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Abstract. The author in this paper investigates the analytical stress field in the neighborhood of the intersection of 
a hole and a free boundary. Utilizing the form of a general 3D solution, which was constructed in a previous paper, 
he recovers the explicit displacement and stress fields in this neighborhood. Moreover, the analysis shows the com- 
plementary solution to be proportional to Q~-2, where c~ is independent of the Poisson's ratio v. Interestingly enough 
the first root is exactly that obtained by the William's solution for a 90 deg comer with free-free of stress boundaries. 

1. Introduction 

It is well known that at the vertex of a sector plate, in stretching and in bending, unbounded 
stresses may occur for certain vertex angles. In the case of 2D problems, this has been 
investigated analytically by Williams [1,2] subject to various edge conditions. In 3D, how- 
ever, far less is known about such problems particularly when the re-entrant angle is other 
than 2~z. To the best of the author's knowledge, an explicit analytical solution for the 
determination of the stress singularity in the neighbourhood of the intersection between the 
crack front and the free surface has yet to be constructed. Various past analyses suggest four 
different types of stress singularities at such neighborhoods. A somewhat complete historical 
discussion can be found in [3]. 

In this paper the author investigates the solution of a simpler problem, that of a thick plate 
which has been weakened by the presence of a circular hole. While it is true that such an 
analysis will not directly provide us with the singularity strength of the 3D Griffith crack 
problem, it will evince many characteristics of the solution and provide guidance for the 
ultimate construction of such a solution. Thus the circular hole problem is a logical fountain- 
head for detailed theoretical study. 

2. Formulation of the problem 

Consider the equilibrium of a homogeneous, isotropic, elastic plate that occupies the space 
Ixl < o% Iz[ <~ h and contains a cylindrical hole of a radius a whose generators are perpen- 
dicular to the bounding planes, namely z = +_ h. Let the plate be subjected to a uniform 
tensile load % along the y-axis and parallel to the bounding planes (see Fig. 1). 

In the absence of body forces, the coupled differential equations governing the displace- 
ment functions u, v and w are 

m -  2 O x ' S y ' ~  e + V2(u,v,w) = 0 (1)-(3) 
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Fig. l .  Geometrical configuration of a plate weakened by a circular hole of radius a. 

where W represents the Laplacian operator, m =- l /v ,  v is Poisson's ratio, 

8u Ov Ow 
e = + ~-  + (4) 

and the stress-displacement relations are given by Hooke's law as: 

O-xx = 2G ~u + m - - -  2 , . . . , * x y  = G ~yy + , . . .  (5)-(10) 

with G being the shear modulus. 

3.  M e t h o d  o f  s o l u t i o n  

The main objective of this analysis is to construct an asymptotic solution which is valid in 
the immediate vicinity of the corner point, i.e., the neighborhood where the hole surface 
intersects the plate surface z = + h. Guided by a general solution to the equilibrium of 
elastic layers which the author constructed in a previous paper [4], we assume the com- 
plementary displacement field in the form: 

1 ~ { uzOf~ c~f2c~z J "~ oyOg (11) u - 2 ( m  - 1 ) f2  + mh~--- + mz + 
m - 2 8 x  
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Fig. 2. Definition of local coordinates at the corner. 

v - 2(m - 1)f2 + m h - ~ z  + mz  (12) 
m - 2 3y c?x 

1 3 { 3/| <} 
w - m - 2 3 z ~ - - 2 ( m  - 1)f2 + m h ~ z  + mz  3 z ]  (13) 

where the functions f l ,  f2 and g represent three-dimensional harmonic functions. Utilizing 
the local cylindrical coordinates, we furthermore assume the harmonic functions to be of  the 
form 

f = r - 1 / 2 t t ~ ( r -  a , h  - z) cos(20);  i = 1 ,2  (14) 

and 

g = r-1/2H3(r - a, h - z) sin (20), (15) 

where the newly defined functions Hi now satisfy the differential equation 

82H,. 32Hi 15 
8 ( r -  a) 2 + 8 ( h -  z) 2 4(a + r -  a) 2Hi = 0; i = 1 ,2 ,3 .  (16) 

Moreover, it is found convenient at this stage to introduce the local coordinate system to 
the corner point (see Fig. 2), i.e., 

r -  a = Qcosq~ (17) 

h - z = Qsinq~, (18) 

which transforms equation (16) into 

O2 H i 1 8 t t  i 1 32 Hi 15 
(~02 ~-  - - - -  -{- 0 30 ~o 2 3q52 4a2[1 q- (o/a) cos q~]2 Hi = 0. (19) 

Assuming, therefore, that  the radius of  the hole a is sufficiently large so that 0 ~ a, one may 
now seek the solution to (19) in the form 

= ~ O~+'F,((o) (20) 
n=0 
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where a represents a constant. Without  going into the mathematical  details, the usual 
asymptotic analysis reveals t ha t / / i  must be of the form 

H, = ~ { A I  ) cos (a~b) + B(0 ° sin (aqS)} + ¢=+1{A~)cos (a + 1)q5 + BS~ ) sin (e + 1)qb} 

-~- 0(Oez+3): i = 1, 2, 3, (21) 

where the constants ~, A~ i), A{ °,  B(0 i), E1 i) etc. are to be determined from the boundary  
conditions which are that the stresses along the surfaces q5 = 0 and q5 = re/2 must vanish 
for all ~. 

