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On the Prediction of Fatigue Cracks at Holes

E.S. Folias

Department of Mathematics, University of Utah, Salt Lake City,
Utah 84112, U.S.A.

INTRODUCTION

It is well known that the majority of fractures that
occur in engineering members are due to repeated
loads or fatigue. It is important, therefore, that
designers have a complete understanding of this
phenomenon and how to deal with it. When we speak
of repeated loads we are usually referring to moving
parts or members which are found in engines,
turbines, pumps, motors, etc. Fatigue failure is
the phenomenon of progressive cracking and, unless
detected early it can lead to catastrophic failures.

The exact mechanism of the initiation of a fatigue
crack is extremely complex and thus not very well
understood. Nevertheless, discussions of some
fatigue theories can be found in the existing
literature, Broek, (1974), Hertzberg, (1983),
Cherepanov, (1977), and will not be addressed
here. It is more important for us to examine where,
when, and under what conditions a fatigue crack is
most likely to initiate. 1If a repeated load is
large enough to cause a fatigue crack, the crack
will initiate at a point of maximum stress. This
maximum stress is usually due to a stress
concentration often referred to as a stress riser.

Hlress concentrations can occur in the interior of a
member as a result of the inclusion of a foreign
matter or voids in the material, They can also

oceur on the exterfor surface of the member in the
form ol meratches, rust plta, machining marks or
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even sharp corners. There exists an overwhelming
experimental evidence which points to the
undesirability of the presence of such flaws and
emphasizes how important it is for the engineer to
take great measures to eliminate all adverse
conditions which may lead to the initiation of a
fatigue crack. For example, high quality control
may reduce the chances of interior imperfections.
Polishing of the surface of certain critical areas
may also be necessary. Finally, a careful design
may also reduce stress concentrations. The ultimate
strategy, therefore, is to take appropriate measures
850 t??t no crack, however small, will manifest
LtselrL.

Despite careful design, practically every structure
contains stress concentrations due to holes. Bolt
holes and rivet holes are necessary components for
structural joints. It is not surprising, therefore,
(hat the majority of service cracks nucleate in the
vicinity of a hole. The subject of eventual concern
in to derive reliable design criteria which can be
uned to insure the structural integrity of the
joints for the entire service life of the

pwlructure., In deriving such criteria, the knowledge
ol the three-dimensional stress concentration factor
in a prerequisite,

Gternberg and Sadowsky, (1948), used a modified
vergion of the Ritz method to find an approximate
nolution to the stress field of a plate weakened by
n cylindrical hole. Far away from the hole, the
plate was subjected to a uniform tensile load.
Subsequently, Alblas, (1957), investigated the same
problem whereby, assuming a certain form of the
three-dimensional solution to Navier's equations
wag able to express the stress field in terms of a
net of complex eigenfunctions. Finally, Reiss,
(1963), employed a formal asymptotic expansion
method to obtain "three-dimensional" corrections to
those of plane stress theory. In all of the above
papers the focus of the investigation has been on
diameter to thickness ratios greater than or equal

to 0.5, The author suspects that this was due to
(he enormous mathematical difficulties that this
problem presents. Be that as it may, their results
nhowed the stress concentration factor to attain its

maktlmum in the middle of the plate and to decrease.
parabolically as one approaches the, free of sgtress
plate surlfaces.
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This trend, however, does not seem tO explain the
experimental observations that for thin plates
fatigue cracks either develop at the corner, ie.,
where the hole meets the free surface, or at the
center of the plate. On the other hand, for
relatively thick plates the crack almost always
appears at the corner. Moreover, there exists no
precise definition as to what constitutes a thin or
a thick plate.

For this reason, Youngdahl and Sternberg, (1966),
investigated the stress field in an elastic half-
space with a semi-infinite transverse circular
cylindrical hole. Their results showed that all of
the three-dimensional effects were highly sensitive
to changes in Poisson's ratio and became more

pronounced at larger values of this parameter.

The purpose of this paper is two-fold. First to
show that the solution is derivable from the general
three-dimensional solution which the author
constructed in a previous paper, Folias, (1980), and
second to obtain the stress concentration factor for
all diameter to thickness ratios thus bridging the
gap between thin and thick plates and furthermore
offering a definition of what constitutes a thick
plate.

