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Abstract. Utilizing the form of a general 3D solution, the author investigates analytically the stress field in the 
neighborhood of the intersection of a cylindrical inclusion and a free surface. The inclusion is assumed to be 
of a homogeneous and isotropic material and is to be embedded in an isotropic plate of an arbitrary thickness. 
The stress field is induced by a uniform tension applied on the plate at points far remote from the inclusion 
(see Fig. 1). 

The displacement and stress fields are derived explicitly and a stress singularity is shown to exist for the case 
when the inclusion is stiffer than the plate material. Moreover, the stress singularity is shown to be a function of 
the respective ratios of  the shear moduli and Poisson's. 

The special case of G 2 ~ O, G 2 = G~ and G 2 ~ 00 are also investigated. 

1. Introduction 

Quite often in engineering practice, structures are composed of two elastic materials with 
different properties which are bonded together over some surface. Such type of problem has 
been investigated from a 2D point of view by many researchers and the results can be found 
in the literature. For example, in 1927 Knein [I] considered the plane strain problem of an 
orthogonal elastic wedge bonded to a rigid base. In 1955, Rongved [2] investigated the 
problem of two bonded elastic half-spaces subjected to a concentrated force in the interior. 
Subsequently, in 1959, Williams [3] studied the stress field around a fault or a crack in 
dissimilar media. The work was then generalized in 1965 by Rice and Sih [4] to include 
arbitrary angles. 

It was not until 1968 that Bogy [5] considered the general problem of two bonded 
quarter-planes of  dissimilar isotropic, elastic materials subjected to arbitrary boundary 
tractions. The problem was solved by an application of the Mellin transform in conjunction 
with the Airy stress function. In 1971, the same author [6] extended his work to also include 
dissimilar wedges of arbitrary angles. Shortly thereafter, Hein and Erdogan [7], using the 
same method of solution, independently reproduced the results by Bogy. Finally, in 1975 
Westmann [8] studied the case of a wedge of an arbitrary angle which was bonded along a 
finite length to a half-space. His analysis showed the presence of two singularities close to 
each other. Thus, elimination of the first singular term does not lead to a bounded stress field 
since the second singularity is still present. 

Based on 3D considerations,* in 1979 Luk and Keer [9] investigated the stress field in an 
elastic half space containing a partially embedded axially-loaded, rigid cylindrical rod. The 

* Due to the symmetry of the applied load, the problem is mathematically 2D. 
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problem was formulated in terms of Hankel integral transforms and was finally cast into a 
system of coupled singular integral equations the solution of which was sought numerically. 
The authors were able, however, to extract in the limit from the integral equations the 
characteristic equation governing the singular behavior at the intersection of the free surface 
and that of the rigid inclusion. Their result was in agreement with that obtained by Williams 
[10] for a right-angle comer with fixed-free boundary conditions. 

In 1980 Haritos and Keer [11] investigated the stress field in a half-space containing an 
embedded rigid block under conditions of plane strain. The problem was formulated by 
cleverly superimposing the solutions to the problem of horizontal and vertical line inclusions 
beneath an elastic half-space. By isolating the pertinent terms, the authors were able to 
extract directly from the integral equations the order of the stress singularity at both corners. 
Both results are in agreement with the Williams solution. Moreover, the authors point out 
the importance of the second singularity to the results of the load transfer problems. 

Finally, in 1986 Folias [12], utilizing the form of a general 3D solution for the equilibrium 
of linear elastic layers which he developed in 1975 [13], derived explicitly the 3D displacement 
and stress fields at the intersection of a hole and a free surface. The analysis revealed that 
the stresses at the comer at proportional to 0 "-2 where 0 represents the local radius from the 
corner and ~ = 3.73959 ± i 1.11902. It is interesting to note that the root is precisely the 
same as that obtained by Williams in his classic paper [10] for a 90 deg material corner with 
free-free stress boundaries (plane strain). An extension of the analysis to other angles of 
intersection revealed the same analogy between 3D and 2D. Thus the Williams solution has 
further applicability than was originally thought. 

