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Viscoplastic flow due to penetration: 
a free boundary value problem 
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Abstract. Under the action of a pressure gradient, a solid body B penetrates into another body. Body B is assumed 
to be of an incompressible, viscoplastic, Bingham material. As a first model, the problem may be treated 
one-dimensionally in the space variable x as well as the time variable t. 

By utilizing the Green's function, the location of the moving boundary s(t), i.e., the boundary between the region 
of viscoplastic flow and the core, is expressed in terms of an integral equation, the solution of which may then be 
sought numerically. 

1. Formulation of the problem 

A solid body B o f  width 2 H  and under  the action of  a pressure gradient, penetrates into 
another  body,  in an action similar to that  o f  a bullet entering an object. We assume that  body 
B is an incompressible viscoplastic Bingham body,  that is, it satisfies Bingham's law 

~u 
- z0 = -t-/~xx, (1) 

where z0 is the yield stress, # the coefficient o f  viscosity and u the velocity in the y-direction. 
The movement  is in the y-direction only and is assumed to be independent  o f  z and 
symmetric about  the plane x = H (see Fig. 1). 

The body  B is divided into two parts 

B, = {x:lxl < s(t) or Ixl > 2 H - s ( t ) }  

B2 = {x: s(t) <~ Ixl ~ 2H - s(t)}. 

In B~ (resp. B2) the tangential stress is larger (resp. smaller) than the yield stress z0. We 
call B, the zone of  viscoplastic flow and B 2 the core. 

In the zone o f  viscoplastic flow, the velocity u(x, t) satisfies the diffusion equation* (see 
Rubinstein [2], Chapter  4) 

Ou 1 ~3p O2u k 2 = v -1, (2) + = 

* The reader should notice that at the interface x = s(t), Ou/dx = O. 
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Fig. 1. Geometrical configuration. 

where Op/dy is the pressure gradient in the y-direction and may be interpreted as a driving 
force, Q the (constant) density and v the kinematic viscosity. Due to symmetry, it is sufficient 
to consider (2) in the domain 0 < x < s(t), and furthermore we assume that 

u(O, t) = f ( t ) ,  (3) 

l op  
= g(t), (4) 

Q 0Y 

where f ( t )  and g(t) are given functions. Since the core is rigid, the velocity in it is 

u = Uo(t) = u(s(t), t), (5) 

where it is assumed that u0(0) ~ 0. At the interface x = s(t), the tangential stress is equal 
to the yield stress, and hence by (1) we must have 

Ou 
= 0 a t  x = s(t). ( 6 )  

Ox 

The problem therefore is to determine s(t) from the above conditions as well as the 
following 

s(O) = b > 0  (7) 

u(x, 0) = q~(x), ~b(0) = f (0)  (8) 

"c 0 
uo(t) = -g( t )  e (n  - s(t))' (9) 
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where the dot on top of  a function indicates differentiation and (9) follows from a con- 
sideration of  the forces acting on the core (e.g., see [2]). 

Since by (6) 

d 
u°(t) = -dt [u(s(t), t)] = u~(s(t), t)~(t) + u,(s(t), t) = ut(s(t), t), 

we obtain from (2), (4), by letting x ~ s(t), that 

f4o(t ) = - g ( t )  + VUxx(S(t), t), (10) 

which upon comparing it with (9) gives 

U~x(S(t ), t) - 3° (11) 
vQ(H - s(t))" 

Moreover, in order to be compatible with our previous assumptions, at t = 0 we must 
require that 

~(b) = ~0 (12) 
v o ( H -  b)" 

Notice that in this analysis we have for simplicity assumed that s(0) > 0. The case 
s(0) = 0 requires some special mathematical rigor which for the sake of  brevity we will omit. 
Perhaps it is appropriate at this point to comment on the difference between the present 
problem and the classical Stefan problem. For the classical Stefan problem, the location of  
the moving boundary, x = s(t), is governed by the velocity u as well as its derivative with 
respect to x, whereas in the present problem it is also governed by the time derivative, i.e., 
an additional constraint which makes the solution even more difficult. 

