necomputed

The average wave (phase) speed is given by

1 2r 1 1 2r 2
Er'/(; ‘,—D—I dz = 5;/; T’computed(cﬁ + dﬁp) dz

which was also computed using the trapezoidal rule with 10NV terms. As an example

of how one computes the wave speed, consider the case of dg = 0. Here n =
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(pce)~/4, a constant, and so

| spound.s!force!
wave speed = n*(cg + dgp) = o S 0,606 5 10 inch
v p

0000148 pounds( force)sec?

inch4

and the result is

wave speed = 6400021(:—h = 5330£eit,
sec sec

or a little over a mile a second.

5.6 Some General Numerical Results

Next, Table 5.2 shows some results for a range of a/m. The numerics are the
same as above, and the average percentage error and maximum percentage error
refer to the absolute values of the percentage error.

For log;o(@/m) > —4 the wave speed is constant, and the errors stay at the
limiting values indicated in the table. This is also true for the region log,,(a/m) <
—6. For values of log,o(a/m) the accuracy of the perturbation depends on how
close one is to an eigenvalue of the homogeneous problem, as is demonstrated in
Figure 5.1. The relationship between the homogeneous problem and the numerical
solution will be explored more fully in the next chapter.

And finally, Figure 5.2 is a wave (phase) speed plot. The particular interest is in
the region —6 < log,o(a/m) < —3. A break in the lines means that the numerical
method did not converge for an interior value of log,,(a/ m). Presumably, if more
computations were done, each of the peaks would continue on to +oo.

To give some idea of the wavelengths of the waves, recall the Ypeak to peak argument

of the previous chapter. In the first approximation the wavelength of the wave is

wavelength = y =\ /— —2 == 3 /— —h
= k k= —
peak to pea ,: y

where h is the thickness of two layers. For a single layer thickness of .01 inch, the

wavelength for «/m =1 is about 33 meters, and for a/m = 10-, the wavelength is
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Table 5.1. The numerical results for a/m = .0001 (log,o(Z) = —4).

Two Terms Six Terms

Z_ Meomp(2)  Mpert(2) % Error  mpe(2) % Error
0.3307 0.328356 0.325574 —0.8  0.325646 -0.8
0.6614 0.328817 0.326130 -0.8 0.326182 -0.8
0.9921 0.329152 0.326559 —-0.8 0.326560 -0.8
1.3228 0.329335 0.326813 -0.8 0.326769 -0.8
1.6535 0.329384 0.326865 -0.8 0.326813 -0.8
1.9842 0.329279 0.326710 -0.8 0.326685 -0.8
2.3149 0.329043 0.326364 -0.8 0.326392 -0.8
2.6456 0.328652 0.325865 -0.8 0.325934 -0.8
2.9762 0.328142 0.325266 -0.9 0.325314 -0.9
3.3069 0.327396 0.324634 -0.8 0.324585 -0.9
3.6376 0.326614 0.324035 —-0.8 0.323966 -0.8
3.9683 0.326053 0.323536 -0.8 0.323508 -0.8
4.2990 0.325675 0.323190 -0.8 0.323215 -0.8
4.6297 0.325516 0.323035 -0.8 0.323087 -0.7
4.9604 0.325554 0.323087 -0.8 0.323131 -0.7
5.2911 0.325810 0.323341 -0.8 0.323340 -0.8
5.6218 0.326261 0.323769 -0.8 0.323718 -0.8
5.9525 0.326920 0.324326 -0.8 0.324254 -0.8
6.2832 0.327724 0.324950 -0.8 0.324950 -0.8

L; norm of residuals = 0.16156447E-14
Average phase speed = 5426 £t

SeC

Table 5.2. The perturbation solution compared with the computed solution for
various a/m.

Two Terms  Six Terms Wave (phase)

% Error % Error speed % L, norm of
log,o(@/m) Ave. Max. Ave. Max. Ave. Residuals

0.000 0.7 0.7 0.7 0.7 . 5413 0.8432D-19
-1.000 0.7 0.7 0.7 0.7 5413 0.8438D-19
—-2.000 0.7 0.7 0.7 0.7 5413 0.7107D-19
-3.000 0.7 0.7 0.7 0.7 5413 0.7936D-19
—4.000 0.8 0.9 0.8 0.9 5426 0.1616D-14
-4.540 7.7 10.2 7.7 10.2 6130 0.2097D-13
-5.000 11.5 22.1 5.1 12.6 5557 0.1267D-13
-5.500 2.8 7.7 0.7 1.8 5323 0.6172D-13
-6.000 1.4 4.1 0.5 1.0 5316 0.1299D-13
-7.000 1.3 4.0 0.5 1.0 5317 0.1101D-13
—8.000 1.3 4.0 0.5 1.0 5317 0.1098D-13
-9.000 1.3 4.0 0.5 1.0 5317 0.1098D-13

—10.000 1.3 4.0 0.5 1.0 5317 -~ 0.1098D-13




50%—

40% —

0%

20%—

10%

43

0%

-6

(0
log,o( =)

Figure 5.1. A plot of the maximum percentage difference between the two pertur-
bation solutions and the numerical solution. The upper curve is the two term error,
and the lower curve is the six term error.
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Figure 5.2. The phase speed plot for the transverse waves travelling normal to the
laminae. The speed is in feet per second.
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about .0033 centimeters. For higher frequencies than this, though some are listed
in the table, a model should be used which takes into account the microstructure
of the layer. The wavelengths in the region in which there are peaks in the phase

speed are approximately given by the formula 2h /n, for n an integer.



CHAPTER 6

A DISCUSSION OF EXISTENCE

This chapter discusses the existence of the nonlinear ordinary differential equa-
tion dealt with in the previous chapter. The existence of a solution is not proved,
but a relationship is demonstrated between the failure of the numerical method and

the eigenvalues of the linear portion of the equation.

6.1 The Equation

Equation 5.1 is, after dividing through by csa?/m?,

m?/a?

(1 +rp(z))n3

2
22—)77 =, Pr= ﬁ, (6.1)

(1 +rp()n') = (o =

with periodic boundary conditions of period 27, and where the prime denotes dif-
ferentiation with respect to z.
In a paper by Lazer and Solimini ([Lazer and Solimini 1987]), the existence of a

periodic solution to the equation

is proven for a > 1 and

/ h < 0.
pertod

Unfortunately, the proof depends upon the existence of a lower bound on u obtained
by the existence of an upper bound on A (which exists because h is piecewise

continuous on a closed interval). So the method of proof does not apply to the
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equation considered. However, if a solution to Equation 6.1 did exist it would

presumably be positive and so
2T 2
pm
—(E£)ndz <0
/o (ce a? Jndz <

and the corresponding @ = 3 > 1. So it seems reasonable for a solution to exist, by

comparing forms.

6.2 A Green’s Function

Though used earlier in this monograph, the Green’s function will be formally

developed here. Let
(fuY +du=g, f2C>0

with C a constant. As the homogeneous part,
(fuY + du=0, f>C>0,

is a Sturm-Liouville problem, there exist a complete set of eigenvalues and eigen-
functions. Call these {)\;} and {;}. If g is square integrable, it can be expressed
in terms of the {¢;},

g = Zgi‘Pi-
Assuming the solution u to be square integrable, one has
e E Uip;.
Using orthonomality of the eigenfunctions, the original equation yields
(A= X)ui = g;,

or that
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In this, the integration is over the domain of u. If one exchanges the integration

and the summation and lets

G(z,¢,A) = 2:““)

then u can be written
u=[Glz¢N9(¢) ¢
where G is called the Green’s function.
If the nonlinearity in Equation 6.1 is ignored, the remainder is a periodic Sturm-

Liouville problem as described above. So a Green’s function exists and the equation

could be written as

m?/a?

(1 +rp())n3(¢)

This does not help a great deal in demonstrating existence, but it does indicate

)= [ Glz,¢,N) d.

that when
p m?
(L)
equals an eigenvalue of
(1 +rp(2))u') + Au=0 (6.2)

a solution would not exist. The reasoning is that the Green’s function does not
exist there because of the A — ); term in the denominator, and so one should not
expect a solution. However, as will be seen, there are twice as many values of a/m

for which a solution does not exist than those indicated by this argument.

6.3 Finding the Eigenvalues

Following the above argument, the job becomes obtaining the eigenvalues of
Equation 6.2. These are expected to be very close to the eigenvalues of periodic
problem

u’ 4+ du =0,
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period 27, which has eigenvalues 0, 1, 1,4,4,....

Using the notation of the last chapter, it is simple to set up a numerical scheme

to approximately find them. With
u=®c

the Galerkin method gives for Equation 6.1 a corresponding algebraic eigenvalue

problem of

(Bl + TPBI )E= /\346.

This form of the eigenvalue problem can be solved by EISPACK, and was, with
N = 51. EISPACK will be considered in a bit more detail in the next chapter.

6.4 The Results

As was mentioned in the last chapter, the method did not converge for some
regions of a/m. In Table 6.1 are displayed some values in each region for which

convergence did not occur, the value

2 [2T
Ce a

the squareroots of the numerically computed eigenvalues of Equation 6.2, and finally

the squareroots of the eigenvalues of
u’ 4+ du=0.

