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Foreword

In closing this 20th year of publication of the International Journal of Fracture (the
International Journal of Fracture Mechanics until 1973), the editors have chosen to devote
this issue to reprints of papers published during the life of the journal. The selections have
been difficult inasmuch as there have been well over 800 contributions, excluding
consideration of the 600 Reports of Current Research. Of necessity, therefore, a certain
element of subjectivity was injected in the final presentation of the Editors’ selection. One
quantitative element, however, was included based upon references in Science Citation
Index. We have found that the two most frequently cited works, which were also among
the Editors’ recommendations, were to S.N. Zhurkov, Kinetic Concept of the Strength of
Solids [1 (1965) 311] and A.G. Evans and S.M. Weiderhorn, Proof Testing of Ceramic
Materials — An Analytical Basis for Failure Prediction [10 (1974) 379].

Many of the contributions generated a succession of related papers. One example is
that of E.S. Folias, An Axial Crack in a Pressurized Cylindrical Shell [1 (1965) 104], which
along with his own related work on cracked spherical shells [1 (1965) 20], circumferentially
cracked cylinders [3 (1967) 1], initially curved flat shells [S (1969) 327] and spherical
vibrations [7 (1971) 23] stimulated work on axial cylinders by Copley and Sanders [5
(1969) 117] and circumferential cracking by Sanders and Duncan-Fama [8 (1972) 15].
Erdogan and Ratwani followed with contributions to cracked cylinders having fatigue and
circumferential cracks [6 (1970) 379], torsion loading [8 (1972) 87], plasticity {8 (1972) 413]
and two colinear cracks [10 (1974) 463]. Erdogan and Kibler also discussed cracked
cylindrical and spherical shells [5 (1969) 229], while Ratwani and Yuceoglu combined with
Erdogan to treat orthotropy [10 (1974) 369]. Another contributor to papers on the axial
crack in cylinders during this time was Murthy, Rao and Rao [8 (1972) 287].

Another example of a stimulus for a branch of work was provided by the paper by
Malyshev and Salganik [this issue and 1 (1965) 114] which presented a novel debonding
test in the form of a circular metal plate bonded to a base plate which was then separated
from it by a point load inserted through the base plate. This specimen was subsequently
extended to employ an internal pressurization — a “blister test” having limited, environ-
mentally controllable volume — and applied to various engineering situations such as the
debonding of thin films as discussed in the analytical and numerical adhesive fracture
work of S.J. Bennett et al. [10 (1974) 33], G.P. Anderson et al. [10 (1974) 565], and
including the Updike [12 (1976) 815] numerical analysis for a finite adhesive interlayer.
5.S. Wang et al. {14 (1978) 39] contributed a numerical analysis also involving an
interlayer, but in a double cantilevered beam, wherein a special crack tip finite element
was used. In the same year Wool [14 (1978) 597] presented a simple analysis and test for
the peeling of thin tapes.

Problems associated with angled cracks were discussed by J.G. Williams and Ewing [8
(1972) 441] from the experimental point of view as reprinted in this issue; Goldstein and
Salganik [10 (1974) 507] also commented on the analytical aspects of non-straight cracks.
Other amplifications related to angled-cracks in cylinders, were provided by Ewing and
Williams [10 (1974) 537] and in flat plates by Cotterell and Rice [16 (1980) 155]. Aspects
of numerical analysis were contributed by Lakshminarayana et al. [19 (1982) 257].
Portions of the angled crack problem expanded from the then current literature for mode
I were treated by Simonson and Jones [6 (1970) 65] and later corrected by Smith [9
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(1973) 181]. An important problem still remaining is to show any association between
elastic analysis applied at the “kinking point”, where the local conditions are no doubt
highly inelastic, and the actual behavior in real material.

The general matter of running cracks has been one of continuing interest, but many
analyses only apply to a crack tip moving at constant velocity. One exception is the
reprinted paper by Kostrov [11 (1975) 47] in which the velocity may vary with time, but in
general it seems that additional work is needed to settle the crack initiation conditions,
both as to the critical load and the time dependent movement of the tip, especially in real
materials. Another exception is the approximation by Rose [12 (1976) 829] used for an
anti-plane deformation analysis. Shirrer and Pixa [this issue and 11 (1975) 1003] exhibited
some good experimental techniques in velocity measurement in a photoelastic material
using the Cranz-Schardin camera, as has Doll [12 (1976) 595] in a combined experimental
analytical paper dealing with PMMA.

