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Abstract. The three-dimensional Navier's equations are solved analytically for the case of a cylindrical inclusion 
of radius "a"  which is embedded in a plate of arbitrary thickness 2h. Both the plate and the inclusion are assumed 
to be of homogeneous and isotropic materials with different material properties. Perfect bonding is assumed to 
prevail at the interface. As to loading, a uniform tension is applied in the plane of the plate at points remote from 
the inclusion. 

The analysis shows all stresses including the octahedral shear stress to be sensitive to the radius to half thickness 
ratio (a/h) as well as the material properties. In the limit, as (/h/#~ ) ~ 0 and as (g2/gl) --* 1 (where #2 and/~ are, 
respectively, the shear moduli of the inclusion and of the plate) the results for a cylindrical hole and a continuous 
plate are recovered. Similarly as (a/h) ---, oo (very thin plate) the plane stress solution is recovered. Moreover, for 
(/q/gt) > 1.0 the presence of a stress singularity near the point of intersection of the inclusion and the free surface 
of the plate is confirmed by the numerical results. 

I. Introduction 

The three-dimensional stress field around a cylindrical inclusion which is embedded in a plate 
is of  considerable importance to the field of fracture mechanics. For example, solutions of 
this type can help us to understand better the failure mechanism in fiber-reinforced materials. 
Although an analytical solution to the title problem does not exist, related three-dimensional 
solutions can be found in the literature. These include an axially loaded rod partially 
embedded in an elastic half space for the cases of the elastic [1] or rigid [2] rod. The absence 
of a solution to the problem under consideration is not due to a lack of interest, but rather 
to the mathematical complexities encountered in solving this kind of three-dimensional 
problem. Thus, the purpose of this paper is twofold: first, to provide an analytical model for 
an isolated fiber in a matrix under uniaxial transverse tension; second to lay out the 
mathematical foundations that will allow the solution of similar three-dimensional problems 
in elasticity. 

Two-dimensional solutions (plane stress or plane strain) for plates with perfectly bonded 
circular inclusions can be found in the literature for single [3] as well as multiple inclusions 
[4]. Reference [4] is an extension of the single inclusion case obtained by using the Schwarz 
method of successive approximations. Other related two-dimensional solutions involving a 
smooth (frictionless) circular inclusion that does not separate from its surrounding plate are 
found in [5] and [6] and correpond, respectively, to cases where the diameter of  the inclusion 
is the same or larger than that of  the hole in the plate. It was assumed in [5] and [6] that the 
plate and inclusion were of the same material. The case when a smooth circular inclusion 
separates from a plate of different material properties is discussed in [7]. 
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Two-dimensional asymptotic solutions for the stresses in two bonded wedges of dissimilar 
materials in the neighborhood of the intersection of the free and bonded edges are found in 
[8] for orthogonal wedges, and in [9] for wedges of an arbitrary angle. The analysis shows that 
the stresses are proportional to 0 -~, where g depends on the shear moduli  ratio and the two 
Poisson's ratios. The largest value of ~ found in [8] was 0.311 and occurred for the case of 
one material being rigid and the other incompressible. Recently, Folias [10] used a three- 
dimensional analysis to investigate the asymptotic behavior of the stresses in the neighborhood 
of the intersection of a cylindrical inclusion and the free surface of a plate. The analysis 
shows the stresses to be singular for ~2/#~ > 1 (where ~2 and/~ are, respectively, the shear 
moduli of the inclusion and of the plate), with the strength of the singularity increasing as 
the ratio #2/#1 increases. 

2. Formulation of the problem 

Consider the equilibrium of a body which occupies the space Ixl < oo, l yl < ~ ,  Izl ~ h 
and contains two regions of different elastic properties. Their common boundary consists of 
a through-the-thickness cylindrical surface of radius r = a, whose generators are parallel to 
the z-axis (see Fig. 1). The regions r t> a and r ~< a are called, respectively, plate and 
inclusion and are denoted by the superscripts (1) and (2). Both the plate and the inclusion 
are considered to be made of homogeneous, isotropic and linearly elastic materials. At the 
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Fig. 1. Infinite plate of arbitrary thickness with cylindrical inclusion. 
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interface (r = a) perfect bonding is assumed to prevail. As to loading, a uniform tension a0 
is applied at the boundary  of  the plate at points remote from the inclusion. For  both regions, 
the surfaces Izl = h are assumed to be free of  stresses and constraints. 