The correspondence is clear. In fact, the nonconvergence corresponding to A\ ~ 4
was not found during the phase plot calculation, where the method converged for

logo(e/m) = —5.11 and —5.12. Rather it was found by examining

3R
1]

> N

SIS

for A = 4, which gives log,,(a/m) ~ —5.107.
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Table 6.1. A comparison of the eigenvalues of the homogeneous problem with some
a/m where the numerical routine did not converge.

Squareroot of Eigenvalues Squareroot of eigenvalues

logm(g) 2, /ﬁﬂ of (L+rp)u')+Au=0 of u"+ Au=0
m cg o
0.0000 0
—4.480 0.9439 0.9821 .
-4.500 0.9884 0.9962 1
-4.520 1.0350
—4.800 1.9721 1.9646 2
1.9919 2
—4.980 2.9849 2.9480 3
2.9867 3
-5.105 3.9804 3.9327 4
3.9801 4
-5.200 4.9537 4.9192 5
-5.210 5.0690 4.9718 5
-5.280 5.9556 5.9073 6
5.9618 6
-5.350 6.9972 6.8974 7
6.9499 7
-5.410 8.0339 7.8893 8
7.9364 8
-5.470 9.2241 8.8828 9
8.9211 9
9.8777 10

9.9050 10
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A surprising item is the factor 2 which appeared in the perturbation and now
again in the numerical solution. There is more here than
2z
ce o

being an eigenvalue of the homogeneous problem. So a conjecture:

CONJECTURE 6.1: The nonlinear equation, Equation 6.1, has solutions ezcept when

2
pm
4(——2
Ce

equals an eigenvalue of the corresponding homogeneous equation, Fquation 6.2.

It is the authors opinion that the numerical method gives solutions at the larger
eigenvalues as a computational artifact, though (in the same breath) it is computa-
tional difficulties that produce regions of nonconvergence rather than a single point.
A reminder, “nonconvergence” of the numerical method means MINPACK ceases

iterations feeling it is not making sufficient progress.



CHAPTER 7

A NUMERICAL SOLUTION FOR
THE PARALLEL WAVES

In this chapter the parallel waves are solved numerically. It is assumed that

u = 7(y)sin(m(Az - 1))
v = u(y)cos(m(Az —t))
so this would correspond to finding Hj(y), Ha(y), and also A which is unknown.

The Galerkin method will be used, as explained in a previous chapter, and it will

give rise to a generalized eigenvalue problem of the form
(M’A+AB+C)é=0,

where A, B and C are square symmetric matrices. Also, as in the previous chapter,

the change of variables z = ay has been introduced.

7.1 The Equation

Let @ be a 2-vector of periodic functions of period 2x. Then the differential
operator L associated with the parallel wave system is (see Equation 4.9)

L(@) = Ly(@) + A" (La(@) + Lo(@)) + Mo L @+ pToi =0

u) =1 o 2 3 o2 4 4 2=

where with D being the differential operator with respect to y,

d

b=%
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the L; are
b = (Pleneon) o),
- 0 —D(cs + dsp) \ -
Ly(7) = ( D(cs + dsp) C60 P ) U
_ 0 —(C3 + d3 D g
Ly(w) = ((Ce+d6p)D g p) )u
_ [ —(ea+ dip) 0 "
Ly(w) = ( 0 —(cs + dep) )u.

In L,, L, and L3 the order of the differentiation is important.
Next, if 7' is also a 2-vector of periodic functions of period 2 then the equations

are
2x
/ FTL(T) dz = 0.
0

Carrying out an integration by parts on the L, and the L, term gives

/ [(FT{Ly (@) + 22 Lg(‘)}+v{,\ L3(")+,\ —L4(17)+p—11‘}]dz—0 (7.1)

where

- - +d D 0 -
Ly(@) = ( (cs OGP) —c2D>u

Ly(@) = (-(cao+d3p) o )’7

Nowhere is p differentiated! So p need be only piecewise continuous.

7.2 Galerkin’s Equation

With the differential equation set up in a weak fashion as above, the stage is set
for the Galerkin method. Let ® be a 2 x 2N matrix of 27 periodic basis functions,

and ¢ a 2N-vector:
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Then

(1)-+

7

is the approximate solution. Placing this in Equation 7.1 gives

27 ) 2 2
BT LLa(8) + A La(3)) 4 B Lo(B) 1+ AT Lu(8) 4 5™ BV 5ds = §
/0 (B)H{L(®) + A La(8)) + ST Lo(8) + N T0Li(8) + p 5 8]z = 6,

(72)

as a 2N dimensional generalized eigenvalue problem to find A and & This is the

Galerkin equation for the problem.

Now the problem becomes finding the various matrices defined above. The two

L;’s will be done explicitly, as the other terms are similar.

/ T @TL(B) dz = / " @)T ( ~(c+dep)D 0 ) & dz

0 —cD
(¢1 0
[ e 0 |(ekdnD 0 (e w0 0,
—Jo 0 0 —cD 0 -+ 0 w1 - on
\ 0 ‘PN)
[(p1 0 )
=/2, en 0 —(cs+dsp)py -+ —(cs+dep)py 0 - 0 dz
A 0 o 0 0 —Cp) o —Cply
\ 0 o~ )
{-—-(c6+dep)90'1<,0'1 oo —(ce + dep)i
s : .
_ /21 —(ce + dep) gt -+ —(co + dep) vy dz.
A —Cp1P1 e —Cap Pl
0 : :
\ —-C2(P§v50,1 _62‘105\1(!0;\1)

Now there is a more compact way to do this, namely by working with blocks of*

the matrices. First recall a definition from a previous chapter:

@ = (p1(2) -+ on(2)).
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The & can be written

(w1 - en 0 - 0 _[(® 0
0 -« 0 ¢ - on 0 & /-

Also the same definitions for B; and pB; will be applicable. Then, with this nota-

tion, the same argument as above goes

/ @)Ly (B) dz

= / (&)T ( (Ce+ dép)D —c02D ) &dz

LT ) ) (32

_ /( (6o + dop)(¥)7® _cz(g,)%,)dz

_ /2" —(ceB1 + depBs) 0 dz
~ Jo 0 - By )

Similarly,

/ (&) T Ly(®) dz

_ / (& ( (Caf)}-d;;p) (CeJBdep))@dz

7
= ( @ (qg)f ) ( —(cag-dap) e o ) ( 0 s ) %
( (cs + dep)(®')T® ) .

- C3 + d3p )TQ 0
Defining
27
= VTod
B, /0 (370 dz
2x
pB; = / p(®)Tddz
0
gives
T 0 cs By + dgpB,
/ (9)7Ly(3)dz = ( —(csBy + d3pBy) 0 ’

where (as above) both the left and right hand sides are 2N x 2N matrices.
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Using
2 2r
T(&! _ NnNT T _ T
/o <I>(<I>)dz-{/o (37 dz)T = B?

the following results for the three other terms in Equation 7.2 are stated:

Ty (g 0 ~(csB + d3(pB>)T)
T — 3L9 3 2 .
L™ % —(c1By + dipBy) 0
Tr dz = (c1By 1P5O4 .
A DL G) de ( 0 —(ceB4 + depBy) )’
s By 0
T _ 4
A ' ddz = ( 0 B, )
Putting all these things together with a few more definitions,
~ m2 2r T ~ m2 -—(Cl B4 -+ dlpB4) 0
By = ?/o &7 Ly(@)dz = a? ( 0 —(ceBs + depBy)
. 2r PR Y ~
By = T [TU&VTLy(8) + 87 L(8)] dz
_m 0 6Bz + dspB; — (c3B] + d3(pB;)T)
a \ —(caB; + d3pB;) + cg BT + dg(pB2)T 0
.. 2T A = rn,2 ~ o~
B, = /0 (&) Ly(8) + p 5 78] dz
_ ( —(ceB1 + dspB1) + P%ZB-t 0 , ) “
0 . —CzBl + p%B4

Finally, with all these definitions the Galerkin equation (Equation 7.2) becomes
(A2By+ A\B, + B))é=10 (7.3)

where all the B;’s are 2N x 2N matrices, A is a generalized eigenvalue, and ¢'is a
corresponding eigenvector.

If the original form had been

u = n(y)cos(m(Az —t))

v = p(y)sin(m(Az - 1)),
then letting B, — —B, is the only change required. As is shown below, this
corresponds to changing the sign of the resulting eigenvalue and changing the signs

of the entries on the lower half of the vector & Thus, solving the case originally

considered also solves this case.
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7.3 Some Properties of the System

Solutions exist when
det(A2B4 + /\.B~2 + Bl) = 0.

This is a 4Nth degree polynomial in A. Here are a few propositions which help one

understand the problem a bit better.

PROPOSITION 7.1: If X is an eigenvalue of Equation 7.3, then so is — ).

PROOF: The proof is done by constructing the eigenvector. If A is an eigenvalue,
then it has a corresponding eigenvector, call it C4+. This vector is of dimension 2N,

and can be broken in the middle into two N-vectors, &, and Cu. With

a+=(‘é’:'), let a_=( "'CL )
(7 “Cu

In block form, Equation 7.3 looks like

(3 2)(25)+ (5 2)ems

where e means a nonzero block. It will be seen that if A and C4+ solve this equation,

then sodo —Aand ¢_. O

If ) is real, this is actually a physically intuitive result. Since the wave speed is
given by 1/X and there is no reason to prefer one direction of propagation over the
other, both the plus and the minus A should occur. The same argument for the
original ordinary differential equation yields that if A,n,u is a solution, then so is
=, n,—p.