FORMULATION OF THE PROBLEM

Consider the equilibrium of a homogeneous, )
isotropic, linear elastic plate which occupies the

space |x| < =, |y| < » and [z| < h and contains
a cylindrical hole of radius a, whose generators

are perpendicular to the boundary planes. Let the

body be subjected to a uniform shear load (see Fig.
1) which is parallel to the boundingplanes.
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Flpg. 1. Geometrical confipuration and loading.
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In the absence of body forces, the coupled
differential equations governing the displacement
functions wu, v, and w are

el B -3, 2 -
m-2 (ax >3y az)e + v u,v,w =0, M
where v2 is the Laplacian operator,
m = % , v is Poisson's ratio,
u Y ow
2, B = e o
; X 3y 9z ’ (2

and the stress-displacement relations are given by
Hooke's law as

0 = 26(52 + =S5} .., Txy=c{§‘yi+g} (3)
with G Ybeing the shear modulus.
At to the boundary conditions, one must require that
as x| » o T Ty G, =0 (4)
as |yl » e Ty, Pt = O,cyy =0 (5

W |z| = h: T ™ T =G = (ba)
at r = a; s = g Bm =10 (6b)

In treating this type of problem it is found
convenient to seek the solution into two parts, the
"undisturbed" or "particular" solution which
satisfies Equation (1) and the loading and support
conditions but leaves residual forces along the
crack, and the "complementary" solution which
precisely nullifies these residuals and offers no
contributions far away from the crack. Such a
particular solution can easily be constructed and
for the problem at hand is:
(r) :

- 1,8in(20) @)

Ly sin(20) (8)

Iy ' B cos(20) 9)
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MATHEMATICAL STATEMENT OF THE COMPLEMENTARY PROBLEM

In view of the particular solution, we need to

construct three functions u(c)(x,y,z),

gk

c)(x,y,z), and w(c)(x,y,z) such that they

satisfy simultaneously the partial differential
Equation (1) and the following boundary condition:

a

a

t r=a: Grr(C) = -crr(P) (10)
() _ (P)

Tre " "Tro an

Trz(C) - —Trz(P) (12)

t |z| = h: UZZ(C) = TXZ(C) = ryz(c) =0 (13)

Furthermore, in order to complete the formulation of
the problem we require that the complementary
displacements and the complementary stresses do
vanish as r » o,

METHOD OF SOLUTION

A

general solution to Navier's equations for plates

of uniform thickness, 2h, and with plate faces
free of stress has already been constructed by the
author and the results can be found in Folias, (1975
and 1980). 1In particular,

The displacement field:

+

+

u(c) =1l E A EEX {2(m-1) cos(B h) cos(Bg z)
m-2 v X v v
v=1
+ msvh s1n(3vh) cos(svz) - mg z cos(svh) 31n(3vz)}
*
© 8Hn
n£1Bn I cos(qnh) cos(anz)
2
ol 7L
I, -y 3+ 12 > (14)

X mtl 39Xy
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() 2

1 0
v = 21 A ——§ {2(m-1) cos(svh) cos(svz)

+ vah sin(th) cos(sz) = msvz cos(th) sin(svz)}

*
o, 3m-1
- B —= h —
nz1 ) e cos(a ) cos(a z) + o 13 + 12
2
_ya_13__1_22“3 (15)
9 +
y  mt+] ax2
gle) 1 .
-y Z AvHva{(m-Z) COS(th) 51n(8vz)
- mg h 31n(3 z) - mg z cos (B h) cos(B z)}
2 ol
n+1 ay (16)
where A and B, are functions of B and
4 regpectively, v
num
B B0 D=1,2,3 .0, Qa7
R are the roots of the transidental equation
aln(? = (=
11[1(,.[§vh) ( Zth) (18)
and the functions H and H* satisfy the
reduced wave equation? ie. ?
) 5
) H\) HZH 9
7= F > - BIH = 0
) Dy’ s
il
»”A 92 A
) 0 H
9k
gkl L gAY 0,
) % ilv' n n
andd Laa il ANd | are, two-dimenslonal, harmonic

funcetiona, By diredt subastitutlion into the
poverning equatlona and the appropriate boundary
eondlitliona, one can eamlly show that the above
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displacement field does indeed satlsf¥ yav1ef ?
equations and that the stresses
(c)
T
vz
Moreover, the displacement field is complete and
general enough so that the remaining boundary
conditions can indeed be satisfied.

xz ’

and do vanish at the plate faces.

