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ABSTRACT: In this paper, the author presents the effect of specimen thickness on the stress
concentration factor of a plate that has been weakened by a circular hole. The results compare
very well with existing results on thin and very thick plates and bridge the data gap between
them. Furthermore, the solution is shown to be derived from the same general solution from
which the three-dimensional crack problem solution can be derived. The author also, by
analogy, draws some conclusions regarding the behavior of the stress intensity factor.
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In the field of fracture mechanics it is well recognized that the role which the specimen
thickness plays in the mechanism of failure is not very well understood. For example, the
common experimental observation of a change from ductile failure at the edge to brittle
fracture at the center of a broken sheet material has so far defied analysis. Moreover, the
fracture toughness of a material is assumed to be constant. Yet failure theories in the field
of fracture mechanics define two different values for fracture toughness, K, and K.

Similarly, the failure of linear elastic fracture mechanics (LEFM) to predict the behavior
of short cracks to the same degree of accuracy as that obtained for long crack behavior is
usually attributed to one of two reasons (or possibly both). These are either that LEFM is
not the appropriate analysis technique, or that other effects not normally accounted for are
important and must be included.

Factors which are often neglected in LEFM analysis, but which are likely to be important
in short crack conditions, fall into three categories:

(@) surface conditions (for example, residual stresses due to machining, cold working, or
chemical finishing, and applied stresses due to fretting),

(b) three-dimensional considerations, and

(¢) plasticity considerations (for example, a yielded zone at the crack tip and also crack
closure due to the wake of the yielded material).

While undoubtedly all three categories are equally important for the proper understanding
of short crack growth behavior, the author believes that it is rather premature for researchers
to conclude that LEFM theories do not adequately predict the behavior of short cracks and
that considerations of realistic, three-dimensional, specimen geometries becomes ever more
essential. Thus, an orderly theoretical attack on the three-dimensional Griffith problem can
provide guidance to these and other phases of fracture research.

The most potent mathematical tool for this attack is the linear theory of infinitesimal
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elasticity as applied to a cracked plate of finite thickness. While it is true that this theory
cannot include the nonelastic behavior of the material at the crack tip per se, it can (1)
show many characteristics of the actual behavior of a cracked plate, including those due to
thickness, and (2) assist us in understanding better the three-dimensional elastic-plastic
analog (for example, by providing us with a proper discretized element mesh). Thus, the
theory of three-dimensional linear elasticity is a logical fountainhead for detailed theoretical
study, for it represents a relatively simple mathematical model.

Even so, the mathematical difficulties posed by three-dimensional problems are substan-
tially greater than those associated with either plane stress or plane strain. As a result, there
exist in the literature very few analytical papers® that deal specifically with the three-
dimensional stress character at the base of a stationary crack. Simultaneously, in the last
two decades, numerous attempts have been made to obtain finite element solutions by very
capable researchers. Although they, too, have experienced some difficulties in the past,’ at
present a consensus appears to have emerged as will be evident from the results presented
in this volume. The fact, however, remains that there exists no explicit analytical solution
with which numerical results can be compared. Be that as it may, the following three-
dimensional elasticity problems immediately come to mind:

(a) a plate weakened by a cylindrical hole,
(b) a plate weakened by a through crack, and
(c) a plate weakened by a partially through crack,

listed in the order of relative difficulty.

In this paper, the author will present some numerical results for the first problem and,
by analogy, draw certain conclusions for the second problem. Moreover, the results of the
first problem will be compared with two existing asymptotic solutions, one applicable to
thin plates and the other applicable to very thick plates. The main purpose of this paper,
however, is threefold: first, to show that the solution of the cylindrical hole problem is
derivable from the same general analytical solution that the three-dimensional crack problem
solution can be derived from; second, to acquire enough experience and a “feel” for the
ultimate construction of an explicit analytical solution to the crack problem; and, third, to
illustrate how the general solution for the equilibrium of elastic layers can be used effectively
to solve a whole class of three-dimensional problems of practical interest.

Effect of Thickness

A general three-dimensional solution to Navier’s equation for plates of uniform thickness,
2h, and with plate faces free of stress has previously been constructed by the author, and
the results are reported in Ref 2. Perhaps it may be appropriate here to note that the same
displacement field is also recovered if one uses a double Fourier integral transform in x and
y and, subsequently, a contour integration. This matter is discussed in great detail in Ref
3. Without going into the mathematical details, the general displacement field can be found
in the Appendix where it has been written in a more convenient form.

