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ABSTRACT

This paper discusses and establishes a general three-dimensional
analytical solution for the equilibrium of a linear elastic plate of uniform
thickness, 2h, and with plate faces free of stress. This general solution
can now be wused to solve a whole class of three-dimensional elasticity
problems, e.g., a plate weakened by a circular hole, an elliptical hole, a
crack, an inclusion etc.

Results for the special case of a plate with a circular hole are also
presented and shown to be derivable directly from the general solution.
Special attention is given to the neighborhood of the intersection of the hole
and the free surface where the solution is examined for possible stress
singularities. Finally, answers to some fundamental questions pertaining to a
3D. Griffith crack are suggested.

INTRODUCTION

There exist in the literature a considerable number of papers which deal
with the stress distribution across the thickness of a plate, both from an
analytical as well as finite elements point of view. However, most of these
studies have focused on two dimensional considerations. This is because
analytical solutions to the full three dimensional 1linear equations of
elasticity are difficult to obtain, and three dimensional numerical studies

. generally require a large amount of computer resources. A somewhat complete

historical discussion to the three-dimensional Griffith crack problem is given
by Burton et al. (1984).
Be that as it may, the effect that a specimen thickness has on the

-mechanism of failure, so far, is not very well understood. In fact, previous

analyses have raised some very important questions. For example, do plane
strain conditions prevail at the crack front in the interior core of a plate?
Do plane stress conditions prevail at a layer adjacent to the free surfaces?
What is the actual shape of the crack front immediately after deformation and

prior to fracture? What is the strength of the stress singularity at the

corner where the crack front meets the free of stress surface of the plate? Do

‘stress fields associated with long cracks have the same characteristics as
‘those associated with short cracks?
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Complete answers to the above questions have so far defied researchers,
yet the answers are of great importance for the complete understanding of the
phenomenon of fracture. For example, it is well recognized that the inadequacy
of linear elastic fracture mechanics (LEFM) to predict the behavior of short
cracks to the same degree of accuracy obtained for long cracks is usually
attributed to one of the following two reasons (or possibly both). These are,
that either LEFM is not the appropriate analysis technique, or that other
effects, not normally accounted for, are important and should be included.

Factors which are often neglected in LEFM analysis but which are likely to
be important in short crack conditions are: (1) surface conditions (e.g.
residual stresses due to machining, cold working or chemical finishing, and
applied stresses due to fretting), (ii) three dimensional consideration, (iii)
plasticity considerations (e.g. yielded zone at the crack tip as well as crack
closure due to the wake of the yielded material). While undoubtedly all three
categories are equally important for the proper understanding of short crack
growth behavior, the consideration of realistic, 3D, specimen geometries
becomes ever more essential. Thus, linear elasticity is a logical fountainhead
for detailed theoretical study for it represents a relatively simple
mathematical model.

In this paper, the author will present some past and recent results
related to the 3D Griffith crack problem, and will try to answer some
fundamental questions pertaining to 3D elasticity problems. Moreover, he will
bring to the attention of the reader the existence of a general, 3D, analytical
solution for the equilibrium of linear elastic plates.

REVIEW OF AUTHOR'S PAST WORK

A general solution for the equilibrium of 1linear elastic plates was
constructed by Folias (1975) and was then specialized to the case of a plate
containing a, 3D, Griffith crack (Fig. 1). The solution was expressed in terms
of integral representations which were subsequently expanded, asymptotically,
in the inner core of the plate in order to obtain the displacement and stress
fields (Folias, 1975):
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Fig. 1 Cracked plate of thickness 2h.
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(ii) the stress field:
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€ and ¢ are the usual cylindrical coordinates, and A is a function of

Poisson's ratio v and of the crack to thickness ratio (2c/2h).

It should be emphasized that the above asymptotic solution is valid only
in the interior core of the plate-, i.e., for all [z] < h. Certain other
features are also worthy of note:

(1) the stresses possess the usual (1//€) singular behavior
(2) the stresses possess the usual angular distribution

(3) the stress intensity factor is a function of =z

(4) a state of pseudo” plane strain exists where

IThis is because the function £(z/h) represents the dominant part of the
%olution of a difference-differential equation (Folias, 1980).