If A is complex and not purely imaginary, this result says the roots come in fours,

A, X, =), and =2}, since the polynomial in A has only real coefficients.

PROPOSITION 7.2: All the matrices in Equation 7.9 are symmetric.
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PROOF: For the cases of B; and B, this is obvious since B, pB, B, and pBy are

all symmetric. For the case of B,, let the matrix A be

A= C6B2 + dssz e (CaB;‘,r + d3(sz)T)

Then
AT = (ceB2 + dspB; — (Cchf + ds(PBz)T))T
= CGB;F + de(pBg)T - (C3Bg -+ d3pBg).
Thus,
~ m 0 A
By == ( AT )
and

and so B, is also symmetric. O
With this result, the following applies:

PROPOSITION 7.3: If A, &\ and p, G, eigenvalues and eigenvectors respectively for
(MA+AB+C)E=0

with A, B and C Hermitian (meaning A" = A, where the superscript H means

conjugate transpose), then

A= {(X+p)A+ B}, =0.

PROOF: This follows by manipulation. First, as u is an eigenvalue,

(B*A+pB+C)e, =0,
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and as A is an eigenvalue,
eH(X’A¥ + XBY + CH) = 0,

Since all the matrices are Hermitian, A¥ = A, BF = B and CH = C and subtrac-

tion of the two equations gives
(N —p)A+ (X —p)B}&, =0
S{(A = u)A+ (X - p)BYe, =0.
Factoring the X — u term out gives the desired result. O

In the case considered here, the B; are real symmetric matrices, and so are
Hermitian. But as the interest is in real eigenvalues, this does not yield any direct
information, though it does say that for p = —)\, the resulting eigenvectors are

orthogonal with respect to B,.

7.4 Rewriting the Generalized Eigenvalue Problem

The way the equation is solved is by converting it to the following form:
-Byo\[(e\_.,[o0 I\[¢
(= 1)(5) (4 0)(5) "4

where I is an 2NV x 2N identity matrix, and 7 is a dummy variable. This gives

and

which is the generalized eigenvalue problem to be solved.
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7.5 The Fourier Basis

Again the periodic Fourier basis will be used. With this, the approximate so-
lutions are assured to satisfy the periodic boundary conditions. Also, the above
equations were derived assuming the basis elements were periodic. In fact, with
this choice, all the work is already done. Only two terms in the newly defined
matrices have not yet been calculated, and each of these is easy. First, with D the

“differentiation” matrix,
27 27
B, = / (8T ® dz = / (D)7 ® dz = DT B,

0 0 ,
and second,

27 27

— nT — T — nT
pB; _/0 p(®')7® dz _/0 p(®D)T® dz = DTpB,.

It will also be assumed that p is the periodic square function.

7.6 Some Numerical Results

Equation 7.4 is in the form of an eigenvalue problem that EISPACK can solve (see
[Cowell 1984]). So this is how the problem was solved. The double precision (single
precision yielded grossly inaccurate results) RGG path was used, which provides
both the eigenvalues and eigenvectors of the more general eigenvalue problem of
the form Az = ABZ. This is done by reducing the matrices to Hessenberg form by
nonorthogonal elimination methods, and then carrying out an “implicit, double-

step, Hessenberg QR iteration”. The units were again in pounds (force) per square

inch, so
¢ = 11.1900 x 108 dy, = 9.6350 x 106
c; = 1.7180 x 106 d, = 0.0000 x 108
cz = 0.6276 x 10° ds = 0.0426 x 108
ce = 0.6060 x 106 d¢ = 0.1040 x 108

with p = 0.0571 pounds (mass) per cubic inch. In Table 7.1 are recorded the

results for the longitudinal wave with a/m = 1. The routine returned the & which
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was then normalized by its first entry — the first entry was set equal to /27 to
compare with 7° = 1. There was no difference between the n values, so the zero
percentage error is not recorded. The table of 4 values and comparisons has the
same explanation as the corresponding Table 5.1 for the transverse wave travelling
normal to the laminae. As can be seen, the method compares well with six terms
of the perturbation.

Next is a table for a range of values. Table 7.2 is similar to Table 5.2 listing values
of maximal percentage differences between the computed and the perturbation u.
The longitudinal wave was nondispersive, varying less than fifty feet per second over
a wide range of log,o(a/m). For log,o(a/m) below —4 EISPACK had errors, and
for log,o(a/m) around and above 3 the “longitudinal” eigenvalues lost all relation
to the wave speed, as their corresponding wave speed rapidly increased.

Unfortunately, for small frequencies, the eigenvalues for the transverse wave were
very numerically sensitive, and EISPACK was unable tc obtain them accurately,
even in double precision.

With the wavelengths given by

[cr R
wavelength = = =,
P a

for A = .02 inch, the wavelength for a/m = 103 is about 14 centimeters, and the
wavelength for a/m = 102 is about 14 kilometers.

In summary, six terms of the perturbation were seen to compare well with the
numerical solution. Further, over a wide range of frequencies the longitudinal waves

were nondispersive.

7.7 An Iteration Method for A Specific Wave

As a closing section, another method will be presented for solving the system.

If one is interested in the longitudinal wave, it is faster and slightly more accurate



Table 7.1. The numerical results for a/m =1 (log;,(Z) = 0).

Two Terms Six Terms

P T—d Mpert(2) % Error Ppert(2) % Error
0.3307 0.1122E-06 0.1086E-06 -3.231 0.1122E-06 -0.011
0.6614 0.8210E-07 0.9061E-07 10.361 0.8210E-07 -0.001
0.9921 0.5194E-07 0.6280E-07  20.897 0.5195E-07 0.002
1.3228 0.2270E-07 0.2819E-07 24.182  0.2270E-07 -0.002
1.6535 -0.7873E-08 -0.9482E-08  20.425 -0.7873E-08 -0.004
1.9842 -0.3674E-07 -0.4612E-07 25.522 -0.3674E-07 0.000
2.3149 -0.6781E-07 -0.7776E-07 14.673 -0.6782E-07 0.002
2.6456 -0.9585E-07 -0.1010E-06 5.351 -0.9584E-07 -0.007
2.9762 -0.1287E-06 -0.1133E-06 -11.974 -0.1286E-06 -0.013
3.3069 -0.1287E-06 -0.1133E-06 -11.973 -0.1286E-06 -0.012
3.6276 -0.9585E-07 -0.1010E-06 5.350 -0.9584E-07 -0.007
3.9683 -0.6782E-07 -0.7776E-07 14.667 -0.6782E-07 -0.004
4.2990 -0.3674E-07 -0.4612E-07 25.519 -0.3674E-07 -0.002
4.6297 -0.7873E-08 -0.9482E-08 20.430 -0.7873E-08 0.000
4.9604 0.2270E-07 0.2819E-07 24.184 0.2270E-07 -0.001
5.2911 0.5195E-07 0.6280E-07 20.891 0.5195E-07 -0.003
5.6218 0.8210E-07 0.9061E-07 10.357  0.8210E-07 -0.005
5.9525 0.1122E-06 0.1086E-06 -3.229 0.1122E-06 -0.010
6.2832 0.1359E-06 0.1148E-06 -15.542 0.1359E-06 -0.013

Computed Wave Speed=22913%
Perturbation Wave Speed = 22914%
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Table 7.2. The perturbation solution compared with the computed solution for
various a/m. The perturbation wave speed is 22914£¢ and 53325,

o
Wave speed fﬁ} Two Terms Six Terms
log,o(@/m) Longitudinal Transverse Max % Error Max % Error
-3.0 22911 5256 25.72 -0.43
-2.0 22938 5254 25.66 0.12
-1.0 22919 5251 25.59 0.06
0.0 22913 25.52 -0.01
1.0 22913 25.51 -0.02
2.0 22914 25.54 0.03
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to let

A= [E
(5]

A = A2B’4 +A.B~2 +.B~1

and then do an iteration

Aft'-f-l = En
= Tit1
Gyl = = .
| T4
To start, let
1
. 0
C = .
0

This is finding an eigenvector by inverse iteration, and as A is nearly singular it
converges very rapidly. To mention that the same matrix is used throughout the
iteration and so it need only be factored once is somewhat meaningless, since one
iteration is usually sufficient.

As to the “slightly more accurate” statement, as the entries in the eigenvector
span ten orders of magnitude, this approach picks up the very small entries better.
However, these entries do not affect (to four significant figures) the values of 7 and
e

If one is interested in the transverse wave, let
A= L
ce

(0)

0

St
Il

Lo )
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With a/m = 1, using double precision LINPACK (DSIFA followed by DSISL), one
iteration had a two term maximum percentage error of 26.41%, and a six term
maximum percentage error of —1.07% when the numerical result was compared

with the respective transverse wave perturbation.



CHAPTER 8

PULSES, OR WAVE PACKETS

It is thought that a material is often damaged when it receives a sharp blow or
impact. This blow can be modelled as a Dirac delta function behavior in the velocity
of the material at a given time. This chapter briefly considers pulses propagating

in one direction.