By choosing appropriately the remaining five arbitrary functions, that is, H,, H,*, I, L,
and [, one may now solve a whole class of three-dimensional linear elastic problems, for
example, the problem of a cylindrical hole, an elliptical hole, a crack, a cylindrical inclusion,

2 For a historical discussion see Ref 1.
3 See Proceedings, Workshop on Three-Dimensional Fracture Analysis, held at Battelle, Columbus,
OH, 26-28 April 1976.
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FIG. 1—Geometrical configuration of a plate weakened by a circular hole of radius a.

and so forth. In Ref 4, for example, the author uses the problem of a plate weakened by a
cylindrical hole (see Fig. 1) as a vehicle to show how the general solution can be used to
construct the three-dimensional stress field. The problem was ultimately reduced to the
solution of three equations involving a series of complex eigenfunctions for the determination
of the unknown, but constant, coefficients. These equations represent the free-of-stress
boundary conditions at the surface of the hole where the 6 and r dependence has now been
totally eliminated.

Without going into the mathematical details, the system was solved numerically,* and the
stress concentration factor at ® = w/2 and r = a was computed for various radius-to-
thickness ratios, a/h, and for Poisson’s ratio of v = 0.33. The results are presented in Figs.
2 through 7. It may be noted that double precision was used throughout the numerical work
and that a very sophisticated algorithm was used for the evaluation of the Bessel modified
functions of the second kind.

The results show the stress concentration factor to be sensitive to the ratio of (a/h) and
to Poisson’s ratio v. For example, for v = 0.33 and ratios of (a/h) = 0.5, it was found that
the stress concentration factor attains its maximum in the middle of the plate and decreases
parabolically as one approaches the free surfaces. On the other hand, for (a/h) < 0.5, the

* It should be noted that we have also constructed the orthogonality condition of these eigenfunctions.
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FIG. 2—Stress concentration factor across the thickness for Poisson’s ratio v = 0.33 and
various a/h ratios.
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FIG. 3—Stress concentration factor across the thickness for Poisson’s ratio v = 0.33 and
various a/h ratios.
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FIG. 4—Stress concentration factor across the thickness for Poisson’s ratio of v = 0.33 and
a/h = 0.2.
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FIG. 5—Stress concentration factor across the thickness for Poisson’s ratio of v = 0.33 and
a/h = 0.1.




FIG. 6—Stress concentration factor across the thickness for Poisson’s ratio of v = 0.33 and

a/h = 0.05.

FIG. 7—Stress concentration factor across the thickness for Poisson’s ratio of v = 0.33 and

a’h = 0.01.
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FIG. 8—Stress concentration factor across the thickness for Poisson’s ratio v = 0.25 and
various a/h ratios (Alblas 1957).

stress concentration factor attains its maximum close to the plate faces. Moreover, as the
ratio of a/h decreases further, the following numerical trends are observed for the stress
concentration factor (SCF):

(a) the magnitude of the rise slowly increases,’

(b) the maximum occurs closer and closer to the free surface so that the depth below the
surface approaches the radius of the hole,

(c) at the surface of the plate it drops rather abruptly, and

(d) the magnitude at the surface slowly decreases.

It is appropriate at this time to compare our results with those already existing in the
literature. Historically, the two-dimensional problem was first studied by Kirsch [5] in 1898
and the stress concentration factor was found to be equal to three. It was not until 1948
that Green [6] constructed a three-dimensional solution which was in an infinite series form.
Unfortunately, he did not pursue the solution far enough to extract numerical results. In
1949, Sternberg and Sadowsky [7] used a modified version of the Ritz method to obtain an
approximate solution to the problem. Subsequently, in 1957 Alblas [8], applying the same
scheme proposed by Green, succeeded in obtaining a solution in a more convenient series
from whereby he was able to perform extensive numerical calculations. His results for
Poisson’s ratio of v = Y4 are shown in Fig. 8. For ratios of (a/h) > 1 our results are identical
to those obtained by Alblas. Moreover, for the ratio of (a/h) = 1 the difference is minimal,
as can be seen by a comparison of the results in Fig. 9. The small difference is attributed
to the fact that Alblas at that time did not have access to modern computer facilities;
consequently, he was forced to truncate the system to 14 roots.