According to the definition of plane strain, the displacements must be
independent of 2 in this case they are functions of 2z hence the term
'pseudo’ plane strain.




o =v o, _ +o0._) (12)

zz XX vy
(5) as the Poisson's ratio v + 0, the plane stress solution is
recovered

(6) as h » =, the z-dependency is eliminated
(7) the crack opening displacement is

S o
e x (& aewn fee/m)y ve? - X (13)
y=0

Inasmuch as the solution represents an asymptotic expansion which is wvalid only
in the inner core of the plate, naturally the stress field cannot be expected
to satisfy the boundary conditions on the plate faces, i.e., at z =t h.
However, Folias (1975) shows that in the neighborhood of the corner points
additional terms also_contribute to the same order of singularity and therefore
must be accounted for”. In fact, the integral representations for the stresses
do indeed satisfy the boundary conditions at the free surfaces.

The author, subsequently, ventured to examine (Folias, 1975) the character
of the stress singularity that prevails at such corner points, i.e., the points
where the crack front meets the free surfaces of the plate. After considerable
ef{7§tzit was concluded at the time that the displacemen§72a§e proportional to

p*/ 474V and that the stresses are proportional to p ~/“7“Y.  Moreover, it
was concluded that all stresses there, inclusive ng) and ng), possess the
same order of singularity.

Perhaps it is appropriate at this point to note that Folias at that time
considered his primary contribution to be the presentation of a systematic
method for the construction of a general solution to a certain class of, 3D,
elasticity problems and used the Griffith crack problem as a vehicle to show
how the solution may be specialized. Instead, researchers in the field
concentrated on the strength of the singularity which, because of the unbounded
nature of the displacements for certain Poisson's ratios, has caused some
discussion® (Bentham et al., 1976; Folias, 1976).

As a result, the author compiled the following 1list of fundamental
questions that needed to be addressed: )

(1) 1Is the solution of this notoriously difficult problem unique and if
so under what conditions?

(2) 1Is an infinite displacement field in such regions admissible?

(3) Does the symbolic method adopted (Folias, 1975) generates a
'complete' set of eigenfunctions for the solution to Navier's
equations?

(4) What is the actual order of the stress singularity at such
neighborhoods?

3This matter was discussed by the author in some detail at a National workshop
on 3D Fracture at Battelle Memorial Institute in 1978. However, the matter has
recently resurfaced (Burton et al., 1984). Referring to equation (110)
(Folias, 1975) "... the terms of the same order vanish" because of the factor
(h-z) which is present. The author there does not imply that the contributions

Zrom the integrals vanish.
It may be noted that Folias did not exclude the possibility that the

displacement field be of the form

u ~ g e = PlE, (80) + g,(8,0) 1np}

‘which explains the special case when v = 1/4. Incidentally, comment five
of the Discussion was revised prior to printing.




(5) Is ‘the solution at such neighborhoods separable particularly in
cylindrical or spherical coordinates?

(6) Can a plate be characterized by a plane strain core sandwiched
between two thin plane stress layers at the surfaces?

(7) When is a plate classified as being thick or thin?

(8) 1Is it appropriate to compare results between the problems of a hole
and a crack?

The answers to the first two questions were given by Wilcox (1979). He
was successful in proving that a displacement field which satisfies the
condition of local finite energy is unique. This of course is quite a
departure from our traditional 2D fracture E?echanics thinking, for the
displacements may now be allowed to be singular. Consequently, one may not a
priori assume them to be finite as it is customarily dome. In general, such an
assumption makes the class of solutions too restrictive and, as a result, one
may not find the complete solution to the problem. On the other hand, the
solution may very well lead to finite displacements everywhere! Be that as it
may, physical intuition should be used with extreme caution.

The answer to the third question was given by Folias (1977) and
independently by Wilcox (1978), who using a double Fourier integral transform
in x and y and a contour integration recovered precisely the same integral
representations as those reported by Folias (1975). The analysis establishes,
therefore, the validity of the symbolic method and the completeness of the
eigenfunctions. Thus, it remains for us to determine the order of the stress
singularity which prevails at such neighborhoods.