Specifically, the boundary conditions on the surface z = h can be shown to be satisfied 
if the following combinations vanish 

= G {  m -  2 ~ + z 3z ~ j  = 0 (22) 

0 
m - 2 O r [  Oz + h ~  + z Oz 2 j  r Or - 0 (23) 

4m { 3f2 c32fl 02f: { 02g - 0 (24) 
(m --- 2)r ~-z + h ~ z  2 + z 0z 2 j  3rOz 

along the plane 4) = 0. Thus, substituting (21) into (22) (24), one finds respectively: 

mh 
m - 2 a(~ - 1){(a -- 2)[Bo (1) + B~2)]0~ 3 + (~+I)[BII)q_ B12)]~-2} + 0(0=-~) 

2m f 
oe(ce - 1)~h(c~ - 2)[A(o 1) + A12)]0~-3 

m - 2  

+ h(1 + ~)(AI 1~ + A~ 2)) + B; 2~ - 2aa (A(°l) + A~2~) ~ 2 

and 

all of  which are satisfied if one lets 

B~I) - B~2) 

B}l) - BI2) 

+ A~2)) _ Bo(3)} ~ - 2  + 0(~  1) 

= 0 

(25) 

+ 0(~ c~-1) ~- 0 (26) 

= 0, (27) 

(28) 

(29) 
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A~ 1) = - A ~  2) (30) 

h(1 + ~)[A] 1) q- A~ 2)1 = - B ~  2) (31) 

Bf 3) = O. (32) 

Similarly, the boundary conditions along the surface of  the hole, i.e. at ~b = re/2, become: 

2 El2 1 0 2 f  Oft 0f2} 2 @  2 
m - 2 0z 2 + m -  2&2) ,2 (m - 1)fz + mh-~z + mz OzJ - - r  0-7 + 7 g  = 0 

(33) 

2{  1}{ 0( 4, 
m -  2 r 0r + ~ 2(m - 1)f2 + mh&-z + mz OzJ +-~7 + 2 0z 2 

and 

m 0 { ~f2 hO2f, zO2f2{ 10g 
m - 2 0 r  0z ~ z  2 0z a j  + r 0z - 0, (35) 

which, upon the substitution of (21), suggests that the following combinations must vanish 

~ ( 1 -  ~ ) [ ~ c o s ( 2 ) A ~ 2 ~ - ( 1 -  c O s i n ( 2 )  B~2)lO~ 2 + 0(0 ~ 1) = 0 (36) 

(38) 

respectively. It is clear, therefore, that 

A~ 3t = 0 (39) 

and that the constant  ~ must satisfy the following transcendental equation 

~2(1  - -  :~)2{COS (0~ - -  1 ) g  q- 2(~ - 1) 2 - -  1} = 0. (40) 

An examination of  the above equation shows that there exist three real roots, namely a = 0, 
= 1, and ~ = 2, and in addition an infinite number  of complex roots with positive real 

parts. The complex root  with the minimum real part  is e = 3.73959 _+ 1.1 i902i. 
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Returning, next, to (14) and (15) one finds, in view of  (21), (28)-(32) and (36)-(40), that 

~ 2  .~{1  ~tan(2)co~(~+~ s~.~}cos~20~+o~+~ (41~ 

x/7 h ~  + z ~?zJ = B~2~Q~ - s i n ( c @ )  + :~sinq~ cos(1  - c¢)~b 

' ~  (2) } + - -  tan sin (1 - c04 q cos (20) + 0(~+1). (42) 

x/~g = 0 4- 0(Q~+I), (43) 

from which the displacement and stress fields can now be obtained. Moreover,  in view of 
(20), the entire solution may easily be constructed in ascending powers of  Q. Without  going 
into the mathematical details, one finds 

(i) the displacement field: 

m 
u - - -  Q~ 1W(~b) sin (0) cos (20) + 0(Q ~) (44) 

m - 2  

m 
v - - -  0 ~ l~(~b) cos (0) cos (20) + 0(¢ ~) (45) 

m - 2  

m 
w - ¢~-1~(~b) cos (20) 0(0 ~) (46) 

m - 2  

where 

m 2 tan cos (a - 1)q~ + - -  sin (~ -- 1)q5 
m 

. ~  l~.B~R~sin~.{1 ~__~ ta~(2) sin (2 - e)~b + cos (2 - a)~b} 

(47) 