In the absence of  body forces, the coupled differential equations governing the displacement 
functions u (i), v °) and w °~ (i = 1, 2) are 

m i 0e °~ 
- -  + V Z u ~  ) = 0;  i = 1 , 2 ; k  = 1 , 2 , 3 ,  ( 1 )  

m i - 2 0x k 

where V 2 is the 3D Laplacian operator,  m~ =- 1/vi, v~ is Poisson's ratio and 

,,k. k = 1 , 2 , 3 .  (2) e(i) = OX k ' 

The stress-displacement relations are given by Hooke ' s  law as: 

~ j ~ w k + e ~  ; k , l =  1 , 2 , 3 ,  (3) 

where/~; are the respective shear moduli.  
As to the boundary  conditions, one must require that 

as I x l  - - '  oo:-~x"(l) = ~x~-(1) = m~. = 0 

as lyl --* oo: Zxy-°) = -y~Z(° = O, crO)_yy = cr o 

at Izl = h:-xz r~i) = z(yi)z = a~ i] = 0; i =  1, 2 

at r = a :  O'(rlr ) ¢i.(2) = (l) n'(2) = "t'(I) "17(2) 0 
- -  - - r r  "CrO - -  ~ r O  - - r z  - -  - - r z  : 

u~" - u~ 2~ = ~(o l> - u~ ~ = ~ ?  - u ?  = o .  

Finally, at r = 0 we must  require that all stresses and displacements be bounded.  
It is found convenient at this stage to seek the solution to (1) in the form: 

(4) 

(5) 

(6) 

(7) 

(8) 

where the component  with the superscript (p) represents the particular solution, and the 
component  with the superscript (c) the complementary solution. 

The particular solution in cylindrical coordinates is: 
(i) for the plate: 

u(P)°) a ° r [  ~ -  vl 1 - + cos (20) (12) 
- - r r  4ltl -~ vl 

U (i) : U (p)(i) "If- U (c)(i) (9) 

V (i) = V (p)(i) + v(c)(i); i = 1, 2, (10) 

W (° = W (p)(i) + W (c)(i) (l l) 
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- a°r sin (20) (13) 
4#1 

u(P)(l) 
170 V1 

= - - -  z ( 1 4 )  
2#1 1 + vl 

a(rf )(11 = ½a0[1 + cos (20)] (15) 

o-(p)O) 00 = lo"011 - cos (20)] (16) 

,t-(p)(1) rO -- ~ao sin (20) (17) 

=(p)<l) -- = 0 (18) = Z(p)(l) t.r(p)(D Lrz Oz - -  --z2 

(ii) for the inclusion: 

u~ )(21 = Clr + C2r cos (20) (19) 

U(P)(2) __ C 2 r  sin (20) (20) O0 

V 2 
u~f )(21 = - 2  ~ Ciz  (21) 

F1 + v2 1 a~  )(21 = 2/~2 i_l _ - T ~  2 C1 + C2 cos (201 (221 

O.(P)(2) 2/~2 ~1 + v 2 ] 
o0 = I_1 - v2 C1 - C2 cos (20) (23) 

"c(P)(2)rO = - - 2 ~ 2 C  2 sin (20) (24) 

.£.(p)(2)rz = ~oz'(P)(2) -- a(zf )(21 = O, (25) 

where Ct and C2 are constants to be determined later f rom the boundary  conditions at r = a. 
Note  that the above particular solution for the inclusion satisfies the continuity conditions 
a t r  = 0. 

