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PART 1

THROUGH THE THICKNESS CRACK



1. Introduction.

In the field of Fracture Mechanics not very much theoretical work
has been done in order to assess analytically the three-dimensional
stress character which prevails at the base of a stationary crack. As
a result, most of our current design criteria are based on already
existing two-dimensional solutions and therefore are in general
inadequate. For example, the common experimental observation of a
change from ductile failure at the edge to brittle fracture at the center
of a broken sheet material has so far defied analysis. Yet an orderly
theoretical attack on the problem can provide important guidance to
this and other phases of fracture research.

The mathematical difficulties, however, posed by three-dimensional
fracture problems are substantially greater than those associated
with plane stress or plane strain. Be that as it may, the author would
like to investigate the subject further at least within the theory of
linear elasticity. While he recognizes the fact that this theory can-
not include the nonelastic behavior of the material at the crack tip
per se, it can evince many characteristics of the actual behavior of
a cracked plate, including those due to thickness. Thus the theory of

elasticity is a logical fountainhead for detailed theoretical study.



2. Historical DeVelopment.

There exist in the literature very few analytical papers that deal
specifically with the three-dimensional stress character at the base of
a stationary crack. Moreover, in their present form these papers are
not only incomplete but also contradictory. As a result, much con-
troversy and many doubts have been raised. It is appropriate, therefore,
to discuss these papers and their respective results in chronological
order.

In 1972, Benthem, using the method of separation of variables¥*,
was able to solve for the stress distribution in the neighborhood of
the corner point** of a quarter plane crack. His results [2] show that
the stresses there behave like p & » where 0,500 < o < 0.709. In order to
obtain the order of the singularity, Benthem had to trancate an infinite
system which, in turn, he solved for the eigenvalues numerically. This
approach, however, raises three important questions: One, is the
solution really separable, particularly in 6 and ¢ ? Two, is the
solution thus obtained complete? Three, should the numerical deter-
mination of the singularity from a truncated system be trusted?
Unfortunately, Benthem has provided no answers to any of the above
important and difficult questions.

A few years later, Folias, using a method developed by Lur'e [3]
and, the application of Fourier Integral Transforms, was able to solve

[4] Navier's equations for a more complicated problem, that of the

*This method was fully articulated by M.L. Williams [1] for classical
planar elasticity in order to establish the singular behavior at
re-entrant corners.,

**That is the point where the crack front meets the free surface of
the half space.



3-D Griffith crack (see Figure 1). The integrals were subsequently
expanded asymptotically and the stress field, valid in the very inner
layers* of the plate, was recovered. From the results, one concludes
that in the very immer layers of the plate:

(1) the stresses possess the usual singularity,

(2) the stresses posses the usual angular distribution,

(3) the stress intensity factor KI is a function of z ,

(4) exact plane strain conditions exist only on the plane z =20,

(5) a pseudo plane strain state exists and the equation

= +

o, v(ox oy)
is satisfied,

(6) as the plate thickness 2h + « , the plane solution is recovered,

(7) as Poisson's ratio v -+ 0 , the plane stress solution is recovered.

Furthermore, he was able to show that at the corner the stresses are

proportional to
-(z + 2v)
P flj (6,9).

In order to recover the value of the singularity, Folias solved analyti-
cally a difference-differential equation. Unfortunately, because of
the enormous difficulties which the integral representations presented
at the corner, he was unable at the time to recover the functions

fij(6,¢) explicitly.

#The reader should note that the asymptotic expansions are only valid
for (z/h) < 1 and for c/h « 1. This is because h was assumed
to be very large so that a perturbation about the well-known plane-
strain solution could be made.



It should be emphasized that Folias's main result at the corner
should be interpreted as '"the singularity at the corner can at most be
of the order (% + 2v)" . This is because the functions fij(e,¢)
could very well be of the type that do vanish* in the neighborhood of
the corner point. Thus Folias's result may or may not be in contra-
diction with Benthem's.

Researchers in the field of Fracture Mechanics, however, were
unwilling to accept the possibility of an infinite displacement field
on the basis of physical intuition. Consequently, the results were
considered highly controversial and the following two legitimate questions
were raised**: Is the solution really complete? Two, do the series
representations converge? Unfortunately, Folias provided no .answers
to any of the above questions.

In 1976, Kawai [7], using the method of separation of variables
was able to obtain an alternate solution to Benthem's problem. Although
the method of approach is essentially the same as that of Benthem's,
his results are definitely contradictory***, His results show that at
the corner the stresses behave like p-a , where < a<1, In
determining the singularity, Kawai used the collocation method in order
to satisfy the three boundary conditon on the free surface. Thus, as

in Benthem's case, the same questions apply to this work also.

*The reader should note that this result was actually obtained by
'marching out' the solution from the inner to the outer layers, and as
a result such a hypothesis may not be totally unreasonable. See also
comments on p. 5.

**See Discussion of paper by Benthem and Koiter [5] and author's Closure
[6].

***Mathematically, Kawai's method of construction of the solution is
more systematic than that of Benthem's.
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A few months later, Benthemdiscovered that his previously reported
solution was incomplete and that his new results [8] now read

o5 ~p % with 0<a<k.
Here again, the same questions raised during his previous work apply
too.

Finally, in 1977 Kawai [9] reported anerror in his previous
analysis and although the correction affected slightly the value of
o the trend essentially remained the same.