Other dynamic phenomena relate to shock waves and spallation, e.g. Tuler and Butcher
[this issue and 4 (1968) 431], fracture created by dilatation waves authored by Achenbach
and Nuismer [7 (1971) 77], and supersonic crack propagation by Winkler et al. in two
papers [6 (1970) 151-158, 271-278]. An interesting subsonic crack propagation problem
in which a rigid slender wedge penetrated an elastic body at a speed exceeding the
Rayleigh velocity was given by Barenblatt and Goldstein [8 (1972) 427]. No open crack
was found ahead of the wedge. From an overall standpoint, the most recent pertinent
review article in the Journal was by Rose [12 (1976) 799]. At the low end of the rate scale,
there have been many papers relating to the fatigue process although this subject, except
for the two special review issues edited by H.W. Liu for non-metals [16 (1980) 481] and
metals [17 (1981) 19], has not been emphasized in the International Journal of Fracture.
Indeed, while dislocation models of the fracture process have also not been emphasized,
this approach is quite popular, e.g. Weertman [this issue and 2 (1966) 460], and may be of
special value in analyzing fatigue.

Papers from the Journal have also contributed to the literature over a wide variety of
topical problems in fracture, as for example special finite elements in numerical work by
Byskov [this issue and 6 (1970) 159] and later work, e.g. Holston [12 (1976) 887]; the
Smith [this issue and 11 (1975) 39] comparison of various crack extension criteria such as
those by Griffith, Barenblatt and Elliott; the generalized energy failure criterion by
Atkinson and Eshelby [this issue and 4 (1968) 3]; mixed crack mode failure by Sih [10
(1974) 305]; viscoelastic fracture analysis, e.g. M.L. Williams [1 (1965) 292, 4 (1968) 69],
Knauss [6 (1970) 7], J.G. Williams [8 (1972) 393), four papers by Schapery [11 (1975)
141159, 369-388, 549562, 14 (1978) 293}, and Christensen [15 (1979) 3]. The probabilis-
tic theory of fracture has not been neglected. It was described by Evans and Weiderhorn
{this issue and 10 (1974) 379] with application to ceramics, experimental data from
Bartenev {5 (1969) 179] on flawed and unflawed glasses, certain theoretical observations
by Batdorf [this issue and 13 (1977) 5] and the series of papers by Phoenix, Harlow and
Pitt [17 (1981) 347, 17 (1981) 631, 20 (1982) 291].

One of the more unusual subjects introduced to the western world through the Journal
was the Zhurkov paper [1 (1965) 311] presented to the First International Congress of
Fracture at Sendai. His paper, reprinted in this issue, concerned the connection between
gross macroscopic applied stress and microscopic bond separation as deduced by electron
spin resonance spectroscopy. It sparked many follow-up research extensions and qualifica-
tions to his basic premise, e.g. Kausch [6 (1970) 301] and De Vries [7 (1971) 197] and
formed much of the basis of the special 60th Zhurkov Anniversary Issue [11 (1975) 721]
prepared by his world-wide colleagues and published in the October 1975 issue.