In view of  the particular solution, one needs to find six complementary displacements, i.e., 
u (')(i), v (c)(i), w (~)~i) (i = 1, 2), such that they satisfy the partial differential equation (1) and the 
following boundary  conditions: 

at Izl = h :  r (c)(1) = z(c) ( i )  = a~z)(i) = 0 ( 2 6 )  --xz - y z  

at r = a: ~)(11 _ a~c)(2) = ----rra(P)(I) + --rra(P)(2) (27) 

,~)(1) - -  "C~O )(2) ---- --'t'(P)(l)rO + ~rO*(P)(2) (28) 
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z~9(o _ g~)(2) _ z~ p)°) + z~ p)~2) = 0 (29) 

U~'r )(1) - -  U~ c)(2) - -  U~r p)(I)  + u~f )(2) (30) 

u(c)( l )  ,,(c)(2) __ , ,(p)(1) , ,(p)(2) (31) 
O0 - -  ~00  ~00 nt- '400 

u([) (') - u~ )(2) - u~f)(') + u~f )(2). (32) 

Moreover,  in order to complete the formulation of  the complementary problem we must 
require that: 

as r ---, o0: all complementary displacements and stresses for the (33) 
plate must  vanish 

and the continuity condition: 

at r = 0: all complementary displacements and stresses for the (34) 
inclusion must be bounded.  

3. Method of solution 

A general method for constructing solutions for some three-dimensional mixed boundary-  
value problems which arise in elastostatics was developed by Folias [11] who illustrated 
the method by applying it to the problem of  a uniform extension of  an infinite plate 
containing a through the thickness line crack. Later, Folias and Wang [12] specialized 
the general solution to the case of  a plate of  an arbitrary thickness containing a cylindrical 
hole. Based on these results, one can deduce that the general form of  the solution to 
system (1) which automatically satisfies the boundary  conditions at the plate faces, i.e. 
(26) is*: 

u(,.)(i) = _1 ~ --02H}i) {2(m, -- 1)fl(fl~z) + m.oC2(flvZ)} 
mi 2 Ox 2 v=l 

~-~{ 02H(i) 2 ( , ) }  (e,h) (c¢.z) (35) + + ~,H~. cos cos .=l Ox 2 

+ 2~ ° - y ~ + - -  z 2 
" m i + 1 OxOy 

t Note that because of symmetry in the present problem, one needs only to consider the region 0 ~< 0 <~ 7t/2. 
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v(,,)~ o = _1 ~ ~a2H}i) {2(m, - 1 ) A ( f l : )  + m,A(fl, z)} 
m~ 2 OxOy v=l 

- ~ a~n"(' 
.o, ~ cos (~.h) cos (~.z) (36) 

+ 
a2(3 ;) 1 022~ ° 3 m ~ -  12(3 o + 2~ ) _ y  _ _ z 2  

"~ ~- 1 Oy mi + 1 Ox z 

1 
W(c) ( ; )  = 

m, - 2 ~=1 - ~ x  fl~{(mi - 2)f3(fl~z) - m.f4( f l : )}  
2 02(3 ° 

m; +-----~ z Oy (37) 

Fu r the rmore ,  the stresses are  given by: 

1 1 ¢r (c ) ( i )  _ 

2#i-xx m i -  2 

a.~, ) 
2fl~ --~--x f~ ( f l : )  

+ 

+ 

o ~/4~') } 
[ 2 ( m i -  1)f~(fl,.z) + mif2(fl~z)] 

.:~ ax 3 + ~" ax j cos (~.h) cos (~.z) 
(38) 

~ _ 
a2] ~) a22(3° 2 02(3 o I 032(3 ° 
Ox Y ~ + - - - -  + - - z 2  mi + 1 0 y  mi + 1 Ox2 0y 

1 
t r ( c ) ( i )  

21. t  i - y y  mi 2 ~=l 

{ 0 3 ~  ° am,) } 
fl~ ax  ,] [2(m; -- 1)f~(fl~z) + m ; A ( f l : ) ]  

+ ~ [  Ox 3 n = l  
~"~ ax J cos (~.h) cos (~.z) 

+ 
2m, 02(30 a2] i) 

m i + 1 0 y  ax 

022~ ") 1 
+ Y Ox a mi + 1 _ _  z 2 0 x 2 a y  

(39) 

1 O-(~)(i) 
2#i 

m i 
n 

m; - 2 

OH} o 
(40) 

1 .g(e)(i) 