Our results on the other hand, reflect the use of 300 roots. Even so, the agreement for
ratios of (a/h) = 1 is remarkably good. For ratios of (a/h) < 1, however, more roots are
needed to eliminate undesirable oscillations, and therefore he was forced to limit his cal-
culation to ratios of (a/h) = 0.5.

5 The reader should be cautioned that this remark does not necessarily imply that the SCF will increase
indefinitely.
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FIG. 9—Comparison of the stress concentration factor for v = 0.25 and a/h = 1.0.

In 1962, Reiss [9] using a perturbation analysis was able to obtain a solution which yielded
“three-dimensional” corrections to those of the generalized plane stress. The results are
shown in Fig. 10. Finally, in 1966 Youngdahl and Sternberg [10], recognizing the sensitivity
of the SCF on the diameter-to-thickness ratio, studied the problem of a half-space with a
hole in order to establish the behavior of the SCF for very thick plates. The problem was
finally casted into a Fredholm integral equation of the second kind, the solution of which
was finally sought numerically. Perhaps it is appropriate at this point to state an observation
made by the authors of Ref 10:

the burden of the numerical analysis of the solution established was at least equal to the effort
expended on its derivation.
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FIG. 10—Stress concentration factor across the thickness for Poisson’s ratio v = 0.25 and
various a/h ratios (Reiss 1963).
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FIG. 11—Comparison of the stress concentration factor in the vicinity of the free surface
with results of Ref 10.

The present author also concurs with this observation, for the nature of this problem is such
that it does not lend itself to routine numerical calculations.

In any event, their results clearly show the existence of a three-dimensional stress boundary
layer that emerges near the edges of the hole in the analogous problem of a plate of finite
thickness, as the ratio of the diameter of the hole to the plate thickness becomes very small.
Our present results substantiate the existence of such a boundary layer at the vicinity of the
free surfaces. In fact, if we examine the local behavior of the rise, for example, for the ratio
of (a/h) = 0.01, and stretch the variable by letting { = 100(1 — z/h), we observe (see Fig.
11) that the behavior is similar to® that obtained by Youngdahl and Sternberg [10]. We also
observe that the rise here is not quite as noticeable as in Fig. 7. This is due to the vertical
scale, which the authors of Ref 10 used, and to the stretching of the horizontal variable
z/h. In view of the findings of Ref 10, one concludes that the surface effects become dominant
and that the amplitude of the characteristic rise ultimately reaches an upper bound.” This
matter will be investigated further in the section on stress behavior at the corner.

Finally, it is appropriate to comment on the conditions of plane stress and plane strain.
For (a/h) — =, our numerical results give precisely the value of plane stress, that is, the
value of three. Similarly, for v = 0 the value of three is also recovered. This result meets
our expectations, for it represents an exact solution.

In the case of plane strain, the boundary planes z = *h are thrown to infinity, and
simultaneously the boundary conditions must be relaxed by requiring that all stresses and
displacements must be finite. Assuming that the radius of the hole is sufficiently large, the
author suspects that the SCF at the center of the plate will begin to slowly decrease as the
ratio of a/h decreases beyond the value of 0.01, until it finally reaches the value of plane
strain. Such an effort, however, requires considerably more computer time than was available
to us.

% In Ref 10, the reader should notice that the loading is in both the x and y directions.
" For a/h = 0.01 and v = 0.33, our numerical results show the max value of the SCF to be 3.3675.
This value should be very close to the upper bound. It is interesting to note that it is ~ 3/ (1 = ).
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Observations On Some Numerical Results

Before we attempt to interpret the physical meaning of the numerical results, particularly
at the neighborhood of the intersection between the hole and the free surface, it will be
appropriate for us first to examine the numerical results of a well known two-dimensional
solution and then, we hope, to make some associations.

Let us consider for the sake of discussion the two curves, I and J, shown on Fig. 12. The
curves have been drawn based on a number of calculated points which, for convenience,
have been located on the graphs. Furthermore, let us assume that these curves represent
the two local stress profiles 7, and g,,, respectively, in a body that lies to the right of the
vertical axis, has the vertical axis as a boundary, and is symmetric with respect to the z-
axis. The stress profiles have been calculated along the line x = 0.05. Given this limited
information, can one draw a definite conclusion as to whether or not a stress singularity
exists at the point x = z = 0?