The same general 3D solution can now be used to solve the corresponding problem of a 
cylindrical inclusion. Moreover, the method is also applicable to non-symmetric applied 
loads while retaining a rather simple mathematical character. 

2. Formulation of the problem 

Consider the equilibrium of a homogeneous, isotropic, linear elastic plate which occupies the 
space Ixl < o% [y[ < oo and Izl ~< h and contains a cylindrical inclusion of radius a whose 
generators are perpendicular to the bounding planes z = + h. It is assumed that the 
cylindrical inclusion is made of an isotropic and homogeneous material of different elastic 
properties than those of the plate. The plate is subjected to a uniform tensile load a 0 in the 
direction of the y-axis and parallel to the bounding planes (see Fig. 1). 

In the absence of body forces, the coupled differential equations governing the displace- 
ment functions ul ~) are 

1 Oe ('') 

1 - 2Vm OX~ 
+ V2u~ ") = 0; i =  1 ,2 ,3  m = 1,2, (1) 

w h e r e  V 2 is the Laplacian operator, vm is Poisson's ratio, u~ ~) and Ul 2) represent the displace- 
ment functions in media 1 (plate) and 2 (inclusion) respectively, and 

OU~ m) 
e ~) = i = 1, 2, 3; m = 1, 2. (2) 

Oxi 
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Fig. 1. Infinite plate of arbitrary thickness with cylindrical inclusion. 
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The stress-displacement relations are given by Hooke's law as 

tTl~) ~ o(").~ 2Ge~7) , "~" ~ kk  v ij -Jr- 

where 2,. and G" are the Lam6 constants describing media 1 and 2. 

(3) 

3. Method of solution 

The main objective of this analysis is to derive an asymptotic solution valid in the immediate 
vicinity of the corner points where the interface meets the free surface of the plate. For this 
purpose, we assume the complementary displacement field to be of the form [12, 13]: 

0h'",], 
u(") = 1 12v,. 8x8 2(1 - v,.)f2 (") + h - - ~ -  z + z ,-~-z J (4) 

v(") = 1 -1 2v"Oy8 2(1 - v,.)f2 (") + h - - ~ -  z + z--0-~-z J (5) 

OWl(m) ~f2 (m) } 
w(m) = 1 ~ --2(1 -- v")f2 (m) + h - ~ z  + z - - ~ z  , (6) 

1 2v" Oz 
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Fig. 2. Definition of local coordinates at the comer. 

where the functionsfl  (") and f2 (m) are three dimensional harmonic functions. I f  we furthermore 
assume that 

f j ( , n )  = r - 1 / 2 H j ( ~ n ) ( r  _ a, h - z)d2°; j = 1, 2 (7) 

then the functions ~(") must  satisfy the following equation: 

a 2~-) ~2~) 15 ~ 0. (8) 
O(r - a )  2 + 0(h - z) 2 4(a + r - -  a )  2 = 

It is found convenient at this stage to introduce the local coordinate system (see Fig. 2) 

r -  a = 0cos~b  

h -  z = Qsinq~ 

in view of  which, (8) may now be written as 

1 ~ ( - ,  1 ~ )  15~ m) 02H)") + - -  + = 0. (9) 
002 0 t30 02 O~b 2 4a2[1 + (o/a) cos ~b] 2 

Under  the assumption that the radius of  the inclusion is sufficiently large, so that the 
condit ion 0 "~ a is meaningful, we seek the solution to (9) in the form 

H) m) = ~,  o°t+nS(nm)((~) , (10) 
n=O 

with ct a constant.  Without  going into the mathematical  details, we construct the following 
series expansion in ascending powers of  Q: 