0~ ,~  = ~.~2~{3m:2(~. .~ ' .  (o-1)  } 
~ )  tan ~-~- )  sin (c~-  1 ) ~ b - 2  m cos (c~-  1)q~ 

~ ( 1  ~.~ sir ~. {1 ~ tan (~;) cos (e - 2)~b + sin (~x - 2)~b}. (48) 
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(ii) the stress field: 

2raG { 
fizz - -  m 7 - 2  0~(0: - -  1)0~-2Bo (2) sin (c~ - 2)q~ + (~ - 2 ) s in  ~b 

[ ( ~ )  tan ( 2 )  sin ( e -  3 ) ~ b -  cos ( c~ -  3),;bl} cos ( 2 0 ) +  0(0 ~ 1). 

(49) 

~rz 
2raG f / l - c < \  / ~ r c \  

~ ( ~ - - 1 ) 0  ~ 2B~2) ~ | - - 1  tan 1 ~ - 1  
m - 2  t \  c~ / \ Z l  

sin (~ - 2)q$ + (e - 2 ) s in  4b 
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. [(~)tan(~)cos(~- 3,~ + ~in~- 3'~1} cos (20) + o(o ~-1) 

(50) 

rxz = r rzs in0  + 0(0 ~-1) (51) 

ryz = ZrzCOSO + 0(0 ~-L) (52) 

• r0 = 0(0 ~-L) (53) 

2m~ { ( ~ )  (2) arr -- - - ~ ( ~  -- 1) 0~-2B~2) 2 tan cos(c~ -- 2)q$ + sin(c~ -- 2)4, 
m - - 2  

( ~  2,~n~I(~)tan(2)s~n(~ 3,~ cos(~ 3'~]} 
x cos (28) + 0(0 ~-1) (54) 

2rag c~(c~-1)0~-2B~2){2( m +  1 ) ( ~ - ~ ) t a n ( 2 ) c o s ( e -  2)4b 
ffoo - m----~ m 

(~+2) [ ( ~ )  (2) + sin (~ - 2)q5 - (c~ - 2) sin ~b tan sin (~ - 3)4~ 
m 

- c o s  ( e -  3 )4 ]}  cos ( 2 8 ) +  0(0 a 1) (55) 

Finally, it should be noted  that  the coefficient [B~2)/m - 2] can be shown to be propor t ion-  
al to Poisson's  ratio v. This mat ter  has been discussed in [5] where the solution, th roughou t  
the thickness of  the plate, is presented. 

Conclusions 

The foregoing analysis clearly shows that  the stress field in the ne ighborhood  of  the corner 
point,  i.e., the point  where the hole surface intersects with the free of  stress boundary  plane, 
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has no stress singularities present, provided that the radius of the hole is sufficiently large that 
the condition ~ ~ a is meaningful. Moreover, the stress field has been shown to be propor- 
tional to Q~-2. It is interesting to note that the first root is the same as that obtained by 
the William's solution for a 90deg corner with free-free of stress boundaries,* i.e., 

= 3.73959 _+ i1.11902. While this result was to be anticipated on intuitive grounds, it 
could not be taken for granted. 

An extension of this analysis to other angles of intersection reveals the same first root as 
that predicted by the William's solution. Thus the William's solution has a further applica- 
bility than was originally thought. 

Perhaps it is noteworthy to point out the importance of the general 3D solution for it 
reveals the inherent form of the solution at such neighborhoods thus making its explicit 
construction possible. This simple problem was used as a vehicle to show how some of these 
characteristics may be utilized in order to construct such a solution. For the solution in the 
interior of the plate, the reader is referred to [5]. 
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R~sum& Dans le m6moire, l'auteur 6tudie le champ analytique des contraintes au voisinage de l'intersection d'un 
trou et d'une surface libre. En utilisant une forme de solution g+n6rale fi trois dimensions, on retrouve les champs 
explicites de d6placement et de contraintes en une telle zone. De plus, l'analyse montre que la solution compl6men- 
taire doit 6tre proportionnelle gt ~ exp (~ - 2), o/1 c~ est ind~pendante du module de Poisson v. I1 est int6ressant 
de noter que la racine premi6re obtenue est exactement celle que fournit la solution par Williams du probl~me du 
coin fi 90 ° dont les surfaces libres sont libres de contraintes. 

*Prof. G. Sinclair recently brought to the attention of the author the work of Aksetian [6], who using the method 
of scaling was able to obtain the same characteristic value without actually having to solve the boundary value 
problem. 