As a personal observation, there seems to be a need for increased attention on the part
of the fracture community to what might be called “non-standard” problem areas,
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experimental, analytical, and application. Some immediate candidates come to mind,
along with illustrative contributions from some of our Journal’s contributors. First, there
are the materials and applications areas that have not normally been treated extensively in
our papers, but might benefit from the synergism of related fields, e.g. rock mechanics, e.g.
Hoek [this issue and 1 (1965) 137], concrete, e.g. Varder-Finnie [11 (1975) 495], and even
medical applications of fracture — both elastic and viscoelastic — as in the cracking of
human bones, teeth, and tearing in skin and muscle tissue. Second, three dimensional
fracture analysis, in the sense of an elastic stress singularity equivalent to the inverse
square root character of the stress in two dimensions, although, for example, the work of
Cruse and Van Buren [7 (1971) 1], Yamamoto and Sumi [14 (1978) 17], and Folias [16
{1980) 335] is duly noted. Third, new approaches such as might be contained in statistical,
inelastic and finite deformation theory may be needed in order to provide the next major
breakthrough., Without attempting any preferential evaluation, the next ideas may follow
from such examples as the nonlinear fracture mechanics work of Burns et al. [14 (1978)
311], non-local theory of elasticity applied to fracture as proposed by Eringen [14 (1978)
367), statistical analysis of thermally activated fracture by Petrov and Orlov [12 (1976)
231], finite elastic analysis using the fully non-linear equilibrium theory as advanced by
Knowles [13 (1977) 611] or the addition of small deformations to a basic large deforma-
tion theory, e.g. Selvadurai [16 (1980) 327].

Unfortunately space does not permit elaboration upon other important contributions
over the past 20 years, emphasizing the earlier ones as might be expected, while the later
papers are becoming disseminated and digested. One item does, however, intrigue us very
much. It is the 600 Reports on Current Research since 1971 and the impact they may have
had upon setting trends and stimulating further investigations. This matter will at least be
monitored in the future.

On behalf of the entire Board of Editors, I wish to offer my personal thanks to our
contributors and reviewers over the past 20 years and to our publisher, from its first
antecedent, Noordhoff Publishers, to its present successor, Martinus Nijhoff Publishers.
In conjunction with the dedicated editorial and administrative assistance provided by our
Associate Editor, Melba C. Williams, to whom we acknowledge a special note of
appreciation, the technical editors wish to express their indebtedness for the high caliber
of input from all the participators,

M.L. WILLIAMS
University of Pitisburgh
December, 1984
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AN AXIAL CRACK IN A PRESSURIZED CYLINDRICAL SHELL

E.S. Folias*

ABSTRACT

Following an earlier analysis of a line crack in a spherical cap, the stresses in a cylindrical shell containing
anaxijal crack are presented, The inverse square root singular behavior of the stresses peculiar to crack problems
is obtained in both the extensional and bending compouents. This singularity may be related to that found
in an initially flat plate by

Y shell c 2
=~ 1+ (a+bln ) — t ..

Oplale VRE Rh

where the quantity in parentheses is positive. An approximate fractute criterion, based on Griffith’s Theory,
is also deduced, and bending-stretching interaction curves for this case are presented,

INTRODUCTION

In a recent paper{!), the stress fields in the vicinity of a line crack in
a spherical cap were determined. It was pointed out that bending loads
induce extensional stresses, and vice versa, so that the subject of eventual
concern is the simultaneous stress fields produced in an initially curved
sheet containing a crack. Of the two simple geometries which may first
come to mind, a spherical shell, and a cyclindrical shell, the former was
studied first because the radius of curvature is constant in all directions,
affording considerable mathematical simplification. In the latter case, how-
ever, the radius varies between a constant and infinity as one considers
different angular positions with respect to the point of a crack aligned
parallel to the cylinder axis. In a previous treatment of this problem,
Sechler and Williams(? suggested an approximate equation based upon the
behavior of a beam on an elastic foundation, and were able to obtain rea-
sonable agreement with experimental results. Using techniques developed
earlier, the author has been able to investigate this problem analytically,
and the results are given below; certain details of this work have been
omitted here but may be found elsewhere(®)

FORMULATION OF THE PROBLEM

Consider a portion of a thin, shallow cylindrical shell of constant thick-
ness h and subjected to an internal pressure q,. The material of the shell
is assumed to be homogeneous and isotropic; Earallel to the axis there
exists a cut of length 2c. Following Marguerre(®, the coupled differential
equations governing the displacement function W and the stress function
¥, with x and y as dimensionless rectangular coordinates of the base plane
{see Figure 1) are given by

Ehe? 32W
R 9 x2

+ VF = 0 (1)

) c? H%F
}W R qo c4 (2)

RD 9x? D

v
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——— m TOP VIEW

Figure 1. Geometry and Coordinates

where R is the radius of the cylinder. As to boundary conditions, one must
require that the normal moment, equivalent vertical shear, and normal
and tangential in-plane stresses vanish along the crack. However, suppose
that one has already found* a particular solution satisfying eqns 1 and 2,
but that there is a residual normal moment My, equivalent vertical shear
Vy, normal in-plane stress Ny, and in-plane tangential stress Ny, along
the crack |x|«< 1 of the form:

My = - Dmg/e2 (3)
v,® =0 (4)
N = n fe2 (5)
Ny® = 0 (6)

where m, and n, will be considered constants for simplicity.