2#i -~.v 

1 
mi - 2 

c33H};) {2(m; - 1)fl(fl ,  z ) + miA(fl, z) } 

_ _  

.=1 l a x  2 t~y 

1 8H(. ° ) 
2 ~" cos (~,h) cos (~.z) 

m; - 1 82~ i) 023 .) 022(3 o 1 

mi + 1 Ox + O--x-- y oxoy mi + 1 
_ _  z 2 03~(3o 

Ox 3 

(41)  
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O 2  H ( i )  

1 ~ ~. cos (~.h) sin (~.z) 

mi ~ ~2 H~i) 
m; ---- 1 ~=1 ~ flv{f3(fl~z) + L(fl~z)} 

+ 2 . ~  L 8x2 ~H~i)J  ~" cos (~.h) sin (~.z), 
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(42) 

(43) 

H~ ;) and  H. (;) are functions of  x and y which satisfy the reduced wave equation: 

( 02 0: )OHm° = 0 (46) 
+ Ox 

( 0 2 0 2  ) O H ( " ° O ,  (47) 
5 + ey = 

2~ ;), 2~ ~) and 2~ ° are two dimensional  harmonic  functions,  and 

ft (fl~z) = cos (flvh) cos (fl~z) (48) 

f2(fl~z) -= flvh sin (flvh) cos (flvz) - flvz cos (flvh) sin (flvz) (49) 

f3(flvz) = cos (fl~h) sin (flvz) (50) 

J~(fl~z) - fl~h sin (fl~h) sin (flvz) + fl~z cos (flvh) cos (fl~z). (51) 

By virtue of  its construction, the complementary solution automatically satisfies the boundary  
condi t ions  at the plate faces [zl = h. It remains next to satisfy the boundary  condi t ions on 
the surface of  the inclusion. 

Utilizing the appropr ia te  coordinate  t ransformat ions  f rom rectangular  to cylindrical 
coordinates,  (27)-(32) can be written in the form: 

sin 2 0(o~ (1) - o~'~ ~2)) + cos 20~a (̀ )~l) - o~ ~2)) + sin (20)(z~i! ~° - z~")(2)~ 
- - ' , -  y y  . .  . - x y  ." 

- a0 - 2/~2 ~ C, - [~a0 - 2/~2C21 cos (20) (52) 

sin (2flvh) = -(2flvh) ,  (45) 

fly are the roots  of  the equat ion 

n ~  
- -  ~ ° ° ° , e" h n = 1, 2, 3, (44) 
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_ _  ,g(c) (2) "~ ½ sin (20)(a(~c)f) 0 "(c)(2)) - -  ½ sin (20)(o~y~ °) - ¢l(c)(2))_yy , + COS (20) (Z~y) (1 )  - -  - x y  , 

= [ lao - 2//2C2] sin (20) (53) 

- r(c)(2)~ + cos O(z(yc) (1) - z(o(2)~ = 0 (54) sin O(z~)/1) -xy , - -yz  ] 

sin O(u (c)°) - u (c)(2)) + cos O(v (c)°) - v (°(2)) 

[ 0alv F°0a 1 
4#1 i T V 1 - -  - -  [ 4 1 1 1  - -  C2a cos (20) 

(55) 

cos O(u (c)(') - u (c)(2)) - sin O ( V  (c)(1) - -  V (c) (2) )  = [ a°a ] 1_4//1 - C2a sin (20) (56) 

I O'~l Vl 2V2 CllZ. (57) 
w(C)(l) - w(C)(2) = 1 -[-  v I 1 - -  V 2 

Examin ing  the na ture  o f  (52)-(57), one notices tha t  the 0-dependency can be el iminated 
by considering the fol lowing forms o f  the solut ion to (46)-(47): 

H ( I )  

ax 
- clvKo(fl~r) + c2~K2(fl, r) cos (20) (58) 

OH} 2) 

Ox 
- c3vlo(fl~r) + c4fl2(fl~r) cos (20) (59) 

OH~ ~) 

Oy 
- Cl.Ko(oqr) + c2.K2(~.r) sin (20) (60) 

OH~ 2) 

Oy 
-- C3nlo(O~nr) + C4nI2(otnr ) sin (20) (61) 

A 2Ba = 
2~ 1) = -- sin 0 - r--5-- sin (30) (62) r 

A 2Ba a 
2~ l) = - - c o s  0 r3 cos (30) (63) r 

2~1) D = --  cos 0 (64) 
r 

2~ 2) = E r s i n 0  (65) 