~(m) = o,{AJm)COS (~b) + B) ") sin (~$)} 

+ 0~+'{Q m) cos (c~ + 1)4) + D) m) sin (cz + 1)~b} + O(Q~+2), (11) 
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where the constants ~, A~ "), B) "), Cy ") and D) ") are to be determined from the boundary  
conditions. Specifically, 

at ~b = 0: -zzrr(1) = rx~-(~) = -yz~:(~ = 0 (12) 

at q~ = n :  a~2z ) = "~(x2z ) = T(2) = 0 (13) z z -yz 

at 4 = ~" uJ l) = u}2); J = 1, 2, 3 (14) 

O.(r 1) _~. Orr--(2) .,.(1) : n'(2) "~rz(1) __~ T(2) 
r ~ ~rO ~rO ~ - r z  • (15) 

Substituting (11) into (12) and (13) one finds that all terms up to the order O ( ~  e t - 2 )  a r e  

satisfied if one assumes the following combinations vanish: 

BII~= 0 

- h ( a  + 1)A] 1 ) -  B~ ~) = 0 

A~ 2) sin (an) - B~ z) cos (an) = 0 

[A~ 2) - h(a + 1)BI 2)] tan (~tg) - B~ 2) + h(a + 1)A~ 2) = O. 

(16) 

(17) 

(18) 

(19) 

Similarly, the displacement and stress boundary  conditions at the cylindrical surface are 
satisfied if we assume the following combinat ions vanish 

1 { 
1 - 2v~ ( - a  - 1 + 2vl)A~ ~)tan - ( - ~  - 1 + 2vl)B~ 1) 

, { 
1 - 2v~ ( a -  2 + 2Vl)A~2 ~) + ( a -  2 + 2Vl)B~ ° t a n  

(20) 
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' { [ (7)] 1 - 2v2 ( ~ -  2 + 2vz) A~22) + B~ 2) tan 

,A~I) -  (1 - , ) t a n  ( 7 ) B z ~ ' ) -  /3 { , A ~ 2 ) + ,  tan ( 2 )  B2~Z) 

- tan ( 2 )  [A~2' sin (=n) - B2~=' cos (~=)]} = 0 (22, 

- ( , - 1 ) A ~ ' ) t a n ( 7 )  + ( , -  2)B2°'-  / 3 { [ - ( , - 1 ) t a n ( 7  ) 

+ s i n  

where for simplicity we have defined 

1 - 2v 1 G~ 
13 = 1 - 2v z G~" (24) 

The characteristic va lue ,  may now be determined by setting the determinant of the algebraic 
system (20)-(24) equal to zero. Once the roots have been determined, the complete displace- 
ment and stress fields can be constructed in ascending powers of Q. 

4. Discussion of  the results 

Without going into the mathematical details, the characteristic values , can easily be 
determined with the aid of a computer. Although the equation has an infinite number of 
complex roots, only the one with a 1 < min R e ,  < 2 is relevant. In general, the charac- 
teristic values o f ,  depend on the material properties of both the plate as well as the inclusion. 

The analysis clearly shows that, in the neighborhood of the interface and the free surface, 
the stress field is proportional to Q,-2 and that for certain material properties it is singular. 
Moreover, the first root is found to be precisely the same as that of the corresponding 2D 
case [6]. Figures 3, 4 and 5 depict typical results for various material properties. Finally, in 
the limit as the shear modulus (i) G2 ~ 0 and (ii) G2 -+ oo one recovers the results corre- 
sponding to a (i) hole (i .e. , ,  = 3.73959 + i1.11902) and (ii) a perfectly rigid inclusion (i.e., 
, = 1.7112 + i0.), respectively. It is interesting to note that in both limit cases the exponent 
, is the same as that obtained by Williams [10] for a 90 degree material angle with (i) free-free 
and (ii) fixed-free boundaries in plane strain. Finally, as G2 --+ G~ and v: -+ v I , the solution 
of a continuous plate is recovered, a result that clearly meets our expectations. 



