THE 3D STRESS FIELD AT THE INTERSECTION OF A HOLE AND
A FREE SURFACE IN A TRANSVERSELY ISOTROPIC PLATE

by
E. S. Folias

August 1989

University of Utah
Department of Mathematics
Salt Lake City UT 84112



Abstract

This paper deals with the analytical, 3D, stress field in the neigh-
borhood of the intersection of a hole and the free surface of a trans-
versely isotropic plate of [0°] orientation. The analysis shows the
stresses to be proportional to p*~¢, where the exponent  depends on
the material properties of the plate as well as the polar angle 6 (see
fig. 1). For the special case of a graphite/epoxy plate the value of «a,
at the critical location # = 0, is shown to be oo = 5.573 which implies a
rather strong stress singularity. Finally, the physical meaning of these
results to the process of fatigue damage are discusssed and compared
with existing experimental observations.



1 Introduction

It is well known that at the vertex of a sector plate, both in bending and
stretching, unbounded stresses may occur for certain vertex angles. In the
case of a homogeneous and isotropic materials this matter has been in-
vestigated analytically, subject to various edge conditions and based on 2D
consideration, by Williams (1951, 1952). To the best of the author’s knowl-
edge an explicit analytical solution for the determination of the 3D stress
field in the neighborhood of the corner point has yet to be constructed. A
somewhat complete historical update of the subject can be found in refer-
ences (Cruse 1988, Rosakis et. al 1989).

On the other hand, for the simpler case of a thick homogeneous and
isotropic plate that has been weakened by the presence of a circular hole,
Folias (1987) was able to extract, analytically, the explicit 3D stress field
in the vicinity where the hole meets the free surface of the plate. The
analysis shows that the stress field there is non-singular. In the present
paper, the author extends his analysis to also include transversely isotropic
plates. As a practical matter, it is hoped that the solution will evince
many characteristics of the stress field at such neighborhoods and that
it will provide guidance for the proper undestanding of the phonomenon
of fatigue damage in laminated composite structures, where drilling and
bolting still remains to be a common method of joining.

2 Formulation of the Problem

Consider the equilibrium of a homogeneous, transverely isotropic, elastic
plate that occupies the space |z| < o0, |y| < oo, |2| < h and contains
a cylindrical hole of radius @ whose generators are perpendicular to the
bounding planes, namely z = +h. Let the plate be subjected to a uniform
tensile load o¢ along the y-axis and parallel to the bounding planes (see
Fig. 1).

In the absence of body forces, the coupled differential equations govern-
ing the displacement functions u, v, and w are
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where the Cj;’s are the material constants defining a layer which has its

fibers running parallel to the z—axis.
The stress—displacement relations for the layer are given by the consti-

tutive relations
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As to boundary conditions, we require that:
at 2z = +h: the surface stresses must vanish (5)
at r=a: the surface stresses must vanish. (6)

Finally, in order to complete the formulation of the problem, the loading
conditions far away from the hole must be satisfied.



3 Method of Solution

The main objective of this investigation is to construct an asymptotic so-
lution which is valid in the immediate vicinity of the corner point, i.e. the
neighborhood where the hole surface intersects the plate surface z = A.
Guided by a general analytical solution to the equilibrium of transversely
isotopic layers which the author has recently constructed (Folias 1988), we
assume the complementary displacement field in the form
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where
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33 = C44Css. (16)

In writing the above displacements, we used a cylindrical coordinate system
and, furthermore, assumed that (r — @) << a. In view of the above, one
can show that the unknown function H must now satisfy the differential
relation
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where the €;, €; and €3 are functions of C;; and 6 and represent the roots
of the cubic equation
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It remains, therefore, for us to construct a solution to equation (17). To
accomplish this, we introduce the local, to the corner, stretched coordinate
system (see Fig. 2), i.e.

r—a=pcos¢ (23)
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Omitting the long and tedious mathemataical details, the solution to equa-
tion (17), in terms of the local coordinates, is found to be
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and «, A; and B;(: = 1,2,3) are constants to be determined from the
boundary conditions, i.e. the stresses along the surfaces ¢ = 0 and ¢ = /2
must vanish for all p. More specifically,

(28)

022(p,0) = 0 (31)
Tx(p,0) = 0 (32)
Tye(p,0) = 0 (33)

o (p, g) =] (34)

Tot (p, g) =0 (35)

Trs (p,%) = 0. (36)

Without going into the mathematical details, the above equations lead to
a system of six algebraic equations, the determinant of which must vanish.
This latter condition leads to the determination of the characteristic values
a. In gneral, the values of a depend on the material constants C;;, as well



as on the angle §. As a practical matter, if one considers the case of a
graphite/epoxy layer, with coefficients C;; (Knight 1982)