2~22) = - E r c o s 0  (66) 

2~ 2) = G r c o s 0 ,  (67) 
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Fig. 2. B o u n d a r y  c o n d i t i o n  ac ros s  the  t h i c k n e s s  a t  r = a for  the  s t ress  rr0 for  P2/#~ = 2.0, v~ = v 2 = 0.33 a n d  
a/h = 0.05. 

where I,, and K,, (m = 0, 2) are, respectively, the modified Bessel functions of  the first and 
second kind of  order m, and Ck~, Ck, (k = 1, 2, 3, 4; v, n = 1, 2, 3 . . . .  ), A, B, D, E, G 
are arbitrary constants. 

Finally, substituting (58)-(67) into (52)-(57) and letting r = a one arrives at a system of 
six equations involving series in z. The system may then be solved numerically, by the 
method of  [13], for the unknown coefficients. Details of  the numerical solution can be found 
in [14]. Although the system is extremely sensitive to small changes in the coefficients, the 
method does furnish a solution which converges as the number of  characteristic roots 
increases. The rate of  convergence may be seen in Fig. 2 where the results for the boundary 
condition zr0 for 50, 100 and 200 roots are plotted. This boundary condition was chosen 
because it is the most difficult one to satisfy. The reader should also notice that the little 
oscillation at the end is the result of  the stress singularity which is present, for #2/#1 = 2, 
in the neighborhood of  the point z = h (see [10]). 

As a check, the following three limiting cases will be examined: 

(i) Continuous plate. If v I = ~'2 and ~ / 2 / ~ / 1  = 1, then the solutions for the plate and the 
inclusion reduce to the particular solution for the plate, i.e. 02)-(18). 

(ii) Thin plate. If h/a -~ 0, then one recovers precisely the plane stress solution given by 
Goodier [3]. 

(iii) Cylindrical hole. In this case / , /2 / /Al  --~ 0. The stress tr~)/tr 0 was evaluated numerically for 
0 = n/2, #2/#1 = 0.000 01, vl = v2 = 0.33 and different values ofa/h. The results are 
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Fig. 3. Maximum normal stress for the plate across the thickness for/h//~ = 0.00001 (cylindrical hole), v~ -- 
v 2 = 0.33 and different values of a/h. 

shown in Fig. 3 where they are compared with those obtained by Folias and Wang 
[12]. The agreement is excellent indicating, therefore, that in the limit as/z2/# 1 ---, 0 the 
present results tend to those obtained for a cylindrical hole. 

4. N u m e r i c a l  results 

Once the coefficients have been determined, the stresses and displacements may then be 
calculated at any point in the body. More specifically, we will calculate the stresses troo, tr=, 
Toot and the out of the plane displacement Uzz and we will compare them with the results for 
plane stress and plane strain obtained in [3]. 

To quantify the effect that the applied load has upon failure, we choose as a suitable 
parameter the octahedral shear stress for it is directly related to the von Mises criterion, i.e. 

/ 5  
Zo~t = v -  o.r, (68) 

3 

where ar  represents the yield stress in simple tension. 
Equation (68) describes the locus of the points in the composite plate where "~oct attains a 

high value which may lead to failure initiation. Figures 4-7 show the maximum octahedral 
shear stress for the plate as a function of z/h, for different values of the thickness parameter, 
a/h, and the shear moduli ratio, ~ 2 / ~ A l  . The maximum value o f  Zoo t o c c u r s  at r = a and 0 = 0 
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Fig. 4. M a x i m u m  octahedral  shear stress for the plate across the thickness for #2/#1 = 0.000 01 (cylindrical hole),  
v~ = v 2 = 0.33 and different values o f  a/h. 