8.1 Normal Longitudinal Pulse

From Chapter 3 the form of the solution is

f( ﬁy—t)-

e
I

Take an initial condition for a longitudinal wave travelling normal to the laminae,

ov

E |y=0= V(t)s

which implies that at y = 0 the wave material has been given a specific velocity. A

solution is
1&={[veydt}he_..
As the phase speed is independent of m, the wave packet does not spread out, and

the pulse keeps its original shape. For example, for a Dirac delta function blow,

V(t) = 4(1),
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one has

o= H(=( 2y~ 1)

where H(t) is the Heavyside step function. The Dirac delta function and the

Heavyside step function are defined as

/_:f(t)5(t)dt = f(0), all feC(R)

1, t>0
ity = {o, t <0,

C(R) is the set of continuous functions on the real line.

8.2 The Normal Transverse Case

Equation 4.3 gives

u = n(y)f(e(y) —t)

v = 0
where
'(y) = ——
P (ce + dep)n?’

This case is much more complicated, as the waves are dispersive and there are
values of a/m where 7 does not exist. So only the dispersion will be discussed.
As the wave (phase) speed is dependent on the frequency, a wave packet com-
posed of these waves will spread out. To see how this will occur, the modulation,
or group, speed will be calculated. Ignore the n(y) amplitude modulation and add

two waves of equal amplitude with a given frequency m; and m,. Then
u = sin(m(p1(y) — 1)) + sin(ma(p2(y) — 1))
which can be written
u = 2sin(

(Mmapr — mapz — (M1 — my)t)) cos(=(mipr + maps — (M1 + ma)t)).

N =
N —
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The cosine term is the “carrier” wave, while the sine term is a modulation of the

carrier wave. The modulation (group) speed is the speed at which this modulation

travels. This is
m; —ms

modulation speed = - -,
mipy — Mmaps

In a limit this is (see [Crawford 1968])

1
—(3——lam"‘fl—tp’+mg%

group speed =

which is the customary group speed.

In particular,_where the phase speed is nearly constant, that is for low and high
frequencies, the group speed is roughly equal to the phase speed. In the locale where
the phase speed had its peaks tending to infinity, the group speed does the same,
only here some of the peaks are tending to plus infinity, while some are tending to
minus infinity. This is because a zero is obtained in the denominator of the group

speed expression when

8.3 The Parallel Longitudinal Case

Only the case of the longitudinal pulse will be discussed. Recall for the parallel

wave there were four basis elements,
4
uy _ 1 cos(m(MNz — t))
( v ) - g;a.H,(y) ( sin(m(\z —t)) |-

The n;’s and y;’s, which make up the H;’s, depend on m. A general initial boundary
traction cannot be accommodated by this approach, since it is very restrictive.
Since the longitudinal waves were nondispersive, terms can be combined to build
a travelling pulse. However, if one chose to write this as a Fourier integral, an
explicit expression for the pulse would be difficult to come by because the terms in

the perturbation have a very complicated m dependence.



CHAPTER 9

THE BOUNDARY CONDITIONS AT
THE CRACK

Now the interest shifts to the crack. A crack will be introduced into the material
by specifying a boundary condition of no tractions on a line segment in the material.
Actually, this will be accomplished in two steps. One solves the linear elasticity
problem with the specified tractions on the crack (namely those produced by the
waves) with the further boundary condition that the solution vanishes at z and y
at infinity. This is called the “complementary” problem. Then one subtracts this
solution from the wave solution. Since linear elasticity has linear partial differential
equations and linear boundary conditions, this has the same effect as specifying
zero tractions at the crack.

In the first chapter the tractions were given by t; = Tjn; where n; was the
normal to the surface. The crack here will be of length 2a lying along the z-axis

(see Figure 9.1). So the normal to the crack surface is, on the top

0

n=11

0

0

=1 -11.

0

. T21 - _T21
ttop = T22 sy Uhottom = -T22 .

T23 —T32

and on the bottom of the crack

The tractions are
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900
00
900 2
00

[

-a

Figure 9.1. The crack.

As the problem has been reduced to a two-dimensional one, in particular a plane
strain problem,

Tsy = Ty3 = 2c44€23 = 0.

For each of the waves it will be necessary to calculate Ty, and Ts.

To recall some definitions for the composite material considered,

0 0
T2 = 2ces€12 = (cs + deP)(a—: + B_Z)

0 ov
T2 = cuen + g = (e3 + dap)'a—: + c2

3 (9.1)

On the z-axis y = 0, so p(ay) = p(0) is a constant and will be taken to be zero. If

it is not zero, one can easily adjust the ¢;’s at this point.

9.1 Normal Longitudinal Wave

Recalling Equation 4.2

one has
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T = VAl 2y 0)lbmo= VA (-0
If f(-) is C'sin(m(-)), C a constant, then
Ty2 = C+/pczm cos(mt).
9.2 Normal Transverse Wave

Recalling Equation 4.3

u = n(y)fle(y) —t)

v = 0
where
(y) = ——
i (c6 + dsp)n?
one has

’ v 7 _ ’ — L 1 e
Ty = ce{n'f+nf¢'} ly=0= cen’(0)f( t)+n(0)f( t)

T22 = 0.

These are a bit more complicated but still a periodic time dependence occurs.

It has been assumed that (0) = 0. Again let f(-) = Csin(m(-)). Then

%,3 = cen'(0) sin(—mt) + -r;flO_)m cos(mt) = nr(rs)(_cen(O)n’(O) sin(mt) + cos(mt)).
Letting
ran () = @O
m
one has
Ty2 = ;7(0)6(’:—21(@ cos(mt + ¢),

where ¢ is a function of m.
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9.3 Parallel Waves
Recall Equation 4.8
u = n(y)cos(m(Az —t))
v = p(y)sin(m(Az —t)).

This form leads to both the “longitudinal” and “transverse” waves. This gives

Tia = co{n'(0)cos(-) + mAw(0) cos(-)} = ca{n(0) + mApu(0)} cos(-)

T = ca(=mA)n(0)sin(-) + c2p'(0) sin(-) = {~mAcsn(0) + c2'(0)} sin(-)

where - means m(Az —t). These boundary tractions are quite complicated, and are

included for completeness, as this case will not be dealt with.



CHAPTER 10

THE COMPLEMENTARY PROBLEM

In this chapter, assumptions on the forms of solution will be made which yield
the equations to be solved. To outline the approach, first a time dependence will
be assumed. Then, the problem will be split into two half planes, an upper plane
and a lower plane, and it will be assumed that in each region the solution may
be written in terms of a Fourier integral. Continuity conditions off the crack and

prescribed tractions on the crack will give rise to a dual integral equation.

10.1 The Form of Solution

Recall from Chapter 3 the equations

(1 + dip)Oiu + B3((cs + dop)Byu) + (c3 + d3p)102v + By((ce + dep)Orv) =  pus
(c6 + dep)010zu + 02((ca + dap)Oru) + (cs + dep)OZv + 2020 = poy,.
It is assumed the solution can be written
u = 1(z,y)cos(mt + ¢)
v = p(z,y)cos(mt + )

with

1@y) = [ Alw,y)e dw

—00

p(z,y) = [wB(w,y)eiw’dw.
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The A and the B will be different for the upper plane and the lower plane.

Putting this form into the solid equations gives equations for A and B. These are
(a1 + dip)(—w?A) + ((cs + dep)A,), + (ca + dap)(iwBy) + ((cs + dsp)(iwB)),
= —pm?A
(¢ + dep)(1wA,) + ((cs + dap)(iwA)), + (c6 + dsp)(—w?B) + ¢, B,
= —pm?*B,

where the subscipted y means partial differentiation with respect to y. The bound-
ary conditions are some fixed value at y = 0 and A4 and B vanish at y = Foo for the
upper half plane and lower half plane, respectively. If A and B solve this system
of ordinary differential equations, then the form of the solution will solve the solid

equations.

10.2 The Ordinary Differential Equation

It will be assumed that there exists a basis for the solution of this ordinary

differential equation. For the upper half plane let it be
ﬁl(way), and ﬁZ(way)-
For the lower half plane let it be

ﬁS(w’ y)a and ﬁ'i(w, y)‘

Let
ﬁ, = 4,’(10, 0)
"/ a -.t' ;)
Hi = g; y)|v=0
Let
a;(w)
= _ | ax(w)
@= 03(11))
)
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be a 4-vector of w dependent coefficients. Let
o (F B T §
0 0 Hs; Hg

and

y=

1(H H 0 0
w\ 0 0 H, H,
be 4 x 4 matrices, possibly dependent on w, where the subscript y is to be remi-

niscent of C; having a relationship to the y partials of the solution of the ordinary

differential equation on the z-axis. The purpose for the 1/iw term will be clear

later.
With
Nupper
- Hupper
w =
7]( ’ y) Nower
Hlower

one can write
o . oo 3 31 .
,;'-0= / C&evdw = / ( al(w)l_{‘l(w, y) + a2(w)}_{2(w,y) ) e dw.
o0 oo \ a3(w)H3(w,y) + as(w)Ha(w,y)
For any d the resulting 77 written in this form satisfies the solid equations. However,

the work comes in trying to fit the boundary conditions, a job that is very difficult

for a crack. Needed will be the partial derivatives, as they appear in the tractions:

o . ® O i
6_2:7’[”:0 —/ wC de™” dw,

-0
0 . el 5 du
.6_‘1;7’ ly=0 = /_oo twCy d e™” dw.