GENERAL SOLUTION TO NAVIER'S EQUATIONS

As it was previously noted, a general three-dimensional solution to
Navier's equations for plates of uniform thickness, 2h, and with plate faces
free of stress has been constructed by the author (Folias, 1975). The results,
were subsequently put in a more convenient form (Folias, 1985) which makes the
solution much more suitable for direct applications. Without going into the
mathematical details, the expressions for the general displacement and stress
fields can be found in (Folias et al., 1986).

Next, by appropriately choosing some five remaining arbitrary functions,
one may now solve a whole class of 3D linear elastic problems, e.g., the
problem of a cylindrical hole, an elliptical hole, a crack, a cylindrical
inclusion, etc. For example, Folias et al. (1986) considered the problem of a
plate with a cylindrical hole of radius a [see Fig. 2], to show how the general
solution can be used to construct such a 3D stress field. The analysis showed
the stress concentration factor to be sensitive to the ratio (a/h) as well as
to the Poisson's ratio Ve Typical results are shown in Figures 3 through
5. Certain important features are worth mentioning. For v = 0.33 and for
ratios (a/h) > 0.5 it is found that the stress concentration factor attains
its maximum in the middle core of the plate and decreases parabolically as one
approaches the free surfaces. On the other hand, for (a/h) < 0.5, the stress
concentration factor attains its maximum in the vicinity of the free
surfaces. Moreover, as the ratio of a/h decreases further, the following
numerical trends are observed for the stress concentration factor (i) the
magnitude of the rise slowly increases (ii) the maximum occurs approximately

5Consider a hemisphere with center the corner point 2z = h. The strain energy
now becomes

) 2 -1-4y 2, _ (1-2v) 2-4y
w o~ Iv oij dv ~ (1-2v) fg {p + ...} p“dp = =35 p + ees
local

Thus w+ 0 as p =+ 0.
local
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Fig. 2 Geometrical configuration of a plate weakened by a circular hole of

radius a.

one hole radius away from the surface (iii) at the surface of the plate it
drops rather abruptly and its magnitude slowly decreases.
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Fig. 3,4 Stress concentration factor across the thickness for Poisson's
ratio v = 0.33 and various a/h ratios.

The results of Folias et al. (1986) clearly substantiate the existence of
‘@ boundary layer in the vicinity of the intersection of the hole and the free
surface of the plate. The presence of this boundary layer was first reported
by Youngdahl et al. (1966). 1In fact, if we take into account the shear loading
and compare the out of the plane displacement w (see Fig. 6), we see that the
-agreement is very good. Similarly, for (a/h) > 1 the results are in agreement
with those obtained by Alblas (1957) as well as by Reiss (1963). Thus the
solution of Folias et al. (1986) recovers in the 1limit the existing in the
literature results for thin as well as for thick plates.
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Fig. 6 Comparison of the displacement w at 2z = h with the results of

Youngdahl et. al.

THE STRESS FIELD AT THE CORNER OF A HOLE

It is well recognized that at the vertex of a sector plate, in stretching

or in bending, unbounded stresses may occur for certain vertex angles. In the
‘case of 2D problems, this has been investigated analytically by Williams (1952,

1951) subject to various edge conditions. Such information is not only of
academic interest but also of practical importance. However, because of the



difficult mathematical nature of these type of problems, the author believes
that such information should only be extracted by analytical means. By
utilizing the inherent form of the general solution (Folias, 1975), it is now
possible to construct explicitly the displacement and stress fields in such
neighborhoods, at least for certain type of geometries.