For the solution of  the problem, we shall use the method of  Green's functions. However, 
before engaging in the details of  the construction of  the solution, we first define the concept 
of  a solution to our problem. By a solution to our problem, henceforth called the FBP, is 
meant an ordered pair u(x, t), s(t) of functions, u(x, t) defined on 0 <<. x <~ s(t), 0 <<. t <~ o, 
s(t) defined on 0 ~< t ~< tr, for some tr > 0, such that 

(i) Uxx, ut are continuous in 0 <<. x <~ s(t) for 0 < t < o 
(ii) u and ux are continuous for 0 <<. x <~ s(t), 0 <~ t <~ tr 

(iii) u satisfies (2)in 0 < x < s(t), 0 < t <~ 
(iv) conditions (3)-(9) are satisfied 
(v) is Lipschitzian on (0, ~r]. 

2. Method of solution 

We shall formulate the problem in terms of  an integral equation, and for this purpose we 
shall require some regularity conditions on the initial and boundary data: 
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(vi) f ( t )  is continuous, g(t) is C l on t >t 0 
(vii) ¢(x) is C 2 on (0, b), and the left-hand derivative ~(b) exists 

(viii) s(t) is C 1 for t 1> O. 
We now define 

k 1 ( 
K(x, t; ¢, ~) - 2x/. ~ tx/7_Z~_ z exp 4(t ~) ] '  

and 

G(x, t; ¢, z) = K(x, t; ~, ¢) - K(x, t; - ~ ,  ~) 

N(x,  t; ~, z) = K(x, t; ~, ~) + K(x, t; - ~ ,  ~) 

0 < x < s(t), 0 < ~ < s(z), 0 < • < t. 

These are the Green's  functions we shall use. For  their various properties the reader is 
referred to Fr iedman [1] (chapter on free boundary  value problems) or to Rubinstein [2]. We 
shall use them freely in our  subsequent analysis without  explicit mention of  the references. 

Thus, let u(x, t), s(t) be a solution of  our FBP. Integrating the identity 

(Gu t - Geu)e - k2(Gu)~ = k2Gg (13) 

over the region {(~, z): 0 ~ ¢ ~< s(z), e ~< z ~< t - e}, applying Green's  identity and 
letting e ~ 0, we obtain 

1 
u(x, t) = I: dp(~)G(x, t; ~, O)d~ - f f  ~ Uo(Z)G¢(x , t; S(T), 'r)d'c 

1 f'of(~)G¢(x, t; O, ~) d~ + Io Uo(V)G(x, t; s(~), z),~(~)dT + 

_ f~f:(OG(x, t ;¢,z)dCg(z)dz 0 < x < s(t), t > O. (14) 

We now differentiate both sides of  (14) with respect to x for 0 < x < s(t) 

Ux(X, t) = f: dp(~)G~(x, t; ~, O)d~ - f: Uo('c)N~(x , t; s(T), z)dx 

+ ~ Uo(X)G~(x, t; s(x), "O~(x)dT + y:f('c)N~(x, t; O, z)d'c 

- fo f:~) Gx(x, t; ~, z)dCg(z)dz, 0 < x < s(t), t > O, (15) 

where we have made use of  the identity 
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Integrating by parts, we have 

~ ¢(~)Gx(x, t; ~, 0)d~ = - ~ ¢(¢)Nc(x, t; ~, 0)d~ 

= ¢(0)N(x, t; 0, 0) - ¢(b)g(x ,  t; b, O) 

+ f~ q~ (¢)N(x, t; ¢, 0)de 

- f: Uo(Z)N~ (x, t; s(r), z)dz 

= ~ uo(z ) N~(x, t; s(Q, z)~(z) --d-z~ N(x,  t; s(z), z) dz 

- ~ Uo(Z)Gx(x, t; s(z), "r),~('r)d'r - Uo(t)N(x, t, s(t), t) 

+ uo(O)N(x, t; b, O) + ~ ao(r)N(x, t; s(,), "r)dT 

~ f ( z )N , ( x ,  t; O, z)dz = - f (O)N(x,  t; 0, 0) - f~ f ( z )N(x ,  t; 0, z)dz 

f:o 6x(x, t; ¢, z)d¢ = - j'~(o N¢(x, t; ¢, z)d¢ 

= - N ( x ,  t; s(z), z) + N(x,  t; O, z). 