An examination of the stress curves shows that, as one moves from right to left along the
line x = 0.05, both stresses are initially zero, then rise slowly to reach a maximum, and
finally decrease to zero as the value of z = 0 is reached. Because the stress drops as one
approaches the boundary, one is tempted to conclude that there exists no stress singularity
at the point x = z = 0. But this would be an erroneous conclusion since this particular
stress field represents that of a concentrated line load P on a half space (see Fig. 13), that
is

2P 2P xz*
T, = ——sin¢cos?’ ¢ = —— -5 = —PI
= wr ¢ ¢ w (x2 + z%)?
2P 2P X
0,= ——cospsinlp = ——-———= = —PJ
wr ¢ ¢ w (x* + z2)?
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g, = ——cos’
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FIG. 12— The functions 1 and J for x = 0.05 and various values of z.
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FIG. 13—Geometrical configuration.

where ¢ now represents the angle from the horizontal axis. By examining the above equations
more carefully, we notice that the location of the maximum rise depends on the chosen
value of x. In particular, / and J attain their maximums at z = x and z = x/ V3, respectively.
This suggests, therefore, that as the value of x becomes smaller and smaller, the rise moves
closer and closer to the x-axis while its amplitude increases simultaneously. Furthermore,
it should be noted that for a given value of x, similar stress profiles are observed. In view
of the above, the author makes the following observations:

1. As one approaches the free surface, the stresses exhibit a rise or a hump.

2. At the surface, the stresses decrease rather abruptly to zero.

3. As x decreases, the amplitude of the rise increases.

4. The analytical solution exhibits the presence of a stress singularity at x = z = 0.

Let us next look at another related problem which was studied® by Filon in 1903. He
discusses the case shown in Fig. 14a, where the forces P are displaced one with respect to
the other. The distribution of shearing stresses over the cross section nr in this case is shown
in Fig. 14b. Notice that for small values of the ratio b/c this distribution does not resemble
the parabolic distribution given by the elementary theory, and that there are very large
stresses at the top and bottom of the beam while the middle portion of the beam is practically
free from shearing stresses. One conjectures, therefore, that close to the free surfaces there
exists a boundary layer solution. Moreover, we know that at the point of application of the
load there exists a stress singularity, the presence of which is not evident from the numerical

8 See also Timoshenko and Goodier, Theory of Elasticity, 3rd ed., pp. 57-58.
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FIG. 14a—Geometrical configuration of a beam subjected to two concentrated loads.

work depicted in Fig. 14b. In fact, the numerical results show the shear stress there to
vanish.

It becomes evident from this discussion that even though the numerical results show the
stress profiles to vanish at the boundary, this does not necessarily exclude the possiblity of
a stress singularity being present at certain points of the boundary.

The Stress Behavior at the Corner

Finally it is of some academic and practical interest to examine the behavior of the stress
field in the very immediate vicinity of the corner point, that is, the point where the hole
meets the free surface of the plate. However, in view of our previous discussion, such
information is best if it is extracted by analytical rather than numerical means. Utilizing the
local coordinates of the corner point, an asymptotic analysis was carried out for the exponent
a of an assumed displacement field u, ~ p*, where p < a. Without going into the mathematical
details, the satisfaction of all the boundary conditions of the three-dimensional stress problem
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FIG. 14b—The behavior of the shear stress over the Cross Section n-n for various ratios of
b/c.
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lead to a characteristic equation which has an infinite number of complex roots. It is inter-
esting to note that the first root is the same as that obtained by the Williams solution [1/]
for a 90° corner with free free-of-stress boundaries, that is, « = 2.739 59 + 1.119 02. While
this result was to be anticipated on intuitive grounds, it could not be taken for granted. The
details of this asymptotic analysis will be reported in a future paper.

In view of the above, one may draw the following conclusions:

1. The solution is derivable from a general three-dimensional solution to Navier’s equa-
tions.

2. The solution recovers the existing limiting results for thin plates [8,9] as well as for
thick plates [10] and bridges the gap between them.

3. For ratios of (a/h) = 0.5, the maximum stress occurs in the middle plane.

4. For ratios of (a/h) < 0.5, the maximum stress occurs close to the free surface (ap-
proximately one radius distance away from the surface).

5. The results show the transition between thin and thick plates to occur at a ratio of
(a/h) = 0.5.

6. As a/h becomes small, there exists in the neighborhood of the free surfaces a boundary
layer solution similar to that reported in Ref 10.