0.72 ' 

0 . 7 0 '  - -  

0 . 6 8  

r oct .  0.66 • 

° 

0 . 6 4 '  

0.62 

1 a 2 = 0 . 5 ,  v = v  = 0 . 3 3  
la I i 2 

plane stress ""S 

N . "  . 

a / h - O . 0 5  

- - - a / h - 0 . 3  

. . . . .  a / h = l . O  

- ~ a / h - 4 . 0  

plane s t r a i n  . - J  

0 . 6 0  , , 

0.0  0 .2  0 .4  0 .6  0.8 1.0 
z /h  

Fig. 5. M a x i m u m  octahedral  shear stress for the plate across the thickness  for/~2/th = 0.5, v, = v 2 = 0.33 and 
d i f f e r e n t  v a l u e s  o f  a/h. 



140 F.E. Penado and E.S. Folias 

0.55 

0.53 

- 2 . 0 ,  v = v  = 0 . 3 3  
p~ 1 2 

plane stress 

d 

................... ~ . . . . . .  ~ - -  - - - ~ , - ~ 7 - - -  ~ " 

0.51 

0.49 

,C( 1 ) 0.47 
o c t  [ 1m"0.45 

0.43 

0.41 

0.39 

0.37 
0.0 

plane sU'ain J 

a/h-O.05 

--- a/h=0.3 

...... a/h=l.O 

- ~ a/h-4.0 

i i 

0.2 0.4 0.6 0.8 1.0 
z /h  

Fig. 6. Maximum octahedral shear stress for the plate across the thickness for #2/g~ = 2.0, v~ = v 2 = 0.33 and 
different values of  a/h. 

- 1 0 . 0 ,  v = v  = 0 . 3 3  
la I 1 2 

0.8 

a/h=0.05 

0.7 - - - a/h=0.3 i 
. . . . .  a/h=1.0 
- -- a/h-4.0 

0.6 plane stress...~ 

oct / / 

max / ./ 

0.5 _~ " 

0.4 

plane strain..--.": 

0.3 , , , 

0.0 0.2 0.4 0.6 0.8 1.0 
z /h  

Fig. 7. Maximum octahedral shear stress for the plate across the thickness for pe//~ = 10.0, v~ = v 2 -- 0.33 and 
different values of  a/h. 



1 . 5 4  " 

1.52 • 

1.50'  

1.48 

0(~} 1.46~ 

O0 

( Y o  1 . 4 4  " 

1 . 4 2  ' 

1 40 

1 . 3 8  • 

1 . 3 6  

1.34 

0.0 

- 0 . 5 ,  

la 1 

The three-dimensional  stress f i e ld  

v = v  = 0 . 3 3  
l 2 

plane strain ~ ,  

. . . . . . . . . . . . . . .  ' . . . . .  - 7  

~'---plane s ~ e s s " . .  

- -  a/h=O.05 

- - - a/h=0.3 

. . . . .  a/h=l.O 

- - -  a/h=4.0 

\ 
\ 

• . \ 

. \ 

V 

141  

l i i 

0.2 0.4 0.6 0.8 ] .0 
z / h  

Fig. 8. Stress  aoo for  the  p l a t e  ac ros s  the  t h i c k n e s s  a t  r = a, 0 = ~ /2  fo r /h / /~ ,  = 0.5, v, = v 2 0.33 a n d  d i f fe ren t  

va lue s  o f  a/h. 

0 . 7 4  • 

0.72 ' 

0.70" 

0.68" 

o ( l )  
oo 

0.66 
o o 

0.64 

~ = 2 . 0 ,  v = v  = 0 . 3 3  
la I t 2 

a / h  : 0 . 0 5  

- - - a / h = 0 . 3  

. . . . .  a / h : 1 . 0  

a / h = 4 . 0  

i 

/ 
I 

I(." 
/ 

.7  
" /  

• I 

. . ' / !  06_  y_  j 
0.60 " . ' , _ p l a n e  s t r e s s . -  .At . . .  • • _ _ ~ ~ " 

0.0" 0.2 0.4 z / h  0.6 0.8 l.O 

Fig. 9. St ress  aoo fo r  the  p l a t e  ac ros s  the  t h i c k n e s s  a t  r = a,  0 = 1r/2 f o r / h / / h  = 2.0, v~ = v2 = 0.33 a n d  d i f fe ren t  
va lue s  o f  a/h. 



142 F.E. Penado and E.S. Folias 

P_z= 10.0, 
la I 

0.55 

0 .50 '  

0 .45 '  

0 .40 '  

0 . 3 5  

v =v =0.33 
1 2 

G( 1 ) 
00 

G o 
0.30 ! 