In the meantime, Folias also discovered that his solution of the
difference-differential equation was not quite complete either*. The
correction, however, does not directly alter the basic result at the
corner.

It is interesting to note that Kawai does recover the same sin-
gularity that Folias reported. The singularity (- %n-Zv), however, disappears
as he considers more and more terms in his collocation scheme but at
the same time he experiences convergence problems. This observation
strengthens, perhaps, the hypothesis that Folias's fij(8,¢) functions
do indeed vanish in the neighborhood of the corner point and that most
likely are needed in the very inner layers of the plate. The later has
also been obsérved by Newman [10] for (c/h) ratios less than one,

which is comparable with the asymptotic expansion used by Folias.

*This is not to be confused with the question of completeness of
the solution to Navier's equations, i.e. eqs. (52)-(54) ref. [4].
The corrected result to eq. (85) of reference [4] is given in Appendix I.

I e e S —— T
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Be that as it may, the presence of a third solution obscurred the
issue even further and essentially raised more questions than gave

answers. So the controversy still remains.



3.  Purpose of Present Work.

In view of the preceding, it is evident that mathematical rigour
becomes essential if one is to avoid any possible pitfalls. As a
result, the author decided to seek the answers to the following two
important questions first:

(i) Is the solution of this notoriously difficult problem

unique? And if so, under what conditions?

(ii) 1Is the solution to Navier's equations as given by the
author in reference [4], i.e. eqgs. (52)-(54), general
enough to represent the solution of this practical
problem?

The answers to both of the above questions were given by Prof. Calvin
Wilcox.

First of all, he was successful in provin;‘[lll that a displace-

ment field that satisfies the condition of local finite energy is

unique. This of course is quite a departure from our traditional e 4
T )

2-D fracture mechanics thinking, for the displacements now can‘gé:',
allowed to be singular, Consequently, one may not apriori assume‘them
to be finite as it is Customerily done. In general, such an assumption
makes the class of solutions too restrictive and, as a result, one may
not find a solution to the problem. On the other hand, the solution
could very well give finite displacements everywhere! Be that as it
may, physical intuition should be used with extreme caution,

Second, he was able to show [12] that the Fourier integral expres-

sions**representlng the general solution to Navier® S equations are

¥ See olso ook IT
* ¥*See equations (52)-(54) of reference [4].

X% See  olao 6)0/& ar,



complete and, furthermore, the 'symbolic method' used is justifiable.
In order to prove this, he used a double Fourier integral transform in
x and y and subsequently a contour integration to recover precisely
the same expressions as those reported by Folias in reference [4].
Finally, it remains to determine explicitly the stress field
ahead of the crack tip and throughout the thickness of the plate.
In reference [4], the author, by the use of analytic continuation,
attempted to 'march out' the solution from the inner to the outer
layers of the plate. Although in principle this seems feasible, in
practice it is very difficult and most of all tedious. Moreover,
questions of convergence will inevitably be raised. As a result,
in this paper we will use an alternate and more elegant approach in
order to complete the problem.
By finding the biorthogonal relation for the eigenvectors, we
will set up a double integral equation for the unknown function Vv ,

which, physically, represents the projection of the displacement Vv

onto the xz-plane. The advantages of this new approached over that
of reference [4] are:
(1) we are now seeking the solution to one equation only,
(ii) the unknown function is real and furthermore has physical
meaning,
(iii) the kernel of the integral equation is independent of the

shape of the crack*.

#In this analysis we restrict ourselves to planar and symmetric cracks
subjected to mode I loadings.



4, Formulation of the Problem.

Consider the equilibrium of a homogeneous, isotropic, elastic
plate which occupies the space |x| <=, |y| <« , |z|] <h and
contains a plane crack in the x-z- plane (see Figure 1). The crack
faces, defined by |x| <c, y = 0*, z<h, and the plate faces

|z| = h are free of stress and constraint. Loading is applied on the

periphery of the plate |x| , |y| =« and is given by

In the absence of body forces, the coupled differential equations

governing the displacement functions u, v, and w are
2
Ll . é%ae + Vo (u,v,w) = 0 (1)-(3)

where Vz is the Laplacian operator, m = 1/v , v is Poisson's ratio,

_ou , oV , oW
e__ﬁ+_a_)7+a_z 4)

and the stress-displacement relations are given by Hooke's law as:

19 0 9
g = 2G{§¥-+ ﬁgf} seees Ty = G{5§-+ 5%} 28T E (5)-(10)

with G being the shear modulus.

{
il
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As to boundary conditions, one must require that at:

x| <c,y=0, |z] <h: oy " Tyz =% T 0 (11)
|z] =h P T T Ty T % T 0 (12)
ly] + » and all x DTy T Tyy T 0, 0 = Eb (13)
|x| + e : o =1, =1,,=0. (14)

It is found convenient to seek the solution to the crack plate

problem in the form
u = u(P) + u(c) etc., (15)

where the first component represents the usual "undisturbed" or
"particular' solution of a plate without the presence of a crack. Such
a particular solution can easily be constructed and for the particular

problem at hand is

W@ - 0 @) x,
o, (m-2)
v® - e iy s

o
® - . @222

=
I

where

A= (@1)° - 3@1) + 2.
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5. Method of Solution.