7. Depending on the value of the ratio of a/h, the fatigue life of the member may be
substantially shorter than that predicted by the two-dimensional elasticity theory.

8. For p < a, there is no stress singularity present at the corner where the hole intersects
the free surface of the plate.

The Crack Problem

Inasmuch as the solution of both the hole and the crack problems can be obtained from
the same general three-dimensional solution, similar trends are expected to prevail. There-
fore, by analogy, one is tempted to conclude the following regarding the stress intensity
factor:

1. It will be sensitive to the crack-to-thickness ratio and to Poisson’s ratio, v.

2. It will drop rather abruptly at the free surface.

3. For certain values of ¢/, it will attain a maximum at the middle plane and will decrease
parabolically as one approaches the free surface.

4. For the remaining values of c¢/h, the maximum will occur closer to the free surface
(approximately half a crack size away), where a small rise will develop.

5. For relatively thick plates, the shear lip will be found to be related to the width of this
rise.

6. No conclusion can be drawn from this analysis regarding the corner singularity.

Engineering fracture mechanics can deliver the methodology to compensate for the in-
adequacies of conventional design concepts that were based on tensile strength or yield
strength. While such criteria are adequate for many engineering structures, they are insuf-
ficient when the likelihood of cracks exists. Now, after approximately three decades of
development, fracture mechanics has become a useful tool in design, particularly with high-
strength materials. Interestingly enough, this advancement has been based primarily on the
two-dimensional solution of the Griffith crack problem. We believe that the three-dimen-
sional solution of the Griffith crack problem will not only enable us to understand the
mechanism of fracture propagation better, but it will also expand our horizons for future
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research and, we hope, will contribute to the advancement of the field of fracture mechanics
to higher levels of safe design against fracture.
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APPENDIX

A general solution to Navier’s equations for plates of uniform thickness, 2/, and with the
plate faces free of stress has already been constructed by the author and the results are
reported in Ref 2. Thus, without going into the long and tedious mathematical details, the
complementary displacement and stress fields may be written in the form:

The Displacement Field

1 ®

u(f)=-—————
m — 2v=1

4,2 2(m ~ 1) cos (B.A) cos (B.2)
+ mB,h sin (B,h) cos (B,z) — mB,z cos (B,h) sin (B,2)]
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The Stress Field
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76 % = Zl A,B.H, cos (B,h) cos (B,z)

x

+ mB,h sin (B,h) cos (B,z) — mB,z cos (B,h) sin (B,2)]

= d9*H,*
- zl B, axa"y cos (a,h) cos (a,z)
LI € 1, 9% 2

+
ax Y ax? m+1zax28y m + 1 dy

) =
— g O = = VA H, cos (B,h) cos (B,z
i m—2§=:1ﬁ (B.h) cos (B.z)

- 1_ > S A, [62H - B 2HjI [2(m — 1) cos (B,h) cos (B,z)

ax?

=1

+ mB,h sin (B,h) cos (B,z) — mPB,z cos (B,4) sin (B,2)]

2 *

= 8%H,
— 2 B; axa"y cos (a,h) cos (a,z)

2m ol o #L 1, &l

m+ 1dy ox Y ax m+lzaxzay

+ B,z cos (B,h) sin (B,z)]

I
-
C
I

2 d 8%H,
YT m =2 E_l A, oxdy [2(m — 1) cos (B,h) cos (B,z)

+

mB,h sin (B,h) cos (B,z) — mB,z cos (B,h) sin (B,z)]

” da’H ,*
> B, [2 6x; - o2 H,,*] cos (a,h) cos (a,z)
n=1 .

e (m - 1) al, ol, 2 &L FDA

== 2
m+ 1/ ox ax m+1zax3 yaxay




FOLIAS ON THREE-DIMENSIONAL FRACTURE 71
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where A, and B, are functions of B, and a,, respectively,

nm

a,,E—h—

n=123 ...,

B, are the roots of the transcendental equation
sin (2B,k) = —2(B,h)
and the functions H, and H,* satisfy the reduced wave equation, that is,

Ja*H 9*H,
—r 4 —_— 2H =
ax? ay? Bty = 0.
and
9’H,*  92H,*
n + n
dx? ay?

- o H* =0

and [, I, and I; are two-dimensional harmonic functions such that
L = Imd

Iz = Re(b
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