[ 20.6228 1.0381 1.0381 0.0000 0.0000 0.0000 7
1.0381 2.2301 1.2301 0.0000 0.0000 0.0000
C. — 1.0381 1.2301 2.2301 0.0000 0.0000 0.0000 (37)
g 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.8696 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.8696

then the requirement of the determinant of the system (31)-(36) to van-
ish leads to a transcendental equation for the roots @. The only roots of
practical interest are those which lie in the interval 5 < Re a < 6. The
numerical results for the 6 x 6 system were carried out in double precision.
For angles of § > 1° there exist no real or complex roots in the above inter-
val of interest. The quantity (o — 5) is a factor of the system, so a = 5 is
definately a root for all . The value of o = 6 is also a root! for all 6 greater
than approximately 1°. For smaller 6, the value of a deeps rather abruptly
until it finally reaches the value of o = 5.544. It may be noted, however,
that at the same time the 6 x 6 system becomes ill conditioned, for at § = 0
two of the boundary conditions are automatically satisfied. Consequently,
a separate analysis was carried out at this location which led to a 4 x 4
system the numerical solution of which gave @ = 5.567. A comparison with
the value obtained from the 6 x 6 system shows only a 1% difference.

Thus a = 6 is a root for all angles 6 except for a very narrow band about
the line 8 = 0 where it deeps rather abruptly until it finally reaches its
lowest value? of a = 5.567, while one may certainly recover the continuous
spectrum of a in this narrow band by carrying out an asymptotic analysis
for small 6, the author believes that such further information is of very
little practical value and as a result the effort required is unjustifiable.

Perhaps it is appropriate at this point to note that if the material prop-
erties C;; are altered, the band width in 6 changes too. Finally, in the limit
as one lets the plate become isotropic the results reported by Folias (1987)
are recovered. In this case a is independent of # and the stress field is
nonsingular throughout.

!Note (a — 6) is not a factor of the sytem.
2A mathematical function exhibiting such a property is the probability integral.
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Discussion of the results

The foregoing analysis shows that the stress field in the neighborhood of
the corner points, i.e. the points where the hole surface intersects with the
free of stress boundary plane, may be singular. For example, in the case of
a graphite/epoxy layer defined by equation (37), the stresses are shown to
be singular only in the very immediate vicinity of § = 0. More specifically,
the stresses at § = 0 are shown to be proportional to p=°433, This is not
totally unexpected for at this location the fibers of the layer are tangent to
the hole surface. In general, the exponent a is a function of the position
angle 6 and of the material properties C;;.

As a practical matter, the results suggest that, in the presence of a cyclic
load, a small crack is most likely to manifest itself along the fiber /matrix
interface BAB (see Fig. 3) . In general, the length of the advancing
crack will depend on the number of cycles, the position relative to the
local geometry of the hole, as well as the local to the crack applied load.?
Moreover, the crack is also expected to advance itself towards the center of
the plate. To see this, consider the case of an isotropic plate. For this case,
Folias et. al. (1986) have shown that the displacement w, at this location,
1s negative (see Fig. 4) suggesting, therefore, that the material is pulled
towards the center of the plate. Similar trends are expected to prevail in
this case too. However, because the fibers are considerably stiffer than
the matrix, the displacement w of the last legament of the matrix will be
greater than that of the fiber and as a result the crack will also propagate
in the vertical direction. More specifically, the imaginary line ACD will
deform to the curve A'C’'D, thus forming a shear crack of a very small
depth AA’ which decreases as one approaches the points B. Experimental
evidence carried out by Bakis et. al. (1986) on fatigue failure of laminated
composite plates weakened by a hole clearly shows the presence of such a
crack which is tangent to the hole.

A closer inspection of the experimental evidence also shows the pres-
ence of interfacial cracks between fibers and matrix at other #-locations.
However, these are secondary cracks for their length is only of a few orders
of magnitude of the fiber diameter. Such cracks are to be expected for, in
view of some recent results reported by Folias (1989), the stress field in the

3This matter is presently under investigation.
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neighborhood of the intersection of a fiber and a free surface, e.g. a hole,
is singular with a much weaker stress singularity. Also, for these cracks to
advance, the local to the crack applied stress must be greater than a certain
nominal stress value.

For example, such cracks will be of great concern particularly in the
immediate vicinity of an interface, e.g. [0°/45°], and at certain #-locations.

The above method of analysis may now be used successfully to inves-
tigate the interlaminar stresses in composite laminates. The results for a
stacking sequence of 0°/45°/90°- - - laminae have recently been completed
and will be reported in a subsequent paper. The results compare favorably
with existing experimental observations as well as finite element analyses.

Finally, it may be noted that the results at § = 0 also shed some light
on the problem of a matrix crack approaching a fiber, perpendicularly (see
Fig. 5). In practice, the tip of the crack has some finite radius. Thus the
local geometry at point A is similar to that of the present work and the
stress field can be approximated by

0ij ~ p~°* f:;(Cre, ). (38)
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Figure Captions

. Geometrical and loading Configuration.

Definition of local coordinates at the corner.
Geometrical confirguration at microscale level.
Vertical displacement at the surface vs (r/a).

Local geometry of a matrix notch approaching a fiber.
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