The complementary solution to Navier's equations, subject-to:the
corresponding boundary conditions (12) and (13), is given by reference
[4] as:

(i) complementary displacements¥

w - Jb{(Pl * Iyl Q * gy 2sq &

Iy
- e- s“+8, |yl -
-LIr cos (B h) [ (m-2+m cos?(8_h)) cos(B.z) - (17)
vl Vo Ll v v v
AY
/%ol
- m8 z sin(B z)] + X s e n cos (o, z) }sin(xs)ds

n=1

SR
v - +Jo{(' St 2o p - byl - gy stey &

-¢52+83|y| (18)

cos (8 1) [(m-2 + m cosz(th) )cos (B z) -

o ALy
& msvz sin(sz)] -7 Sn 4@2552 e * B cos(unz)} cos(xs)ds

n=1
(©) _ -sly| | - +BVIYI
W J {(:‘rﬁ' zQ) e Z B\, v 7—!-—5 T cos (8 h)
V

1 f T, e
Tz vel

S

(19)
e [(2m - 2 -m cosz(svh)) sin(sz) - vaz cos(sz)]} cos (xs)ds

*These complementary displacements represent a 'general enough', or
'complete', solution for the satisfaction of the remaining boundary
conditions. For a discussion of this, see reference [12].
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with corresponding stress:

(ii) complementary stresses

ARy lyl
2 e b

2@ L 2 . 2 ; ,
=7 JO vzlrvsv -—_;;Zij:§?= cos (8, h) [sin” (B h)cos (B z)+B 2z sin(B z)] (20)

» cos(xs)ds

Q) % -»’s:+8\,|y|
z p 2 r 2 i
X(S ) Jo{mfé vzlev v JQZIQZ“‘"'COS(BVh)[cos (th)31n(8vz)

Y Yo (21)
-Vs%+a |y

+ B,z cos(B 2)] - nZ So. e sin(o 2)} sin(xs)ds.

-/52+sz|>'|

T (C) oo oo
yz 2
G JO{Eﬁ%'vzl Bvrvi__-1;_-— COS(th)[COSZ(th)Sin(BvZ)v

(22)

| -y |
+ B,z cos(8 2)] - ) Sn-cigzzz' sin(anz)} cos (xs)ds.

o0.S e

n=1



»

y 1
i JO{(Spl +|ylsQ + mr s
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2% - Q) el

O
F —?_2' Zl 321" = cos (B . h) cos(B.z)
m-2 v=1 "viv /52+Bv2 Vv v
(23)
e %2y
1] r =€ - cos (B h) [ (m-2+m cosz(B h) cos(B_z)
m-2 v=1 v )sz+ g\) v v k4
-vaz sin(sz)] .
o 5%y
+ ) S_se N cos(o_2z)} cos(xs)ds
n=1 B o
b 1 22 -s
] J (Eap Q = Py - IyIsQ - Gy s e g
0
. -»’sz+8\,2|yl
2 2. €
b o | EL cos (B.h) cos(B.z)
M2 2, VIV 7s§+6\2) v v
(24)

r

o /2o Iyl
S e i

@ /sz+8v2 -»/52+8\,2 ¥l
e

cos (8 ) [ (m-2+m cos” (8,h)) cos 8,2

- vaz sin(sz)]

cos (cxnz) } cos(xs)ds
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T,C) . -
=+ JO (@GP * 2Py + ooy 2757y + 2lylsqp) e il

8

-Vsz+85|yl

- 5%7 )) T, e cos(8 h) [(m-2+m cosz(th)) cos (B, z) -
v=1
- mB z sin(B z)] (25)
§ 25240 -/52+ailyl )
+ S ——= e : cos(o_z)} sin(xs)ds ,
n=1 ° /sz+a; n

where the * signs refer to y > 0 and y < 0 respectively and the
constants P1 y Q1 , Fv and Sn are to be determined from the remain-
ing boundary conditions. Moreover, o = %g-(n=l,2,3...), and By

are the roots of the equation
Sln(Zth) = -(Zth) . (26)

This equation has an infinite mumber of complex roots which appear in
groups of four, one in each quadrant of the complex plane and only two
of each group of four roots are relevant to the present work. These

are chosen to be the complex conjugate pairs with positive real parts.

The only real root Bv = 0 must be ignored*.

*The first few roots are tabulated in Appendix II.
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By direct substitution, it can easily be ascertained that the
above complementary displacements satisfy Navier's equations and
furthermore the corresponding stresses ogc) R Tzié) 5 Tygc) do vanish

at the plate faces z = zh .

Finally, if we consider the following two combinations to vanish *

o T
2 & 2 1
my% vzl ?g'cos(svh)[ S (th) cos(sz) * BVZ SIn(BVZ)]
(27)
E s S 4m § rv
+ cos(a_z) + = L 5 = 0
n=1 vs o n M2 y=1 ®

and -

5%7 2 Fv cos(th) [ (m-2+m cosz(th)) cos(sz) - vaz sin(sz)]
v=1 (28)
2.2

©  2s7+0
2 2.2 m-1 _
_nzl Iz SnCOS(CXnZ) -T:ﬁSZQl" ZSPI" Zle—O
n

for all |z| <h , then two of the remaining stress boundary conditions

are satisfied automatically, i.e.