Writing these terms as matrices and vectors, it is hoped that the resulting equations

will be a bit more clear.

10.3 The Dual Integral Equation

All the above leads to an equation in which the time dependence has been

factored out. It is assumed that the solution is continuous off the crack, or that
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the displacements match.

(’7) __:(71) i y=0, |z| > a.
B upper K lower

It might appear that one should also set some of the tractions equal in this region
off the crack. However, the approach here will be to find a solution satisfying
continuity, and then look at the resulting tractions off the crack.

It is assumed that on the crack the solution meets the specified tractions, or

with

Ty, = Ty, cos(mt + @)

T = Ty cos(mt + @)

that (from the tractions in the previous chapter)

auer auer -
06( Tupp + Hupp ) i,

Jdy Oz
38775:" n 23;45;,," - f,
and
(3mower a#ala:er) _ —Tn
_(c36ig:_ef+ zaﬂgzm) - _f,

for y = 0, |z| < a. The minus signs on the left come from the normal on the lower
face of the crack pointing down. These signs cancel and will not appear again.

These terms are somewhat tedious. With

(Hih )
B =
(o
the upper half plane term can be written out as

/°° ( [al(Hl) +02(H2) +2w{al(Hl)2 +02(H2) H )eiwz dw
csiw{ay(Fh )1 + a2(Ho)1} + c2{ar(H,), + az(Hz)5}

=00
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T12 )
= a 5 =0, |[z|<a,
(TM y=0, [o|

with the prime terms defined previously. Putting all this together,
/w [tw 0 o (arHy + aHy) + [ € ¢ (a1 H] + ap H})]e™= dw
5 c3 0 1 2 0 c2 141, 2419

T
=(T::)’ y=0, [z| <aq,

T 7 1000 -
(11H1+(12H2=<0 1 0 O)C’a

or as

. one can write this as

(0 c)(1000Y.,. (c 0)(1000). -
/_m[“”(ca 0)(0 10 O)C“+(o cz)(o 10 0)’“’03"-‘7‘6 dw

Using this, and similar arguments, the following equation results for the a;(w):

0 10 _1 0 - jwzr ___-’ —_— o
./_00(01 0 _I)Cae dz=0, y=0, |z|> g

/ooiw cs 0 C+| “

Cy| @de™ dw

C2

F, |0 Y= 0, |z| <a. (10.1)

The spaces in the matrices are zero entries. In the next chapter these will be solved

for the homogeneous case.



CHAPTER 11

THE SOLUTION OF THE CRACK
PROBLEM .

The €° case will be dealt with. The €° case means the €° consideration of the
ordinary differential equation which arose in the process of solving the crack prob-
lem. This will deal with the anisotropy of the material, but not the inhomogeneity
near the crack. This would be the approximate solution if the crack were at the
center of a layer instead of between two layers. For the interlaminar crack problem,

this is a fist approximation to the solution.

11.1 The Simplifications

The €° problem is being solved, which means using a perturbation for the or-
dinary differential equation satisfied by the transforms of n and u. Only the first
term of the perturbation will be examined and used.

The €° equation is, with a = ¢3 + cg,

—w?c; A + ceAD, + iwaB) = —pm?A°

. 0 2. o 0 2 Ro
waA, — wceB” + csz = —pm*B".

Since this system has constant coefficients, a solution of the form

(8)-()
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where a, b, and ¢ depend on w but not on y, is expected to solve the equations.

Placing this in the system implies the following:

—w?e; + cq? + pm? 1waq
iwaq —wlcg + cq% + pm?

This is a quadratic in ¢2. If ¢ is a solution, so is —q.
There is a difference of about ten orders of magnitude between the value of p
and the values of the ¢;’s. Because of this, for not too large m at least, the pm?

term in the above is negligible, giving the simpler

—w?c; + ceq? iwagq
twaq —w?cs + c2¢?

~o

to solve. The resulting equation is
ch(;‘I‘1 T (02 - C1C2 — C;‘;)wzq2 + ccew? = 0.

One can use the quadratic formula to solve for ¢2. Letting k, be the plus and k_

be the minus, then with

cacc+ci—a*+ \/(Clcg + ¢ — a?)? — 4c¢ cyc2

k2 =
* 2c;3¢¢

the solution is

¢ = k*w?.
In the example, both k% will be real and positive and distinct (for the isotropic
case the roots are not distinct - anisotropy is being assumed), so let the k. be the
positive squareroots.

To satisfy the boundary conditions the roots for the upper half plane, namely

that the solution vanish at y = 400, take
@ = —ki|w|, 2= —k_|uw
For the solution to vanish at —oo in lower half plane, let

q3 = k+|w|, q4 = k_lwl.
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The basis of solutions is

I?l(w, y) = 1 e—k+ lwhl’ ﬁ2(w, y) — 1 e—k-lwly
'-b+ _b_ ’
ﬁ3(w’ y) = ( b::. ek+|w|y, ﬁ4(w,y) — ( bl ek-lwly,

with the H; as defined in the last chapter. Here

—wlc tesq? i —cekl w
iwag; taky |w|

by = —

The b+ depend on w. The by and the k4 are dimensionless. For the specific material

considered previously, they are

ky = 4.120 k- = 0.619
by = —0.178: b. = —14.339:.
The y-derivatives are
o —ki|w ke lw = —k_|w kel
Bl g = ( k+b:,|wll )e Eeluly, Ayw,y) = ( k_b_llwll )e k-luly,
Iy _ ky|w] kg |wl 37, _ k- |w] k—|w|
Hi(w,y) = ( kyby|wl ) g x 1l Hi(w,y) = k_b_|w| € Y.

11.2 How to Write the Integral Equation

The next step is to find the C and C, matrices. These are

1 1 0 0
by =b_ 0 O
o 0 0 1 1 ’
0 by b
c = i k+b+|w| k- b |w] 0 0
! iw kelw]  k_|w|
kibylw| k_b_|w|

—k+ —k- 0 0
1|w| | kyby kb 0 0
iw | O 0 ky ke

0 0  kpby k_b_
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C is invertible since by # b_, and the part of the dual integral equation, Equation

10.1, specifically within the crack (|z] < a) can be written

0 cs Ce
[l +| @ c,C| Caes du
-0 Cs Ce
C3 0 C2
T3
= o 3 =0, |z|]<a.
T |2 Y ||
Tz
To see what C,C~! looks like it will be written out.
—ky —k. 0 0 —b_ -1 0 0
C.Oo-1 = llw| | kyby kb 0 0 1 by 1 0 0
vV T w 0 0 ky k- b —b_| 0O 0 —b. 1
0 0  kyby k_bo 0 0 b -1

kb —k_b,  ky—k_
=i w| | bybo(k_ —ky) k_b_ — kub,
b+ 4 b_ w k_b+ and k+b_ k+ - k_
bob_ (k- — ky) kyby — k_b_

Now comes a rather large insight which will lead to an approach to solve this

problem. The by change sign at w = 0, and the k4 are constant. So this c,C1
matrix factors into two pieces, one that flips, or changes sign at w = 0, and one
that is constant for all w. Consider the first column of C,C~!. The term

-1 |u]
— o (kb —k_by)

flips because each by has a |w|/w in it, and so the |w|/w term is taken to an odd
power. On the other hand,

=i |w]
b+ — b_ ” b+b—(k' - k+)

has an even power of |w|/w’s in it, so it is constant for all w and does not flip.

Choosing to write these with superscript f for flip and n for no flip, one has

C,C™1 = Al 4 A
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where
( kyb_ — k_b,

A = —1 |_1L| k_b_ — kb,

- by —b_ w k_by — ki b_

\ kyby —k_b_
/ 0 ky — k_

A = -1 M byb_(k- — ky) 0

b+ - b_ w 0 k+ e k..

bpb_(k-—ky) 0

Each of these matrices is invertible.

11.3 How the Flip Affects the Equation

The left hand side of the integral equation can now be written

0 cs Cs
[Ca|[ e © + c2 (A + A"} | Cd e du.
S 0 cs Ce
C3 0 C2

But some of these matrices do not depend on w, such as the matrices with the ci’s,

and A", and these can be pulled out of the integrals to leave

0 cs C8
@ 0 + 2 A" /co iwC @ e dw
0 cs Ce —
cz 0 c2
Ce
w .
+ 2 / iw A C & e™® du.
Cg —00
C2

Now to identify terms. First

w .
/ wCae™ dw =75,

=00

where prime denotes differentiation with respect to z. But next is the intriguing

item. In the latter integral above, because of the A/, everything inside is flipped.



82
To see what this means,
00 .
i = / Cae™* dw
—00

0 . 0 ;
=/ caemdw+/ C & e du
1]

-—00

M- + 74
This last line is a definition. But to flip this means changing the sign of the interior

terms for w < 0, so one has

*® w - _{wzx - -
/_oo I—w—IC’ae dw =74 — 17—,
but this is merely the Hilbert transform! (See [Stenger 1973].) If the Hilbert trans-
form is denoted by H then

5 4 _ PV r q(y)

T+ —17- -—H(ﬁ')—?/_wy_zdy

where PV means Cauchy principal value for the integral.