On stress singularities 31 

2 0 0 0  

Vl°V2"0.33 

1 . 9 7 5  - 

1 . 9 5 0  

1 , 9 2 5  

1 , 9 0 0  

1 , 8 7 5  - 

1 . 8 5 0  - 

1 , 8 2 5  - 

1 . 8 0 0  - 

1 . 7 7 5  - 

1 . 7 5 0  - 

1 . 7 2 5  - 

1 . 7 0 0  - 

1.675 ' 
lO 0 

I I 
101 102 103 

G2 
GI 

Fig. 3. S t r e n g t h  o f  the  s i n g u l a r i t y  vs Gz\G, for  v, = v 2 = 0.33. 
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Fig. 4. S t r e n g t h  o f  the  s i n g u l a r i t y  vs G2\G 1 for  v, = 0.33, v 2 = 0.25. 
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Fig. 5. Strength of the singularity vs G2\G~ for v I = 0,25, v2 = 0.33. 
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Fig. 6. Geometrical applications. 

An extension of this analysis to other angles of intersection with the free surface reveals 
the same results as those predicted by Bogy [6] for the case of plane strain. A few cases of 
practical interest which come to mind are shown in Fig. 6(a)-(c). Similarly, it can be shown 
that the same results apply at the intersection of an interface and the free surface of a hole 
in a laminated plate consisting of homogeneous and isotropic laminates (see Fig. 6d). 
Finally, by way of a conjecture, one may now deduce that the same analogy exists for the 
corresponding cases consisting of anisotropic materials. 

It should also be noted that the analysis confirms the presence of another (a little bit 
weaker) singularity which was first pointed out by Westmann [8]. While it is true that the 
singular stress field is dominated by the largest singularity, the presence of two singular terms 
has important  implications to the problem of adhesion as well as the problem of load 
diffusion from one material to another [11]. 

The results of this analysis are also of importance to the field of composite materials. In 
general, composite structures are designed in such a way as to carry the load along the 
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Fig. 7. Possible composite failure mode. 

direction of their fibers. Quite often, however, a small portion of that load will be applied, 
at least locally, in a direction perpendicular to the fibers (e.g., a pressurized vessel). As a 
practical matter, let us consider a region where the matrix and a few fibers have cracked 
in a manner depicted in Fig. 7. Conditions in the neighborhood of the circled fiber are 
very similar* to those assumed in the present paper. There are, however, two important 
differences. First, the dense distribution of fibers induces stress interactions which lead to 
higher stress levels. Second, the typical diameter of  a fiber is approximately 0.003 inches, a 
magnitude that may be thought of as of the same order as Q. In that case, (9) is no longer 
separable and a different form of the solution must be sought.** 

In closing, it is noteworthy to point out the importance of the general 3D solution [13] for 
it reveals the inherent form of the solution at such neighborhoods and permits a simple 
analytical approach, ~ la Williams [10], for the determination of the stress singularities. 
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R6sum6. En utilisant la forme d'une solution g6n6rale ~ trois dimensions, l 'auteur analyse le champ de contraintes 
au voisinage de l'intersection d'une inclusion cylindrique et d'une surface libre. On suppose que l'inclusion est 
constitu6e d'une mat6riau homog6ne et isotrope, et qu'elle est ins&6e duns une plaque isotrope d'6paisseur 
arbitraire. Le champ de contraintes et dft A une tension uniforme appliqu6e en des points suffisamment 61oign6s 
de l'inclusion. 

On exprime de mani6re explicite les champs de d6placements et de contraintes, et on montre qu'il existe une 
singularit6 de la contrainte duns le cas off 1'inclusion est duns un mat&iau plus rigide que celui de la plaque. En 
outre, on montre que la singuladt6 de la contrainte est fonction des rapport respectifs des modules de cisaiUement 
et de Poisson. 

On 6tudie ~galement les cas sp6ciaux G 2 ~ 0, G 2 = G t et G, --, co. 