Tx§c) = Tyic) =0 forall x, |z]<h and y=0.
We will suppress for the time being the satisfaction of the last
boundary condition and will focus our attention to the continuity
conditions.
As it can easily be seen, all continuity conditons are satisfied

if one considers the following two combinations to vanish

*Notice that the derivative of eq. (27) with respect to z leads to the
integrand of eq. (22).
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= m1d 12
fo EETs R oRTYY
(29)
1 55 | 2
* = Zl—s— cos (B h) [ (2m-2+m sin” (B, h))cos (8, 2)
v:
+mB z sin(B z)] + dm E 1‘_\) } cos(xs)ds = 0 ;
v ¥ =2 y=1 S ’

|x| >c,V|z|] <h.

and

8

o T
4m 2m v 2 2

J T ez L 78 [A+ cos"(8h) cos(2)

0

I~

v=1
(30)

- B,z sin(B 2)]} sin(xs)ds = 0 ; |x| >c ,y]|z| <h.

which by Fourier inversion lead to:

o T
m-1 4 1 2 1 v
"wI s P Tmrsrt mvzl 5 cos(Bh) .

« [(2m-2+m sinZ(th)) cos(B,2) + mg z sin(8 z)] (31)

C
_5\1 =¥ % Jo v(§,0,2) cos(sg)dg

and *

*The reader should note that eqs (31) and (32) automatically satisfy
eq. (28).
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o . T :
o v 2 “Zl ;} 82 cos(8 n)[(1 + cos’ (B ))cos (B 2)
- 8.z sin(B. 2)] = T : (32-- Ly sin(sg)dg
v Vv LI oy 0&7y=0
(32)
@
= % %-Jo 25%%9y=0 sin(sg)dg
=T 4s JC
- 5 V(E’O,Z) COS(SE)dE .
™ Jo
Adopting next the following definitions
@, = 2 . ) .
Zv (z)_(th) [th sm(th) cos (sz) sz cos(BVh) sm(sz)] (33)

253) (2) E-(th)z[s S sin(Bh) cos(8 z) - Bz cos(B ) sin(8,D)]  (34)

-2(8 vh) 2c:os(th) cos (B vz)

2 rC 2
fWey =7 -Tf—_? &5 0 {?z - L 5%} cos(st)ae (35)
/ z
£3) ) = 2shin-2, [© e Zm-z)' 1.2 -
(z) = — (57 JOVCOS(SE) E D Qb o (36)

equation (32) and the second derivative of equation (31) with respect
to z become

© T <h2rC
e TARIOR -;2_511[0 ¥(£,0,2) cos(sE)dE 37
=] s ]

m-Zv1 b

+ -—-Ql}1



and *

@ T
] 3B+ 2P -

m-1
-G L
v=1 s

2/ .2
_  2h[T oV 2
= + E_.JO {;;Z - s“v} -0 cos(sg)dg

-1 2
+ Z(ﬁn}lﬁ) th

respectively, which upon simplifying one has

w1 s Zél)(z) £ )

Next, following reference [13], we can construct the biorthognal

relations

(4} esn = , :
W; (2) = 632 cos(ssh) 51n(B$z) + Bsh 51n(83h) cos(BSz)

and

W (2)

- 2 cos(8¥h)] cos(832) »

- B¥z cos (B*h) sin(B¥z) + [83h sin(B%h)

18

(38)

(39)

(40)

(41)

where Bt stands for the complex conjugate of the Bv roots. The

orthogonality condition now reads

*Notice that the continuity conditions are to be satisfied in the

interior of the plate only.
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L@
o) T h . Z (TI)
I %J_h[W;M) Q) W;(z) Q) [%, _i] [ Y i\dn

v=l s ‘Qfs)(n)
(42)
ey
h £ ()
=1 *(4) *(2) 1 2 n)
kR J_h[wk () Wk )] [0 _1] [f(s) ) } n ,
or
D &L of®0 D@0 - O
2 eV hjg v M (™ v v W
(43)
+ £ mydan
where for simplicity we have defined
h
&, E-H_h Wt ®m 2 Dm o+ 2w - WP
(44)

. »(3)
Z, (n) }dn .

Finally, in view of equations (33)-(36), (40)-(41) and (43)-(44),

one finds after some simple calculations that

X, = -4 8 1)’ cos’ (8 h) (45)
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Ty 2 m-2, (€ h )
eK\) ( 2) =1z TSh (m-_l) JO I V(i,o,ﬂ) cos (s&)
S .

-h

. {(115)2t8vh sin(th) cos (an) - an cos (th) sin(an)
+ 2 (I—“?;l—l—) cos (8, h) cos(B )] (46)

+ @8,)° e (b sin(B h) cos(8n) - B.n cos(Bh) sin(Bn)

+ 2 cos(th) cos(BVn)]} dn dg .