The integral equation can now be written

0 o Ce Ce
C3 O C2 - Ca + -
A" AT"H
0 e | o 7'+ e (")
C3 0 C2 C2
Ty
= A . =0, | < a. 11.1
F1a |z| (11.1)
T22

In this, A/* is A/ evaluated at some positive w. It is well-defined since the terms
are constant for positive w.

The dual integral equation has become a Cauchy singular integral equation for
the 7. The actual form of the matrices A/* and A" give a beautiful separation of
the problem. The entries of the matrix coefficient of 77/ are zero when there are
nonzero entries in the matrix coefficient of H(7”), and similarly the entries of the
matrix coeflicient of H(77'’) are zero when there are nonzero entries in the matrix

coefficient of 7.
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11.4 A Particular Function and Its Hilbert Transform

Consider the following function:

0 < —a
P(z)=4{ Va? -z [z|<a
0 a<z.
The Hilbert transform of this is (see [Bateman 1954] Volume 2, page 246, or Ap-

pendix B)
—z—+v1?—a? < —a
tH(p)(z) = { -z |z] < a
—z+Vz?—a? a<z.

Both the function 1 and its Hilbert transform H(%) are continuous and vanish at
too. This is expected behavior for the solution of the complementary problem.
Also 9 is an even function, while (1)) is an odd function.

As the Hilbert transform of a derivative is the derivative of the Hilbert transform,

( 0 z< —a
S
, e A 2 e b
@) = { 2 lel<a
0 a < @,
¢ T
—1——:':2-—_—(1—2 Tz < —a

H(Y)(z) = ¢ -1 |z| < a

z
14— a<z.
u z2 — a2

\

It will be assumed that the solution to the Cauchy singular integral equation

can be written in the form

Y + rsiH(y)
~_ | Y+ retH(y)
T rap+rin(y) |

rp + rerH(y)

where the r;’s are dimensionless, hopefully real constants. Since 77 is real, and H ()

(11.2)

is imaginary, the r;’s should be real.
To satisfy the continuity condition off the crack gives some restrictions on the

ri’s. As ¢ is zero off the crack, only the H(t) terms need be considered:

1 0 —'1 0 - s —T%» _
(01 0 4)0—(W_“)Hwym 2] > a.
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So continuity requires

s =T7, Te =Tsg. (113)
11.5 Solving the Cauchy Singular Integral Equation

Placing these into the equation causes a separation into two parts: one for v;

and one for H(v). As
H(H(¥)) = ¥,
setting the coefficients of 9’ equal to zero inside the crack gives

0 cg Cs 1)
C3 0 C2 An T2

Cg Cs T3

c; 0 c2 r4)

Ce s \
c ir

2 Af+ : 6 =
Ce iry

Ca ‘irg }

. (11.4)

o O O O

Next, since the T;; are constants, the traction conditions can be satisfied since

within the crack H(¢’) =+, a constant. The equation is

0 ¢ Cs irs
cs 0 Cy n irs )
0 s + Cs . iry (#)
cz 0 ' c2 irg/
Ce r1 ) 1?12
C2 + T2 . T22
Al - 22 (115
+ N ml@ o= | |aus
C2 7'4} ng

Solution of these will yield the solution to the displacements along the crack.
To facilitate finding solutions, the coefficient matrices will be written out. They

are
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0 cs 0 Ce

C3 0 _ zk+ —k_ —02b+b_ 0
0 cs by — b 0 c |’
c3 0 —c2b b 0

C6 °
C2 f+ _ bt ]
ce A=

C2

ce(ky b —k_by)

ca(k-b- — kyby)
ce(k-by — kyb_)
C2(k+b+ - k_.b_)

Both these matrices are assumed evaluated at some positive w. As by contains an

i, the upper matrix is purely real, while the lower one is purely imaginary.

11.6 The Longitudinal Case

Here T}, = 0 and ng is a given constant. Let
ri=r3=rg=rg=0.

Equations 11.4 and 11.5 reduce to

[ _ ky —k_ kybo — k_b, \
Cﬁ(; bzb+;g_) Ce b+_bg . (7‘2) _ (.0 )
e TR i ad e Ts Ty,
\ 1)) by —b. c3 — catbyb_ — )
{ _ ky —k_ B kyb_ — k_b, \
co(1 e ) b |(rn) _ [0 e
_ k_b.. - k+b+ _ b b k+ — k_ re - j‘-.22 . ( . )
\ Co b+ — b_ C3 C2104.0- b+ — b_ /

The rest of the equation is automatically satisfied. If r, and rs satisfy the upper
set of equations, then

T4 = —T2, T7=T5

satisfy the lower set of equations, because the lower system differs from the upper

only in two signs off the diagonal.
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This solves the crack problem for the longitudinal case. The continuity require-
ment, Equation 11.3, is satisfied since rs = r; and r¢ = rg = 0.

To discuss the solution a little,

X? +£(_§ _ (x+u)?  (0+40v)?
(1—rs)2 " r} (1—rs)? r3
— (z + rsiM())? + (r2%)?
G-rp  * 1
(z + 1'5(—:1:'))‘2 (r2va? — z2)?

- (1—rs)? * ra

= z?+a?-2?

= a2

and so the displacements for the complementary problem form an ellipse. This
is not quite the case for the solution of the original problem, which is the wave
solution plus the complementary solution. For this case the crack opening is still
an ellipse, but it is displaced by an amount v, Where v is the displacement of the
wave solution.

Since T3, is directly proportional to both the amplitude of the original wave and

the frequency of the original wave,
ng =1 pCa2Tn

where C was a constant, one concludes there is a larger crack opening for a higher
frequency wave (since increasing Ty, causes a proportional linear increase in the
ri’s). The crack is rnor.e likely to propagate when the crack opening displacement
is large than when it is small, and so high frequencies can be expected to be more
damaging to the material.

If one does a numerical solution for the dimensionless r;’s, with the constants

used pteviously, one has
r, = 11.04 x 10—7 X (—ng)

rs = 2.00 x 10_7 X (—ng)
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where T}, is in the pounds (force) per square inch. A note on the signs. Recall
that the complementary solution is subtracted from the wave solution to produce a
cancellation of the tractions. So a positive traction gives a positive crack opening,
since the minus signs cancel and ¢ is positive for |z| < a. The maximal crack

opening occurs at the center of the crack and is given by
crack opening = (r; — r4)1(0) = 2r;a.

The larger the crack opening for this brittle material, the more likely it is for a
crack to propagate.

If T, is negative, the wave is in its compressive cycle, and the above solution
implies that the upper and lower displacements overlap. This clearly does not
occur. What actually happens is that the crack closes and during the compression

remains closed, so the above complementary solution does not apply.

11.7 The Transverse Case

Here let

and the equations reduce to

( cs + Czib.,_b_k_"'.i CZM )
kb — 1>+;b_lc (r1)=(p>
e e _ ok =k e .
\ T (=g, =5 ) |
(ot cyibyp e =k kb —kiby )
R e by b (ra) _ ( 0 ).(11.7)
\ —y—t— _cs(l—ib:_:b_:) rs ;

by — b

If r; and r are a solution to the upper system of equations, then

L4

r3 =—riy, Tg=Tg

constitute a solution to the lower system. Again the continuity conditions are

satisfied as r¢ = rg and r5 = r; = 0.
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In this case there is not a nice elliptical crack opening. In fact, the crack does
not open at all, since fypper = Liower- The crack faces do displace, but in a slipping
fashion — the z-displacements do not match up. Apparently the crack rotates a
bit. To obtain some measure of the rotation, at the z = a end of the crack the v

displacement is

U = Hupper = Hlower = r6iH(¢)(a) = 7'6(—‘1)'
If 0 is the angle the crack makes with the z-axis, then

ta,n(G) = 2-(aa—) = —Ts.

Since r¢ is proportional to the magnitude of the load and frequency of the wave,

Cm
n(0) cos(¢)’

the crack rotates more for large loads or high frequency. When the time dependence

Ty, =

is included in T3, the crack rotates back and forth at the wave frequency.

Doing a numerical calculation for the specific material herein,

ro= 4.32x1077 x (=T1p)

re = —2.00x 1077 x (=T,)
with 73, in pounds (force) per square inch.

11.8 The Tractions Off the Crack

Taking a last glimpse at the crack, the question is what are the tractions of the
complementary solution off the crack for y = 0? Are they continuous?

The only thing needed is an explicit expression for T};. But as

Ou ov
T =(a+ dlp)'a—; =+ Caa—y
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by comparison with Equation 9.1 the value of T}, is obtained by simply replacing
ca by ¢; and ¢; by c3 in the expression for T,.
Thus all the tractions can be written in terms of 7, both on and off the crack

(still on the line y = 0). With the"’s meaning time has been factored out,

Ty a6 0 00 0 ¢ 00
Tis ={(c3 0 oo)+(o c,oo)Aﬂ}ﬁ'
Ty, 0 ¢ 00 cc 0 00
upper
0 c3 0 0
+( 0 c; 0 o)Af“H(ﬁ').
g 0 0O

One gets the lower tractions by reversing the order of the 3 x 2 block of zeros and

the nonzero block.