Substituting (16)-(19) and (9) into (15) and simplifying yields 

1 
Ux(X, t) = f~ @ (~)N(x, t; ~, 0)de - %Q f~ H - s(z) U(x, t; s(Q, z)dz 

-- f~ [f(z) + g(z)lN(x, t; O, z)dz 

and upon letting x /~ s(t), by (6) 

1 N(s(t), t; s(z), *)d'c 0 = ~:~p(¢)N(s(t) , t;¢,O)d¢ - zoQ f : H  - s(Q 

125 

(16) 

(17) 

(18) 

(19) 

(20) 

-- f0 [f(z) + g(z)]N(s(t), t; O, z)dz. (21) 

Consider what happens in (21) as t ~ 0. Splitting up the first integral by using N(s(t), 
t; ~, O) = K(s(t), t; ~, O) + K(s(t), t; - ~, 0) and likewise the second one, we observe that 
three of the resulting five integrals tend to zero exponentially. The other two have leading 
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terms of  ,fi, which of course have to cancel. Considering only the leading terms, we find 

s ( t )  - - 

k K(s(t), t; s(x), z) ,~ ~ (t - ~)-'/2 

SO 

"~0 ~ ! K(s(t), t; s(Q, z)d~ 
H s(O 

Also, 

1 rk*)/247 _x2- rb 
J0 K(s(t),t;¢,O)d¢ = ~ /  _e tax 

dk(s(t)-b)/2~/t 

and 

k (O) #2 1/2- 2---fi 

% k 1 
l 1/2 • (22) 

~ (~ -- s(t))K(s(t), t; ~, 0)de X f i  [e_k2s(t)2/4t _ e_k2i(0)h] 

1 
- -  ~ t U2. 

As t ---, 0, K(s(t), t; ~, 0) behaves like an approximate &function with peak near b. Thus, 
if h is a Ct-function, then 

~ h(~)K(s(t), t; ¢, 0)d~ ~ fob [h(b) + h(b)(~ - s(t) + ~(t)t)]K(s(t), t; ~, 0)d~ 

½h(b) x/r~kl [ ~s(O) h(b) - t~(b)l . (23) 

In particular, if h = ~, we find 

~(b) t,/2" ~ 4 (¢)K(s(t), t; ¢, O)d¢ ,~, (24) 

Thus, as mentioned above, the consistency of (21) as t approaches zero requires condition 
(12). The rough estimates above can be made more rigorous and lead to the conclusion that 
if the given functions f,  g, tk are smooth and (12) is violated, s cannot be Lipschitzian at 
t = 0. A sharp comer in the moving boundary is expected in this case. 



3. Numerical method 

Assuming that  (12) is satisfied and s(t) is smooth,  we find 

k 
N(s(t), t; s(z), z) = ~ (t - z) -m  + F(s(t), t; s(z), z), 

where F is smooth for T < t, and 

F(s(t), t; s(~), z) = O((t - z)m) as z --* t. 

Thus we have 

k Zof ~ 1 
2~/-~ 0 H - s(~) 
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(t -- z)- ' /2dr = ~ ~p(~)N(s(t), t; ~, O)d~ 

To 
Io ] F(s(t), t; s(z), v)dz 

0 H s(z) 

-- f~ [ f (x)  + g(z)]N(s(t), t; O, z)dz, (25) 

The integral equat ion may now be solved by an iteration scheme. Starting with an initial 
guess s~°)(t) for  the moving boundary ,  for  example s~°)(t) = b, we can substitute the ith 
iterate #;)(t) into the right-hand side o f  (25) and calculate a new approximat ion s~i+l)(t). 

We are now in the process o f  testing this method  and plan to publish the results in a 
subsequent paper. 

Acknowledgements 

Part  o f  this research was supported by U.S. Army research contract  No. DAAL03-87-K-  
0008. The authors  gratefully acknowledge this support.  

References 

1. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (1964). 
2. L.I. Rubinstein, The Stefan Problem, Translations of Mathematical Monographs, 27, American Mathematical 

Society, Providence (1970). 

R~un~. On traite le cas d'un solide B, suppos6 incompressible, viscoplastique et en mat~riau de Bingham, dans 
un autre corps sous l'effet d'un gradient de pression. En premi6re analyse, le probl~me peut ~tre trait~ suivant une 
dimension, sur une variable d'espace x ou de temps t. 

En recourant ~ une fonction de Green, on exprime sous forme d'une ~quation int~grale la position de la fronti~re 
en mouvement s(t), ~ savoir la fronti~re entre la r6gion d'6coulement viscoplastique et la portion dure. La solution 
de cette 6quation peut &re trouv~e par voie num6rique. 