Similarly, from equations (27) and (32), we find that

2 —'4sh2 c th
g o = T [ [7 @ 0mcos (D) coslom n gs @)
+0, : -
n
and
o e - ¢c ¢h
Ql =1 %ET%Q' «[0 I ' V(E’O’n) COS(SE) dn dg . (47b)

Returning now to the last boundary condition, we require that*

*Where we have made use of eq. (28).
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S Z
© T sB 5
- _m V. Y 2
Jo U4 * 53 vzl 2 T2 cos(8 ) [(1 + cos™(B h)) cos(B2)
v
- B2 sin(sz)]
1. N r\) 53 2 A
+ 5:7'v21 ;7 [ ¢§7:§7 -s7] COS(th)[(m-Z + m cos (th)) cos(sz)
’ “8)
- m B2 sin(sz)]
2.2 2
= S 5(5 +0, ) 9 Q,
- ) RS == - (57 + -] cos(a_2)}
n=1 J52+aﬁ J52+ai 2 n
%0
cos(xs) ds= - 78 5 |z| <h, |x| <c

which, upon using the relations (46)-(47) and interchanging the order
of integration, can also be written in the form of a double integral

equation i.e.,

2

¥ .9
%%Tvzl J i {£ v(g,0,n} 5§§E'H1[IX’5|?W»Z] dnde
crac
faces
T e 52
+TT.Hn——z-l J L tx v(g,0,n)) 9X02Z HZ[IX'EI;H,Z] dndz
crac |
faces gy
: 2
- F]-HJ I {i V(E,O,ﬂ)}(ng&) aiaz [xfE] dT]dE
crack
faces

o
= = Zg; |z| <h, |x| <c.
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where

m B\)hz .
H [lxtlsnzl =g X [cos (B h) sin(B z)

+

th sin(th) sin(sz) # sz cos(th) cos(sz)] .

. {B X; I8, |x-£] ] [8,h sin(8 h) cos(8,n) - BN cos (8 h) sin(8 oW

v(x t’;

+

2 1) cos(gh) cos(8,m]

x-g
B\Z) J KO[B\)‘X'I ] dx* - [th sin(th) cos(an)

0

S

BN cos(th) sin(an) + 2_cos(th) cos(an)]}

(50)
+ n:_’_l—l -\)—eK\-) [r_n_g cos(B h) sm(s z) + B h sin(B h)
B2n’
sin(s\)z) + B2 cos (B h) cos(sz)] - {[ - x—g Ko [B |x-g| ]
2

21Xkl x I8 |x-E|] - B @ |x-£])
5 KlBy TOTxE 1 Py

2
N (xih) ']+ [8,h sin(B h) cos(Bn) - Bn cos(B h) sin (B n)

+ 2(%) cos(B h) cos(B m] + [B hz-‘éi—%-Kl[B |x-£]]

BZhZ

" XE ] [B h sin(B h) cos (B n) - B0 cos (B h) sin(B n) + 2 cos(B h) cos (B n)]}

and
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Hy [ |x-£[5n,z2] = 2 :11?
G n

2
Q. 20,
L Ko Bt 1 - ey X (et ] - (G4
o
2 .
+ - - } )S ( Z)
S Ty ) cosle) sinte,

Finally, integrating once with respect to x ‘and z one finds*

~

2

L]

crac
faces

l {+ v(£,0,n} H [|x-£|;n,2] dndg

s3] f J {£ V(£,0,1)} Hy[|x-E|3n,z] dnde

crack

faces (52)
- & i (v, 0, D) ) dnde

crac

faces

%
=- Gpxz; x| <c, |z] <h.

We have reduced, therefore, the problem to that of the solution of a
two-dimensional singular integral equation for the unknown function
v(E,0,n). This solution will be discussed in a subsequent paper.

It is interesting to note that equation (49) is also applicable to
planar cracks of arbitrary shape that lie on the X-z-plane and are

symmetric with respect to both x and 2z -axes**.

*The reader should notice that the function v(£,0,n) has a + sign also.
**The same method of solution may also be used in order to derive a much
more general integral equation which applies to any arbitrary crack shape
or void. This matter is currently under investigation and the results will
be reported in another paper.
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Perhaps it is instructive to point out some of the

advantages of the present formulation over that of reference [4]. These

are:

(1)
(i1)

(iii)

@iv)

we are seeking the solution of one integral equation
the unknown function is real and has physical meaning
the unknown function can be related directly to experi-
mental observations

the formulation applies to a large class of planar

crack problems
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6. Solution to Navier's equations.

Without going into the mathematical details, we may now write
the displacement functions u(c) . V(C) and w(C) in terms of the

unknown function v  (£,0,n) , for |x| <c:

h - 7 -
@ _,1 (" 1-m  x-E ml 3 |y .
B F = ﬁj-c [ v(E,0,m){ 4m 2112 dm ax [l_L—Z—Z]

<K (x-£)“+]y] (x-é;) +lYl
2 2
_+7%n_(21§_zz_nz) az[xs dn de
| ax”  (x-E) +I>’l

1+

;TTI'I f..h v(E,0,n) - (ax" 3%5y) E dn (53)

-C
h
'iir I v(E,0,n) » N dn dz
Th -c J-n 272 oxX
© _ 1 r Ih 1 |y L w2 e g)[X[
v - V(g O,T]){
Ty 2 (x-£) +lyl2 o 9" (x-£) 2oy ]
‘ 2 2
1 2h” 2 _ 2,3 Iyl
+ [5--2" -n7] [ =]} dn dE
4 ax?  (x-£)%+|y|
_ v (54)
1 (¢ h " 3 N ; ’
= 'ﬂ.‘fjnc»[- V\E’O:n) (3}(3)’) d dE ‘

. _15[: jhh V(EI 0,m) 3 dn ée:
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h ¢c
(c)_ 1 . 1 3 (XE)Z de d
) "hjhf;cv(g’o’n) e [( -£) +|Y| rl &

(55)

T+

3~

h C' - 5 -~ _
[ ] veom Femaa,
sh’/-c )

where for simplicity we have adopted the following definitions:

'E K, [ *’(X-E) +yl 7]

2 _ 56
cosanz cosann‘ . (56)

n=1 a
n

N

'ME—?l:r 1_](:{(u+ coth) cothcosB z

K eniyh .

| '.- vs\;'z cossvh sinBv'z} { -

%%

(57)
. P L m—lﬁt;
| [8,b smB\,h cosBn - B n cosB h sing n+ 2 (=) cosBh cosB n]
o Bv KO[B\JV x-E 2+|y|2 [ 8,h sing h cosB n -B W cosB h sms o+

~ + 2 cosBh cbsB\;n]}

and -



. B2 k. 18, /cx g)z+lylzl
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<
iy
o

A\

; ,'—_// z —llc—cosB h cosB z { - —2- O[B v’(X- ) +l)’l 1

[Bhsmshcosﬁn—Bnc0>8h5m3n+2( )cothcoan]

(58) .
[Bhsmthoan—Bncothsmsn

+ 2_costh costn]} .

In view of the above, it appears that the solution may not be
separable either in cylindrical or spherical coordinates.

Finally, one may express the total strain energy stored in the

system to be:

h c

W= - %— J J {(v+ - v )o.} dxdz . (59)
Y y=0
-h -c r=



7. Discussion

Although we have put forth a considerable amount of effort to solve
the double singular integral equation, we have not as yet been successful
in recovering, explicitly, the unknown displacement function v (x, o, z),
valid throughout the thickness of the plate. This is an extremely difficult
problem where physical intuition can be misleading.

At present we have developed two methods which in principle should
give us the desired solution. Unfortunately, in order to recover the
corner singularity, one is forced to sum up, analytically, a double series
of complex eigenfunctions. This is a task of monumental difficulty, for
the algebra is tedious and long.
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APPENDIX 1I.
To find the complete homogeneous solution of equation (82) of
reference [4], we proceed as follows.
Assume first a solution of the form
2-
£® i) = @6
where G(z) is an arbitrary function of z . Next, substitute into

homogeneous difference-differential equation to find

-0 Moy + @My =0,
from which one may now deduce that:
6@ = T T eI ol g,
(C) - L azn+1 C) (E) g CO
n=0 0
or
© 2n+2

_ : 22 o
6 = ) 2ynay Tawzy 2F1 34 20023 me35-0)
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APPENDIX II

The roots of the equation sin(Zth) = - (ZBVh).

The equation has an infinite number of complex roots which appear
in groups of four. However, as it was pointed out in the text, for
this analysis only the roots with positive real parts are pertinent
and furthermore, the only real root B, = 0 must be discarded. Thus,
if we define the roots 62,84,86,... to be the complex conjugates of

the roots 61,83,85,..., then by setting

26.h = x + iy, v =1,35..

and using a Newtom-Rampson numerical’ method one finds

v X, Yy

1 4,21239 | 2.25073

3| 10.71254 | 3,10315

5| 17.07337 | 3.55109

7 | 23.39836 | 3.85881
etc;

Furthermore, the asymptotic behavior of the roots for large v, i.e.,

for v =15,17,19,..., is given by the following simple relations

=0 br

y, = cos k™l [(v + Pl .
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X 2h
]

Figure 1. Geometrical representation of an infinite cracked plate
with thickness 2h and crack length 2c .

S e ey =



PART II

PARTTIAL THROUGH CRACK IN A PLATE

OF FINITE THICKNEXX
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NOTATION
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ox oy

2

ox
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oy

52 +32 +32
2 2 2

Young's modulus

—E _
2(14v)

thickness of the plate
1

V

vx +y

Fourier transofrm parameter
displacement functions

displacement functions due to the comple-
mentary problem

displacement functions due to the particu-
lar problems

rectangular cortesian coordinates

ar/h n+= 1, 2, 3, ***

roots of the eq. sin (th) (th)
roots of the eq. sin (Yvh) = -(Yvh)

.coefficients as defined in text

du , oV , oW
ox 3y+ 0z

Poisson's ratio
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= stress components due to the comple-
mentary solution

= stress components due to the particular
solution

uniform applied stress



I. INTRODUCTION

One of the problems in fracture mechanics which apparently has not
received extensive theoretical treatment is that concerning the effect of
a partial through crack upon the stress distribution in a plate of finite
thickness. This lack of interest is primarily due to the fact that three
dimensional problems present mathematical complexities which are substan-
tially greater than those associated with plane stress or plane strain.
However, it is now possible* to study this complex phenomenon which has

defied researchers for some time.

IT. FORMULATION OF THE PROBLEM

Consider the equilibrium of a homogeneous, isotropic, elastic plate
which occupies the space |x| < o Iyl <eo o 0 <—z < h and contains
a plane crack in the xz-plane. The crack is elliptical in shape and is
defined by the inequality

E+ (&)<, (1)
The plate faces z=0 and z=h are free of stress and constraint. Load-
ing is applied by the periphery of the plate lxl s ]yl =+ o and is given
by
O = Tgy = Tyz =0, Oy =0, .
In the absence of body forces, the coupled differential equations

governing the displacement functions u , v and w are:

m 96 2 _

—% % + Vu=0 2)
m 96 2. _

E:E-§§ + Vv =0 (3)
m 39 2 =

=3 Bg + Vw=0 (4)