Assuming, therefore, that a particular solution has been found, we need
to find two functions of the dimensionless coordinates (x,y), W(x,y) and
F(x,y), such that they satisfy the partial differential equations 1 and 2 and
the following boundary conditions.

Aty = 0 and Ix1< 1:

a2 w 3°W|] Dm
My(x,o)= - — + v = 2 (7)
02 -_ay2 ax2 C2
p[a®w 3’
V, (x,0) = - —[=—+ (2-v) =0 (8)
cdfay3 8 x% ay
1 8°F n
Ny (x,0) = — —— = — (9)
c? 9x? %
2
1 &F
Ny (x,0) = - — =0 (10)
cZ dxdy

Aty = 0 and ix! > 1 we must satisfy the continuity requirements, namely

* As an illustration of how the local solution may be combined in a particular case see Reference 3.
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lim 3" 3" ]
(W) - (W-)] = 0 (11)
[yl —~oloy" ay" i
. a“ 1 T
im 18 ey o (poyl =0 (12)
Iyi_.o 3y“ ayn
n=20,1,2,3.

Furthermore, we shall limit ourselves to large radii of curvature, i.e.,
small deviations from flat sheets; we thus require that the displacement
function W and the stress function F together with their first derivatives
be finite far from the crack. In this manner, we avoid infinite stresses
and displacements in the region far away from the crack. These restric-
tions at infinity simplify the mathematical complexities of the problem
considerably, and correspond to the usual expectations of St. Venant's prin-
ciple.

METHOD OF SOLUTION

We construct the following integral representations which have the proper
symmetrical behavior with respect to x, with A* = Ehc*/R?D

Wix,yt) = J {Pl e T VSEA |yl B e Vs(s¥da) |yj P, o TVEE yl
o] e
+ Pye’ $(s428) M} cos xs ds (13)

—
F(x,y*) = -i EhDJ {Ple' Vs @lyly p o ViG] _ p o Vs XE ]

0 e-\/s(s*)\ﬂ) ‘y]}

- P cos xs ds (14)

4
where the P; (i = 1,2,3,4) are arbitrary functions of s to be determined
from the boundary conditions, and the + signs refer toy > 0 and y < 0,
respectively. Also o = i?, B = (-i)t.

Assuming that we can differentiate under the integral sign, formally
substituting eqns 13 and 14 into eqns 7-10 yields respectively:

Hm 3’ -{Pl s (v s-2xa)e” s(s2a) Jy| P, s (v,5 +2a) e” Vsts+i) |y

!)’I—OO
R B, s (v,s -AB) e V(2B Iy}
+ Pys (vys +28) e~ Vs(s+ A8 M} cos xs ds = mg; (15)
Ixf ¢ 1

!limois {Pls(UOS+7la)V s(s - Aaje” VsGAay| Pys{v,s -da) Vs(s+ Aa)
y —
] e.\/s(s+)\x>t) |yi + P, S(UOS + B N s(s - )‘B—)— e-Vs(s-Aﬁ) })"

+ P, sy s -xB) Vs(s + AP e VsGs+AB) M} cos xs ds = 0; (16)

Ixj< 1
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o0 . = . l . — ;
#im i VEhD {pl e V3G Wl o, P, e Vssora) |y P, e Vs XB |y
y|—0 _
4 e L

cos xs ds = ng; (17)

r“
im i EhD) {P
iyi"’O 0

Ve(s-xa e V07 Iyl + P, Vs(s+ia) e’ sGH A |y
- P,Vs(s-2p) e~ Vs(s-xB) |yl
- P, Vs(s+xp) o~ VsG+RB) {Yl} s sinxsds = 0; (18)