A careful examination of the stress field, the
governing equations, and the appropriate boundary
conditions suggest the following functional
representations for

K2<B r)

H = ——%-— sin(29) (19)
Y
B
% K7(a r)
Hn =5 cos(29) (20)
%n
I1 = 2% cos(38) - % coso 21)
T8 D
12 = - ;§ sin(39) + - sino (22)
I, = £ sine (23)

where K,( ) represents the modified Bessel
functlon of the second kind and of order two.

Finally, it remains to satisfy the boundary
conditions along the surface of the hole. By taking
‘advantage of the local coordinate system, one can
show after some manipulations that the remaining
boundary conditions become:

2 3 1 82}.(2(8\)&)
m-2 z Asz(Bva) cos(th) COS(BvZ) e A .
v=1 a(sv;;~—

o {2(m-1) cos(svh) cos(an) + vah s1n(6vh) cos(svz) -
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-ng 2 cos(th) s1n(sz)} +

o 9 8K2 (ana)

2

e z B {_ s - = ((! a)

ey Dea B(una) (ana)z KZ n J

T

o cos(anh) cos(anz) = - 5% +

1 6C 2 6B 2C
w4 2 - 4t g |zl < e

a a a
| i e,

m-2

T o ¢

R GO Gl AL

o {2(m-1) cos(th) cos(sz) + vah sin(svh) cos(sz)

LI cos(ﬁvh) SLn(sz)} +

2
0 d K2 ( ana) 1 BKZ ( ozna) 4
9 B { 8(qna)2 - (ana) B(ana) i (ana)Z KZ(ana)}

1

12_cz%, 12B _ 20
v iy ALy Sl
a a

T
A 5 =2 ..
e ( ().,(nc“h) u)s(anz) G N

K, (8 )
(s a) {cos(s h) sin(8,2)

2

9 '
m put ¥
g h o sin(g h)sin(g 2)
\) \) Vv

bz cos(p h) cos(p 2)} - ) B I
i 4 ¥ n .I

® [, (o f) cos(a h) sinCa ) 0;
2T N N

|z| < h (25)

(26)
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It is interesting to note that the 6-dependence
has now been eliminated and that it remains to solve

for the unknown complex coefficients Av’ and for
the real coefficients B,. Moreover, the right hand
side constants B and C can be shown to be
functions of A and B, which in turn are

proportional to?

9

~ Tro 27

Thus :

lim o,, = © (28)

V30

ii@ Oeelr=a =4 Ty (29)
o= -n/h

These results are compatible with our expectations
for they represent the results of an exact solution.

DISCUSSION OF THE RESULTS

Without going into the mathematical details the
system of equations (24) through (26) was solved
numerically, and the stress concentration factor

at o = -n/b and r = a was computed for various
radius to thickness ratios, (a/h), and for
Poisson's ratio of v = 0.3. All numerical work

was carried out in double precision and a
sophisticated algorithm was used for the evaluation
of the Bessel modified function of the second

kind. The results are shown in figures 2 through 6.

It is observed that at least for the ratios of
(a/h) > 0.5 the stress concentration factor attains
its maximum in the middle of the plate and it
decreases as one approaches the free surfaces. On
the other hand, for ratios of (a/h) < 0.2 the
stress concentration factor attains its maximum
close to the plate faces. For example, for

(a/h) = 0.05 the stress concentration factor
attains its maximum at (z/h) = 0.95 where its
magnitude is by 11% higher than that of the center
of the plate.
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Fig. 2. Stress concentration factor through the
thickness for Poisson's ratio of
v=0.3. .
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Fig. 3 Stress concentration factor through the

thickness of Poisson's ratio of v = 0.3
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Fig. 4 Stress concentration factor through the

thickness for Poisson's ratio of v = 0.3

As a practical matter, one may draw the following

conclusions:

1. For ratios a/h > 0.3 and all other conditions
being equal, fatigue cracks are most likely to
appear at the center of the plate.

2. For ratios a/h < 0.2 fatigue cracks are
most likely to appear close to the free
surfaces of the plate, e.g., see Broek, (1974).

3. The fatigue life of the member may be
substantially shorter than that predicted by
the two-dimensional elasticity theory.
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