0.25 ~ 

0.20 ~ 

0.15 ~ 

010  

a/h=0.05 / 
- -  - a/h=0.3 

. . . . .  a/h=1.0 ! 

- -  a/h=4.0 / /,.' 

i/." /," 

plane stress ~ . - ~ 2 

plane s~ain --J 

0.05 , , , 
0.0 0.2 0.4 0.6 0.8 1.0 

~h 

Fig. 10. Stress  a00 for  the  p la te  a c ro s s  the  t h i c k n e s s  a t  r = a,  0 = n/2 for  #2/#~ = 10.0, vt = v2 = 0.33 a n d  
d i f fe ren t  va lues  o f  a/h. 

if the inclusion is of  a softer material, or at 0 = n/2 if the inclusion is of  a stiffer material. 
Three important observations can be made from these figures. First, for thick plates (a/h = 
0.05) the plane strain solution always gives nonconservative approximations to the three- 
dimensional solution in the interior of  the plate. Second, in the neighborhood of  z/h = 1.0 
and for #2/gl = 2.0, 10.0, the stresses become high, which is compatible with the stress singu- 
larities predicted in [10] for #2/#1 > 1.0. It should be noted that the plane strain solution fails 
to predict these singularities for it neglects the three-dimensional effects. Third, as a/h 
becomes large (thin plates) the three-dimensional solution tends to the plane stress solution. 

Figures 8-13 show the stresses aoo and azz for the plate at r = a, 0 = n/2 as a function 
of z/h and illustrate how individual stresses vary across the plate thickness. Finally, Figs. 14 
and 15 show the displacement u= at the surface of the plate (z = h) along the radial line 
0 = n/2. 

5. Conclusions 

In view of  the foregoing results, the following conclusions may be drawn. 

(1) Thickness as well as the material properties play a fundamental role on the failure 
mechanism of a plate with a cylindrical inclusion. The thickness parameter, a/h, and the 
shear moduli rat io, /~/#l ,  control not only the maximum load that can be applied to the 
plate, but also the location where failure initiation may occur. 
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(2) It is observed that for relatively thick plates and shear moduli ratios of/22/]~ 1 > 1 the 
stresses are singular at the intersection of the cylindrical inclusion and the free surface of the 
plate. The strength of these singularities, however, is best if it is extracted by analytical means 
(see [10]). 

(3) For relatively thick plates, the maximum octahedral shear stress predicted by the plane 
strain solution is always lower than the corresponding three-dimensional solution. 

(4) As h ---, 0, the plane stress solution is recovered. 
(5) Finally, the plane stress solution is a good approximation for plates with ratios of 

(a/h) >! 4. 
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R6sum6. On r6soud par voie analytique les 6quations de Navier fi trois dimensions relatives au cas d'une inclusion 
cylindrique de rayon "a" noy6e dans une t61e d'6paisseur arbitraire 2h. On suppose que les mat6riaux constituant 
l'inclusion et la t61e sont homog6nes et isotropes, et qu'ils ont des propri6t6s m6caniques diff6rentes. Une liaison 
parfaite de leur interface est 6galement suppos6e. La mise en charge est r6alis6e par une tension uniforme appliqu6e 
darts le plan de la t61e, en des point suffisamment distants de l'inclusion. 

L'analyse montre que toutes les contraintes comprises dans l'octo6dre des tensions de cisaillement sont 
influenc6es par le rapport a/h et par les propri6t6s des mat6riaux. A la limite, lorsque le rapport des modules de 
cisaillement de l'inclusion et de la t61e tend vers z6ro, ou vers un, on retrouve respectivement les r6sultats relatifs 
~i un trou circulaire et ~i une plaque continue. De m6me, on retrouve la solution d'6tat plan de contrainte lorsque 
a/h -* oo, ce qui serait le cas d'une t61e tr6s mince. En outre, Iorsque le rapport des modules est sup6deure ~ un, 
les r6sultats num6riques confirment la pr6sence d'une singularit6 de contrainte pr6s du point d'intersection de 
l'inclusion et de la surface libre de la t61e. 