1

Ixf< 1

where again the t signs refer to y » 0 and y < 0, respectively, and v, = 1-v.
A sufficient condition for 16 and 18 to be satisfied is to set the integrands
equal to zero. This leads to;

Vals-aBIP, = - (%7 - 3) [Vess-xa B + Vs(s+1a B)
- g—B[\/ s(s-1ad P, - Ve(s +ia) Pz] (19)

Vs(s+)\[3$ p, = (;—LBS + -;—) [\/ s(s -ia) P} + V(s i a) Pz]

+ 2—% [\/ s(s-Aa) P, - Vs(s+2ad PQ] (20)

Next, it may easily be shown that the continuity conditions are satisfied
if we consider the following combinations to vanish

r {Pl\/sis-xa’) (1 +%—°)
° +P2Vs(s+ka) (1-%}cosxsds=0;jx]>1 (21)

j {Pl V s(s - Aa) (1 - )L:—)
+ P, Vis(s + aa) (1 + -Lsa')}cos xs ds

o;|x|>1 (22)

We have thus reduced our problem to solving the dual integral equations
15, 17, 21, and 22 for the unknown functions P,(s) and Py(s). These may
be transformed to a set of coupled singular integral equations of the Cauchy
type, a solution of which may be found in a series form for small values
of the parameter X. Details of the method of solution may be found in
Reference 3. It is an easy matter to show that the physical range of & is
0 £ A< 20 and for most practical cases 0£ A < 2, depending upon the
size of the crack.

Without going into the details, the displacement and stress functions are:



E.S.Folias 255

A, B, Ji(s) - Vs(s-xa) |y
=) —— e

5 2&8
Jy(s) e-mm{(%s LA } (23)
Vs(s - AB)

() VI b
Vs(s + AB)

By Jils) Vstsvad [ . Bo |
D e P 5
B,

} cosxsds

. - A, B, Jl(s) e- R A, By
F(x,y!) = -iVEhD oyl A + (=2

- =2)

s r 2\ s(s- xa) s Ao
SGE
Ji(s) e _i)ﬁa» B, | J;(s) e (s-28)
2 Vs(s+2a) | A8 2 s 2281 Vs(s-AB) (24)

[(uos 1. A, B, | Ji(s) e 2+ 28 1l
s

- Vs(s+ia) |

v, 8

+ —) +
28| V s(s + AB)

AB 2
+ .. .}cosxsds

where

2
n A 42 - 37v
A, = 2 S °

x
- +(12-10v,) (7+ln—)}
VERD 32v, (4 - vg) 3 8

-5u,2 -8 A2
___1.{1£_£1+12U° Yo I }+O(X‘lnk)
u, (4 v,) 4v, {4-1y,) 16 .

2 2 52 2
B, - n, {1+1rk £+12v0_5002-8- . _MB Tv,
i VERD 16 |4 4v, (4 -v,) 32Uy (4 - vo) | 3
Aa
+(10U02 - 14y, ) +4ri+ (10 uo2 - 18 v,) {(y+4n—)+6v, (-y+lnx_B)]}
8 8
2 ; 2 2,2 _
., Mo {'\’o+%” 5,12V, - 5,% - 8 +)\a[37v0 42
v (4 -v,) 16 |4 4vu, (4-v,) 16 6 (26)

+ 5v, (¥ +lnE) - 6 (7+!ni)]§ + 0 )
8 8

having used v = 0.5768... = Euler's constant, Furthermore, it may be
shown, that this series form solution converges to the exact solution for
small values of the parameter X,
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STRESS DISTRIBUTION NEAR THE CRACK POINT

The bending and extensional stress components are defined in terms of
the displacement function W and stress function F as:

E 52w 2
o, = - —2 |2V, W (27)
b (1-v%)c [ ax? ay*
[ 2 2
Ez 4a’w 3*W
o = . + v (28)
Yp (1-v?)e __ay2 9x?
2w
. - 2Gz @ (29)
b c 9xdy
, - 1 B°F (30)
¥e hc? dy?
2
1 9%F
oy == (31)
e he? ax?
'r -1 32F (32)
e he? axay

where z is the dimensionless distance through the thickness h of the shell,
measured from the middle surface. Then in view of eqns 23 and 24, the
stresses can be expressed in an integral form. When evaluated, these give

the following results, where e el® = x - 1 + iy:
Bending Stresses: On the surface z = h/2c