*See references [1,2 1s



where

oo u, v Bw

—-3—§+8y+-3_z ()

and the stress-displacement relations are given by Hook's law as:

o_1y

. du 8
O, = ZG{ax + p~— (6)
S
oy—2G{3y+m_2} (7)
0, = 26 {2 + £} ®
- g{du v
L odv ., B
B, Bu
Tzx = Gl + 3.} (11)
As to boundary conditions, one must require that at:
z=0:'txz='ryz=crz=0 (12)
z=h 'rxz='ryz=oz=0 (13)
.}_{. 2 -.Z.- 2 = i ° = = =
(c) + (a) <1,y=0: Ty ™ Ty =0y 0 (14)
|y] + © and all x : Ty ™ Tyz ™ 0, o, = g, (15)
|x| + :0x=‘txy='1‘zx=0. (16)

It is found convenient to seek the solution to the crack plate prob-
lem in the form
u = u(P) + u(C) etc., @a7)
where the first component represents the usual "undisturbed" or "particular"

solution of a plate without the presence of a crack. Such a particular

solution can be easily constructed and for the particular problem at hand is

u(P) = o (m- 2)%x (18)



;. o, (m-2
o® o f1- @y B2y (19)
T
v® = - (m-2)? (5 = ' (20)
A= m1)° -3 (@-1) + 2 (21)

MATHEMATICAL STATEMENT OF THE COMPLEMENTARY PROBLEM

In view of the particular solution, we need to find three functions
u(c)(x,y,z) 5 v(c)(x,y,z) and w(c)(x,y,z) , such that they satisfy simul-
taneously the partial differential eqﬁations (2) - (4) and the following

boundary conditions:

at (5) + (B2 <1, yl=0:1 @ =1 @0, 0, =5, @
at z=0 :sz(c) = Tyz(c) = GZ(C) =0 (23)
at z=h Ty @ =y, @ = 0, @ =0 (24)
at v x2+y? + o 0@, v© ana w© are to be bounded. (25)

METHOD OF SOLUTION

In constructing a solution to the system (2) - (4) we use the method
described in reference [1] to recover the following ordinary differential

equation of the independent variable =z :

2 (C) (©)
S 1 ot o r @ s Gk o e
225 (© . . £, (©)
g+ 0+ 2 v @u (B0, ey = =0 D
2m - 2 dzw(c) m du(c) m dv(c) 2. (C) _
( m- 2 ) dz* * (mr2 31) dz (m—2 32) dz + DT = @ (28)

where the symbols of differentiation 81 s 82 . D? are to be interpreted as

numbers.



Upon integrating the above system subject to the initial conditions%*,

© _ © _ © _. w©®_  &©®
u =u; , Vv =V o W =V 3 uo’dz v
©)
dw' '_ 1 -
iz —wo,forz 0,

one has after a few simple calculations*#*

©) _ m - 2 sin(zD) o m
u = = Sm=1) D ) ¥y _—Z(m- ) z cos (zD) alwo
m z sin (zD)
+ cos(zD) u0—2(m-2) = 3 0
© _ m-2 sin(zD) _ m
vV ST 2@-1 D 9w, T@m-1) 2°°8 (zD)d W,
m z sin (2D)
+ cos(zD) ATy, = T@-1) 5 3 0
© - (zD) + ———=— Dz sin (zD) w
w cos(zD) w, + 57y Dz .

[ sin (zD)
2(m 2) D

_ 1 singzDze+ - zcos (zD)] 6,

where

- n-2
eo_m (31u°+3v)

Finally, in order to satisfy the boundary conditions (24 we require that

[mhD sin (hD)Bl] u,+ [mhDd,sin(hD)] v, -mD [ sin(hP) - hD cos (hD) Jw, =0

sin(hD)

(EniD). (52 (- 1)D?) ~mh cos (1D)32] u,+ [- =B 3 5

—mhcos(hD)Blazl vt [mh'c)1 D sin (hD)] W, = 0

*ug , Vo 5 Wy o u; s v; > w; are arbitrary functions of x and y

**Note that in equations (30) - (32) we have let

u =-90Ww

0 10

v=_3W

0 20

R

e m-zeo

in order to simultaneously satisfy the boundary condition (23).

1

0

(29)

(30)

(31)

(32)

(33)

(34)

(35)



sin(hD) 2, sin(hD) .2
—[mh cos (hD)Bla2 + s 3182] u, - [mh cos (hD) 32+——D—— 32
(36)
+ (m-1) sin (hD) D] vy + [hmsin (D) DI,] w, = O

or
d;, d,, dy, Yo 0
d,; dy, d,, Vol = | 0 (37)
dg, dj, dg, Yy 0

where the differential operators djj are defined as
d11 = thIDsin (hD)
d,, =mh 32D sin (hD) (38)
d,y = —mD [sin(hD) - hD cos (hD) ]

N 2 2 2
Ay = > [sin(hD) (32—mD ) = mhD Blcos(hD)]
d22 =—%[sin(hD) +mhD cos (hD) ] 3132
d,, = mh 31D sin(hD)
d,, =- [sin(tD) +mhd cos (D)1 3 9,3,
- 2 _n2 2

dy, ®=3 [ sin(hD) (wD* - 37) +mh 3, D cos(hD)]
dsa = mhazD sin(hD) .