Specifically, the longitudinal with z > a has

A . ’
i ¢ 0 00 0 ¢ 00 rsﬂé(w)
Ty ={¢l e 0 00]|+[0 c 0O |A (b
o 0 c 0 0 e 0 00 gl
upper 0
0
0 C3 00 /
+] 0 ¢ 0 0 |art| R
cc 0 00 y
7‘47"((‘/")
Written out,
. . ky —k_ k_b_ — kb z
Tll — {(cl+zcab+b_f::)T5—C3—r_—l:—+r2}(_l+‘ 22_02)
. . ky —k_ k_b_ — kb, =
T2 = {(c3+zc26+b-m)rs—czﬁ“r2} (_1+ 32—a2)
le = 0 z>a. (118)

In these, the b; are evaluated for positive w. The shears (T12) are zero for all time,
both on and off the crack. For the lower half plane, since r4 = —r, and the lower
half of the A/* matrix is minus the upper half of the A/* matrix, the minus signs
cancel and the tractions for the upper half plane equal those for the lower half

plane. The tractions are continuous off the crack.
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To discuss the behavior of these stresses, the wave solution which is to be added
to the complementary solution for the complete solution can be ignored as, near
the crack tip, the complementary solution’s stresses have a singular behavior and

dominate everything. Both 7}, and T2 behave as

s K;
T‘iiz_—'_’
V2 2
I®—a

K; a constant. Linear elasticity predicts infinite stresses at the crack tip.
To relate this result to the usual stress intensity factor, first one changes the
variable z = z — a to look right at the crack tip. The stress intensity factor is

defined as (see [Broek 1978])
K

V2rz

for small z > 0. For the longitudinal wave this is (from Equation 11.8)

Tll =

fu={}(-1+ ).

\/(z +a)? — a2
This gives

. a
Tu={-}5
for z near zero, which gives !

- k- k_b_ — kb
K = \/7? (61 + iC3b+b_£1—k-)r5 - Ca_b——kih—*'rg \/E
by — b by — b

For the specific material this is
K =4.52 x \/a x (—T).

For an isotropic material the stress intensity factor is the same when defined by

K
Varz

but in the anisotropic case, this latter definition would give

Ty, =

K= \r{(cs+ ich+b_k+__£),.5 - 62M,2 Va.
by — b_ by — b_

UIf the crack is located at the center of the layer, then the pumerical value should be
replaced by 6.17 for a 0°-ply and by 1.69 for a 90°-ply respectively.
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For the specific material this is
K =177 x \/a x (= Ty).

The K’s are not the same. Because of the anisotropy, the often stated isotropic
results (see [Broek 1978]) using the stress intensity factor do not quite apply to this
case. But there is something to be learned by this. The coefficient of the singularity
depends on the squareroot of half the crack length, as the terms in the brackets
do not depend on a. The larger the crack, the higher the resulting stresses in the
neighborhood of the crack.

For the transverse case, the stresses are

Tu =0
L3 _ .k+‘—k_ k.’.b_ —k_b+ T
T12 = Ce{(l —t—b+_ —)TG————b+ —b__ T (—1+—'_—x2—a2).
As r3 = —r; and (as above) the corresponding entry in A/* also changes sign for

the lower half plane, the tractions here are also continuous. In this-case the shears
are singular at the crack tip.

This completes the discussion of the crack in a homogeneous material.



CHAPTER 12

THE NONHOMOGENEOUS CRACK

Finally comes the nonhomogeneous crack discussion. To actually carry out the
€' perturbation of the ordinary differential equation is very tedious and leads to no
insight (the authorsdid this). Rather, a qualitative discussion seems more appro-
priate, with some numbers thrown in.

The question is how the inhomogeneity right in the vicinity of the crack, the
crack lies on the interface of two layers, affects the solution. The €° case treats the
plane as a homogeneous material. The worst case of the inhomogeneity is when
one considers the upper half plane to be all of one material, and the lower half
plane to be all of another. The solution approach of the last chapter, using the
specific 1, will not quite work here. However, such an approach is a means to get
an approximate solution, meaning a function satisfying the solid equation in the
respective half plane, but not quite satisfying all the boundary conditions.

The arguments of the last chapter leading up to Equations 11.4 and 11.5 show
that for the tractions on the crack face the equations for the upper half plane
and the lower half plane are separate. One can solve the equations for the upper
half plane with one set of constants, and the lower half plane for another set of
constants, to yield zero tractions on the crack face. Then one can examine the
continuity conditions off the crack to get a feel for how wrong the approximate

solution is.
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Using the constants used throughout the monograph, letting the upper half
plane be material 1 (the + in the perturbation, ¢; + d;) and the lower half plane be

material 2 (¢; — d;) one has for the longitudinal case from Equation 11.6

rz = 10.04 x 10=7 x (—=Ty,)
rs = 150 x 10~7 x (—Th,)
re = —13.90 x 10-7 x (—=Ty,)
ry = 4.51 x 107 x (—Tn)

where T}, is in the pounds (force) per square inch.

It is clear the continuity conditions are not satisfied — there is a slip in the u
displacements. To see how large this is, compare the u discontinuity at z = a with
the maximal crack opening:

u discontinuity _ (rs — r7)iH(¥)(a) _ (rs — r7)(—a) 0126
crack opening ~ (ry —rg)(0) (ra—rg)a 7

This slip, or discontinuity, is 13% of the crack opening at the center of the crack,
and it seems reasonable to view this solution as an approximate solution to the
nonhomogeneous problem. Notice that, in this approximation, v = 0 off the crack
for both the upper and lower half planes. The approximate displacements are given
by the expression for 7 in terms of the r;’s, 1 and H(%) in Equation 11.2. To see
how much beyond the crack one must go before this discontinuity is half its value

at the crack tip, consider

H(p)(z) = g, T > a.
This is
—I+\/12—'02 =_;_
yielding
o= g
=%

The discontinuity, which is directly proportional to H(+), is half its value at a/4

beyond the crack, or at one-eighth the length of the crack beyond the crack.
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The tractions also no longer match up; the greatest difficulty is in the shear 7},.

For the homogeneous case the shears are zero, but in the nonhomogeneous case as

the shears are singular since the u displacements are no longer continuous across
the line y = 0. It seems reasonable to suppose that an exact solution would have
large shears also. For a layered material this is of great concern, since interlaminar
cracking, or delamination, is the main cause of failure.

This last observation gives some information on the form of an exact solution
to the nonhomogeneous crack problem, namely that the v displacements must be
nonzero off the crack, or that the Hilbert transform of the u displacements must be
nonzero off the crack. This is because it is nonzero v displacements off the crack or
nonzero Hilbert transform of the u displacements off the crack which give rise to
nonzero shears.

The conclusions are that the crack on the boundary layer will experience very

large shears, but that the crack opening is nearly the same as in the homogeneous

case (half ellipses).



CHAPTER 13

CONCLUSIONS AND EXTENSIONS

In this final chapter conclusions will be drawn, and a few extensions and direc-

tions for further study will be suggested.

13.1 Conclusions

A perturbation approach yielded good results. For a transverse wave travel-
ling normal to the laminae a rather interesting dispersion curve (phase speeds)
resulted. The waves travelling parallel to the laminae were found to be nearly
purely longitudinal or purely transverse, and so Mr. Ben-Amoz’s statement regard-
ing homogeneous behavior was borne out.

On interaction with a crack, the case of waves coming down on the crack, or
travelling normal to the laminae, was considered. It was found that crack opening
displacement for the longitudinal wave, and rotation of the crack for the transverse
wave, was directly proportional to the magnitude of the displacements in the wave
and the frequency of the wave. So higher frequency waves will be more destructive,
though it is pointed out that the solution process assumed the frequency was not
too large in order to ignore a term in the equation. For a crack in the layered
material, one should expect high shears for the longitudinal wave travelling normal

to the laminae.
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13.2 The Layer Not at Ninety Degrees

Most of the time the layers are not placed in a 0°/90°/0°/90°.. ., but rather
at various angles such as 0°/459/90°/45°.... To deal with this, it is necessary
to calculate the constants in Hooke’s law after a change of basis. Hooke’s law
is a relation between two tensors, as the linearized strains form a tensor in the
infinitesimal case. This being the case, it is possible to write a change of basis

formula for the constants in Hooke’s law. Hooke’s law can be written
Ty = eamBu

where Ej; is the matrix of the ). In the way Hooke’s law in presented in the text,

one has
Ty, Ci1111 C1122 €1133 l61123 lCu:sl l61112 €11
Ty C2211 C2222 €2233 5C2223 5C2231 5C2212 €22
T3s — | ©3311 Ca3322 C3333 5C3323 5C3331 35C3312 €33 (13.1)
Ty C2311 C2322 €2333 5C2323 5C2331 'I'C2312 2¢€23 '
T3 C3111 €3122 €3133 5C3123 5C3131 5C3112 2e3;
Ty, €211 C1222 C1233 3C1223 3C1231 3C1212 212

Now suppose the £ — y plane is rotated an angle 6 about the z-axis. Then if 7

is a vector, in the new coordinate system the components of the vector are

'= AT

where :
cosf sinf 0

A= (a;)=| —sinf cosd 0

0 0 1

In terms of this A matrix, the new values for the constants in Hooke’s law become
/
Cabcd = @ai@bjAckAdiCijkl

where, of course, the summation notation is employed.
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13.3 A Simpler Approach

The above is a rather tedious way to find the new material constants. An easier
approach is to use a similar one to that in [Vinson and Sierakowski 1986].