P 3-3vu 8 1-
o, = b (- CO8 — - Y cos 5?-) + O (€°) {33)
b VZe 4 2 4 2
P. 11+5 8 1- 8
o = b (2T s~ + 2 cos 5-) + O (€°) (34)
Yy V3e 4 2 4 2
P 7+v 2] 1-
po= B sin — - —— gin 52) + O (e) (35)
b Vze 4 2 4 2
where
3 no A2 5+ 37v Inr/
P = + 2{(1+5v) (y +Inr/8)
b 16(3+u)V12(1 - v?) he? 3
6 m, D 1+2v+5027 m?
+ + O W n) (36)

1 -
(3+v) h%c? | 4(3+v)(1-v) 16
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Similarly we find through the thickness
Extensional Stresses:

Fe 3 8 1
o, © (~ cos —+— cos sg) + O (€° ) (37}
e VZe€ 4 2 4 2
P
] 9
o, = : (E CO8 — - 1 cos 5-) + O (€°) (38)
e VZ2e 4 2 4 2
P
1 e 1 )
T = —( sin — - = sin 5-) + O (¢°) (39)
Yo V2e 4 2 4 2

where

™
!

. flo 1+5_1rk2
he? 64
Vi2(1 - v%) m, D aA? [5 + 370

32 (3+v) (1-v) hte?l 3
+2(L+50) &y +/na/8)] + 0 (W in (40)

As a result of the Kirchhoff boundary condition, the bending shear stress

Txyb does not vanish in the free edge. For the flat sheet this difficulty

was discussed by Knowles and Wang who considered Reissner bending(® .
Furthermore, it is apparent from the above equations that there exists an
interaction between bending and stretching, except that in the limit as A =0
the stresses of a flat sheet are recovered and coincide with those obtained
previously for bending(® and extension!” . We are thus in a position to
correlate, at least locally, flat sheet behavior with that of initially curved
specimens.

o
&
=z

P
%

Figure 2, Cracked Shell under Uniform Axial Extension N and Intemal Pressure a,

As a practical matter, consider a shell subjected to a uniform internal

R
pressure q, with an axial extension N, = E—, My = 0 far away from the
2
crack (see Figure 2). The stresses along the line of crack prolongation
are found for v = 1/3 and X = 0.98 to be:

79

o (€,0) =

R/h {41)
Y totat € qo, /
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0.97

q, R/h (42)
€

where, based on the Kirchhoff theory, the stresses o, and o, have the
same sign but differ in magnitude. This difference is due to thd fact that
in a cylindrical shell the curvature varies between zero and a constant as
one considers different angular positions with respect to the line of the
crack. On the other hand, for a spherical shell®? and for a flat plate(®,
for which the curvaiure remains constant in all directions, we obtain a
"hydrostatic tension' stress field.

FRACTURE CRITERION

In precisely the same manner used for a fracture criterion for a spherical
cap, we derive the following approximate criterion for a cylindrical panel,
at v = 1/3 and the Griffith stress o* = (16Gvy*/xc)i:

(1 +0,49 a2) (G/o%)2 + 0.21 (1 -0.10 %) (op/o%)?

- (0.04-0.10/n)) X (5, /0%) (5n/o*) + O (Xtna) =1 4%

where the barred quantities denote applied stress. This equation represents
a family of ellipses which are plotted in Figure 3. Note that the curves

[X+]

By

03

Tasar

Figure 3, Extension-Bending Interaction Curves for a Cylindrical Shell Gontaining a Crack, for v = 1/3;

re ¢ 12(1 - 05) c/VRR

cross each other, which did not occur in the case of a spherical shell
(see Figure 4). The author conjectures that this is due to the slower rate
of convergence of the former case and that, when higher orders of A are
used in the solution, the curves will correct themselves to give the same
trend.