For example, in the case of a cylindrical hole, we assume the
complementary displacement field to be of the form:

of of
(c) -1 3 _ 1 2 ag
u m-2 9x {Z(m 1)fZ * mh 9z il 0z } * oy (14)
of of
(c) 1 23 & 1 2 og
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where the functions £, f, and g represent 3D harmonic functions and
m = (1/v). Furthermore, we assume the functions to be of the form

-1/2

fi =r Hi(r-a, h-z) cos(28); i = 1,2 (17)
and

g = 1/2 Hy(r-a, h-z) sin(26), (18)
where

Hk =nzo pa+n {AE cos(a+n)¢ + BE sin(a+n)¢}; k=1,2,3. (19)

with Ank, Bnk and a as constants to be determined from the boundary

conditions. Without going into the mathematical details (Folias, 1987a) one
finds the following complimentary stress field (see Fig. 7):

FRONT SURFACE
/Y

A

BACK SURFACE r =

Fig. 7 Definition of local coordinates at the corner.
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where the min Re a = 3.73959 # i1.11902 and the coefficient [B3/m-2] has
been shown to be (Folias et al., 1986) to be proportional to P01sson s ratio
‘v as well as the applied load.

It is interesting to note that the characteristic value of a is
precisely that obtained by Williams (1952) for a 90° corner with free-free of
stress boundaries. Moreover, an extension of this analysis to other angles of
intersection with the free surface reveals the same results as those predicted
by Williams. The results have also been extended to the case of an inclusion
(Folias, 1987b) and were found to be identical to the corresponding 2D results
(Boggy, 1968).

DISCUSSION

In view of our previous discussion, one may draw the following conclusions
concerning the effect that specimen thickness has on the stress concentration
factor:

e for ratios of (a/h) > 0.5 the maximum stress occurs at the middle plane

e for ratios of (a/h) < 0.5 the maximum stress occurs close to the free
surface, approximately one radius distance away from the surface

o depending on the value of the ratio a/h, the fatigue 1l1life of the
structure may be substantially shorter than that predicted by 2D
elasticity theory

e a state of pseudo plane strain exists in the interior core of the plate

c(c) = 2mG ala-1) p%~ =2 (2) {2(l a) tan[zn) cos(a-2)¢ T T e -
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* at z = 0 the stress concentration factor attains a value which depends
on the ratios of (a/h) and v and which is slightly higher than the
value of 3.

* the notion that a thick plate may be characterized as a plane strain core
sandwiched between two thin plane stress layers is in serious error

e there exists a highly complicated three-dimensional stress field in the
neighborhood of the free surfaces of the plate

*» assuming that the radius of the hole a is sufficiently large, the
stress field at the corner has been shown to be non-singular.

Perhaps it is noteworthy to comment on the conditions of plane stress and
plane strain. For (a/h) + =, our numerical results give precisely the value
of plane stress, ie the value of 3. 1In the case of plane strain, the boundary
planes z = £ h are thrown to infinity and simultaneously the boundary
conditions must be relaxed by requiring that all stresses and displacements
there be finite. :

So, where do we stand in reference to the crack problem?

First of all, inasmuch as the solution of both the hole and the crack
problem can be derived from the same general 3D solution, similar trends are
expected to prevail. Therefore, by analogy, all of the above remarks are also
applicable to the 3D Griffith crack problem, except perhaps the last remark
concerning the stress singularity. This is because, in the vicinity of the
free surfaces, a highly complicated 3D stress field appears to exist where the
solution is not separable either in cylindrical or spherical coordinates.
Thus, the strength of the actual stress singularity there remains to be
established. On the other hand, in the interior core of the plate the stresses
possess the usual 1/Y€ singular behavior.

Second, it has been observed experimentally that on the free surfaces of
the plate and around the neighborhood of the crack tip, a small dip appears
during the processes of deformation. As the load is applied, the material
immediately tries to smooth out this ninety degree corner before any relaxation
due to fracture takes place. Moreover, the larger the load is the more
noticeable the dip is. As in the 2D case, large forces of atomic or molecular
attraction of the order of the '"theoretical strength" may prevail at such
corners. These "cohesive forces," attempting to smooth out the right angle,
pull the material towards the center of the plate thus forcing the crack front
to 'buckle,' if you will, and tunnel its way into the center core of the
plate. Naturally, this is a supposition which can only be substantiated when
the explicit stress field at such neighborhoods has been established.

The time to develop 3D fracture mechanics 1s now upon us. We believe that
the complete 3D solution to the Griffith crack problem will not only enable us
to understand the mechanism of fracture propagation better, but will also
‘expand our horizons for future research and, hopefully, will contribute to the
advancement of the field to higher levels of safe design against fracture.
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