As the stress tensor is a rank 2 tensor, it transforms as
/
T3y = Gaiay; T

This can be written out as a matrix

5 cos? 6 sinfd 0 0 0 2cosfsinb Tn
i sin? @ cos2§ 0 0 0 —25sinf cosd T,
ol 0 0 1 0 o0 0 Tss
Ty |~ 0 0 0 cosf —sinf 0 T2
T3 0 0 0 sinf cosf 0 T3
s —cosfsinf sinfcosd 0 0 0  cos?f —sin?4 Tiz

Particular care must be used in deriving this. For example, as T;; is symmetric,
T2 = Ty givesrise to the factors of two in the last column. Call this transformation
matrix A. A~ is given by letting 6 — —0. |

Next, one can write Equation 13.1 in a better fashion for the purpose of finding

the new material constants:

1 1 1
T \ C1111 C1122 €1133 5C1123 5C1131  5C1112 1 €n
T2, C2211 C2222 C2233 35C2223 5C2231 5C2212 1 €22
T f 1
33 |__| ©€3311 C3322 C3333 5C3323 5C3331 5C3312 €33
T23 C2311 C2322 C2333 35C2323 3C2331 3C2312 2 €23
i 1 1
T C3111 C3122 €3133 35C3123 5C3131 5C3112 2 €31
Ty, ) €1211 1222 C1233 3C1223 3C1231 3C1212 2 €12

To simplify a bit, let T be the above vector of stresses, C' be the matrix of constants
in Hooke’s law, and E be the above vector of strains. Then under the rotation one

has

T = E'
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which is
1 \
1
AT = ¢ . , AE.
2
2 )
This gives
(1 \ (1 -
1 1
— “'_1 ’ 1 - 1
C=A""C 9 A 9
2 2
\ 2/ \ 2
or
1 1
1 1
¢’ = Ac ! re b
2 2
2 2
2 1

2
If one multiplies out the last three matrices, one arrives at the surprising final result

C' = A(§)CAT(-9) (13.2)

with the reminder that A=! # AT. With this one can find the material constants

for a layer at an angle # by viewing it as a rotation of the coordinate axes by —.

13.4 How a Layer at an Angle Affects the Equations

Having a layer not at 0° or 90° changes the equations right from the start. It

T\ Ci1 C12 Cis €n
Toa | =] e €22 26 €22 |- (13.3)
T2 Cé1 Ce2 Ces 2e12

so the simple form of the equation studied is not adequate for the analysis of this

leads to

case.
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However, a great deal of difference is not expected in qualitative behavior. The
waves travelling in a direction parallel to the laminae will still have an average
propagation speed decided by the average of the two layers. The transverse waves
travelling in a direction normal to the laminae will exhibit an amplitude modulation.
But the longitudinal waves travelling in a direction normal to the laminae will have
an analytical behavior similar to that of the transverse waves, as now all the other

terms will not vanish away.

13.5 Directions

An interesting direction to pursue would be the effects of glue between the
layers. Many composite materials are held together by an adhesive and so this is
an important case. Also, one could study in more detail the local behavior of the
material near the boundary of two layers. As a first step in these analyses, one
could use more complicated p(z) to model the more complicated Hooke’s law in
each of the regions: the layers and the glues.

The effect on the crack by a wave travelling parallel to the laminae could be
tackled, though this would be tedious. It is expected that a longitudinal wave would
have little effect on the crack, the effect being similar to that of the transverse wave
travelling normal to the laminae. The transverse wave would cause a crack opening
similar to that seen in the longitudinal wave travelling normal to the laminae.

Also, the approach of writing the displacements along the crack directly as a
Cauchy singular integral equation looks very promising. The solution of the equa-
tion directly yields the displacements, and there are no extraneous variables or
functions introduced. Numerical methods are improving for the solving of these
types of equations (and this is a one-dimensional one). For an exact solution to
the crack in the layered solid, a simple analytic solution is not expected, but a

numerical method based on this approach might work.



APPENDIX A

THE EXPERIMENTAL DATA

The material constants given in the text were arrived at by the following exper-

imental data supplied to the author.

El = 20450 G12 - 0710 Vi = 0291
E, = 1.350 Gz = 0.502 vo3 = 0.333
E; = 1.489 Gz = 0.710 iz = 0.291

where the E; and the G;; are in million pounds (force) per square inch, and the v;;
are dimensionless.
The matrix of coefficients C for the general Hooke’s law is given by the inverse

of the compliance matrix S, so

(L _wnz _wa
B B B . ° \
V12 V23
-— = == 9 0
B B B 0
13 Va3
-——= -= = 0 0 o0
C—1=S= E1 E2 E3 1
0 0 0 — 0 0
Gas 1
0 0 0 0 — 0
G1s
0 0 0 0 0 ——
\ Gis )

Inverting this S matrix with the above data gave rise to the material constants

used in the text.
The density was supplied as 1.58 grams per cubic centimeter.

For those who do not like English units at all, conversion to cgs units is straight-

forward. Using

1pound(force) _ 68947dynes

inch? cm?




one gets for the coefficients

1436 42.98 46.21 0
42.98 1074 40.33 0
C = 46.21 40.33 1185 0

0 0 0 346
0 0 0 0
0 0 0 0

4

0
0
0
0
9.0
0

4

with the units being 10° dynes per square centimeter.

Coocoocooco
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APPENDIX B

THE PARTICULAR HILBERT
TRANSFORM

In this appendix the Hilbert transform of the particular transform used in the

text is found. The approach is to use a change of variable followed by a contour

integration.
Recall,
0 z< —a
(x)= a?—z? |z|<a
0 a<z.
and

H)y) = =¥ [~ 2E) g,

e ooz—y

where PV means Cauchy principal value for the integral.

Introducing the change of variable motivated by [Tricomi 1957|, page 174,

1—¢2 —4t
= am, dl‘ = am dt
gives
\/sz
M) = o [ Y
_ Fv = 2at —4t dt
B c,0(1+t2) ;+;§_y) (1 + t2)2
PV t?
- -—8 dt.
‘ / {(a—y) = (a+y)t2}(1 +12)?
As this integrand is a function of ¢2,
PV i
H = ——4 dt.
R I e e s e
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The integrand (referred to as I in the sequel) is holomorphic except for a finite
number of poles, and so the residue theorem applies for a given contour in the
complex plane (see [Ash 1971]). It vanishes at infinity as 1 /t*, and so an arc at
infinity will contribute zero to the integral. The contour will be closed in the upper
half plane. All the cases will have in common a double pole at 7, and so the residue

there will be calculated first.

1) = 4a 1mi (t—z')’tz
res(,i) = 4 lb-n dt{(a—y)—(a+ )21 + 12)2
t2
R ¥ [Py wy e v

= 4a’lim [ 2t (a +y)t?
i |[{(a—y)— @+ )2}t +0)7 {(a —y) = (a+y)t2}2(t + )2

B 2t2 ]
{(a—y) —(a+y)2}(t +1)?

= 4 2 (a+y)i® 22
B 2a(2i)? * {2a}%(2:)2  2a(25)3
_ 42

= 1%

- W

= 5

This completes the first residue.

Now to look at various cases. For —a < Y < a the other poles lie on the axis at

a—-y
a+y’

The residues are

a-y, _ 2 . (t_i\/%)tz
res(I,ﬂ:\/m) = da thi’m:_;% [{—(a—y)-(a+y)t2}(1+t2)2
= 4q4° (:t\/i)z

{=(a+y)(£2/5)} (1 + (2,/252)2)2
(G55)
= +4a’

{(a+9)2\/5)}1 + (232))2
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Notice the signs of the residues of the & roots are the only things which differ, and
so a sum of these residues (actually one half the sum since they lie on the axis)
gives zero. The double root at i considered above is the only surviving term for
this case.

Next consider y > a. The roots

TRyt SRR £ Ak
aty a+t+y

are poles of the integrand, and the plus one lies in the upper half plane. Following

the last case’s argument one has
_a 2
a) - 4 V a+y)
+y {- (a+y)2z\/g;—;}(1+(z\/g;—;
ety
' —(a +y 2’\/.;;:(1 =)
_ 20- V a+:

Kl —(a+y)(Z5)?
= _% y? — a2,

res(/, 1

This completes the calculation of this residue.

Finally, for y < —a, the poles are at

a__y:iz’ a-y
a+ —a—y

and the same argument as above leads to

a—y ) 1a? (i Z2)?

res(],: =
~a—y (@t 2 ZE) 1+ Gy Z2 )
= 4q® et
—(a+y)2i, /22 (1 — 27L)?2
2a? —

i —(aty)(E)

_ ifea



This is the last residue which needed to be calculated.

The Hilbert transform of 4 is now easy to find. For y < —a,

o 12
O = T [ e
1 t2
2(% /cont:our4 {(a=y) — (a+y)t2}(1 + ¢2)2

= 2(sum of the residues)
= 2(5 + —\/ y? —a?)
= 1y +1\/y? — a2

Similarly, for —a < y < a,

dt)

H)) = 2L = iy,

and for a < y,

HWY)(y) = 2( > 5 y? —a?) =iy — i y? — a2

This is the Hilbert transform of v as given in the text.
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