Figure 4. Extension-Bending Interaction Cusves for a Shallow Spherical Shell Containing a Crack, for v = 1/3;
A= 3 12(1 - 02) c¢/V Rh

For the special case 0, = 0 eqn 43 reduces to:

(1+0.492%) (5, /0%)2 + O (M fn ) = 1 (44)
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Specializing further to a cracked shell under uniform axial extension N,
q,R/2 and internal pressure q,

qu/h)2

o*

( = 1-0.492° (45)

which gives the maximum internal pressure that the shell may withstand
before fracture. A plot of egn 45 is given in Figure 5. Similar results
were obtained experimentally by Sechler and Williams(® for pressurized
monocogue cylinders.

1o

[oX-1

!
n o
o

1o

(=) (%)

4
Figure 5. Critical (Fracture) Pressure in a Cylindrical Shell, for v = 1/3; A = vV 1201 -uz) c¢/V Rh

CONCLUSIONS

As in the case of a spherical shell,
(i) the stresses are proportional to 1/Ve
{(ii) the stresses have the same angular distribution as that of a flat plate
{iii) an interaction occurs between bending and stretching
{iv) the stress intensity factors are functions of R;
in the limit as R— = we recover the flat plate
expressions. Thus we may write

O 2 1
shetl = 1+{a+bin ¢ )C + O (—
R2

— (46)
O plate VRh Rh

where the expression in parentheses is a positive quantity. From this and
the corresponding result for a spherical cap, it would appear that the general
effect of initial curvature is to increase the stress in the neighborhood of
the crack point. It is also of some practical value to be able to correlate
flat sheet behavior with that of initially curved specimens. In experimental
work on brittle fracture for example, considerable effort might be saved
since, by eqn 46, we would expect to predict the behavior of curved sheets
from flat sheet tests.

In conclusion it must be emphasized that the classical bending theory
has been used in deducing the foregoing results. Hence only the Kirchhoff
shear condition is satisfied along the crack, and not the vanishing of both
individual shearing stresses. While outside the local region the stress
distribution should be accurate, one might expect the same type of discrep-
ancy to exist near the crack joint as that found by Knowles and Wang in
comparing Kirchhoff and Reissner bending results for the flat plate case.
In this case the order of the stress singularity remained unchanged but the
circumferential distribution around the crack changed so as to be precisely
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the same as that due to solely extensional loading. Pending further inves-
tigation of this effect for initially curved plates, one is tempted to conjecture
that the bending amplitude and angular distribution would be the same as
that of stretching.
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RESUM}; - A la suite d'une analyse amiérieure d’une fissure dans une coquille sphérique, on a présenté les
contraintes dans une coque cylindrique contenent une fente axiale, Le comportement singulier de 1’inverse
de la racine carrée des contraintes particuli®res aux probldmes de ripture, est obtenu en méme temps selon
les composantes d'extension et de flexion. Cette singularité peut-€ire rapprochée de celle trouvée dans une
plaque initialement plate, 3 1'aide de:

2
t oo

c.c
Gcogue =1 +(a+bfn E)E
G plaque v

ol la quantit€ entre parenth@ses est positive. On a déduit un critdre de rupture, basé sur la theorie de

Griffith, et on a présenté les courbes d'interaction entre flexion et tension,

ZUSAMMENFASSUNG - In Fortsetzung der frueheren Analyse eines geradlinigen Risses in einer kugelfoermigen
Kappe werden jetzt die Spannungen in einer Zylinderschale, die einen Riss in axialer Richtung aufweist,
gegeben. Die diesen Problemen eigene Singularitaet der Spannungen, die umgekehrt proportional -der Wurzel
aus der Entfernung von der Riss-spitze sind, wird auch hier fuer die Zug- und Biegekomponenten erhalten.
Diese Singularitaet kann zu derjenigen, die in einer urspruenglich ebenen Platte gefunden wird, in folgenden
Zusammenhang gebracht werden

2

g
Schale =1+ (a+bin i) c—+

O platte uRh” Rh
Wobei die Groesse in Klammern positive ist, Ein angenaehertes Bruchkriterium, das auf Griffith's Theorie

beruht, ist abgeleitet worden und Biegungs-Zug Wechselwirkungskurven sind fuer diesen Fall bestimmt wor-
den,