Keeping in mind that the differential operators 9, , 9, , D? obey the
same formal rules of addition and multiplication as numbers, the solution of

system (37) is given by

uy = X, (x55)
vy = X, (%) (39)
Wy = X3 (x,¥)

where the unknown displacement functions X; , X, » X, satisfy the differ-
ential relations

Qx; = 0 1=1,2,3 (40)

T ok = oS R : 8 o A S e e R Sy &




with

d11 d12 dla
Q=|d,, d,, dy, | =m?@-1)D*sin(wd) {h’D* - sin®(hD)}
d3, ds, dag (41)

We construct next the following integral representations for u, , Vv
0

and v which have the proper behavior at infinity

uo(x’yi') =J": {(P1+ Iqul) e—S|Y| + 2 R$1) e "'VSZ+B\2) IY|
V=1

(42)

+ °§ ’ﬁ\(’l) e 2+Y\2)-|yl + ) Sél) e—_sz+oun2 Iyl }sin(xs)ds
v=1 n=1

+ —_—
vo(x,y7) =%

[P i@t lvley =Pl §org 7 'Y'+z k() o oMbyl
V=1

=t (43)

+ ) Sr(12) e 2"-(xxz'x'yl}cos(xs)ds

n=1

Wo(x’yi') =J":°{(Pa+ lYIQ3) e-SIYI + z R\()S) e—Vsz-l'B\z)‘Yl + Z ’i\i\(’?')e‘-VSZ+Y\2)IYI
V=1

- (44)
+ ) Sr(xs) e TVSTO Iyl}cos(xs)ds

n=1

The *+ signs refer to y >0 and y <0 respectively, an=£h1l (n=1,2,3,°""*)

and B v Y, are the roots of the equations

sin(B h) = (B,h) (45)
sin(Yvh) = —(Y\Jh) . (46)
The equations have an infinite number of complex roots which appear in groups
of four, one in each quadrant of the complex plane and only two of each
group of four roots are relevant to the present work. These are chosen to
be the complex conjugate pairs with positive real parts. The only real

roots B =Y. =0 must be ignored.



Finally, an examination of the solution shows that the unknown

functions P , Q ,

R

etc. are not all independent. Assuming, there-

fore, that one can differentiate under the integral sign and inserting

equations (42)-(44) into (37) one finds

Qz = _Ql
(14+m) s (P1+P2) + (3m-1) Q, +2smh Q, =

(1) _
hR;! =~

sz+B2

Y

(a- cos‘(Bvb))

SR\)

hR{?) = —— (1-cotB h)R,

hR(z)

B

/T

—2—2 (1+cosY h) R

Ty

W

2(3) -

V AY

S(z) =S
n n

In order to facilitate our subsequent discussion it is found convenient at

this stage to summarize our results:

(i) complementary displacements¥*:

3m-2

) =J-:°{[P +8zP + 50Ty 2 %sq, +

2(

-1)

2252 (P, +P,) + |y[q Je” -slyl

(47)
(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

*It can be shown, that in order to satisfy the remaining boundary conditions
Q3 must vanish. This information is used when writing the complementary

displacements and stresses.



o 1- cosB h
= \’Zl sR {(W [cosB z - 2(m ) B z sin sz]
_72:-—21) Bi [sin(szyi-;}_% B2 Cos@vz)]} e”® +B\’IYI
® " (1+cos(Y h)) (58)
- \,-42:1 s R {_’Yzh_ [cos (Y 2= 2(m 1) 'sz aln(sz)]
2 Vs 2yl

T 2(m-1) Y [Sin(Y 2 +—' 'Y z cos(Y\)g ]} e

2, 2
s+ /2,2
£ Sncos(anz e g +0Lnly| } sin(xs)ds

- L

1

C -
v( ) - ;J‘o {[P -szP - 2(2 i) sz1 —EGI%T)_ zzs"':(P1 +P2) - llel]e slyl

+ ZS cos(x z)e 2+0Lnlyl
n=1 0
(1 cos (B, h))
+ Z Ry, vs8THR, T[cos(ﬁvz) m B\)z 51n(B z)]

/2 02
- Zg-zl) 61\) [sinf z +——5 B z cos B z]} e 'S +B\)|Y| (59)
ot (1+eos(y h))
+\)§-1 rﬁv VSZ"‘YZ —_Y—ZF_ [cos(Y 2- T!:l)- sz sin'yvz)]
- VTN
2211—21) y [sin(Y,, z) 7 Yy zcos(y 2]te "5 +Y\)|Yl} cos(xs)ds .
W(C) =J:° {[1’3 -~m—_]_'-1— sz (P, +P,) -m-il 2q, ] e‘SIYI
© (1-cos(B_h))
V m-2
* \,Zl R\){ B R [Z(m 1) 1B 2y Ty (m 1) By? cos(B, z )]
[ 2, n2
-'-COS(B a+2(m 1) B\)Z Sin@vg}e— +B-\)|y|
(1 h)) (60)
2 By +cos(Y\) -y
+ \)gl R\){ Yo [2(m =) sin(Y, 9~ 2(m 1y Yo? cos(f, 2)]

+cos (sz)*i-z—(-n%-ﬁ Y2 sinfy, 2 te } cos(xs)ds .

-/s2+ 2|y | }



g(e)= J‘: {-2 (m_—g_ e SIY' m—l _Z %R [ (1-cosB B) cos(B z)

o)
O -

ny
R /sz+Y\2,

> [(1+costy, 1) costy, @~ Y hsin(y,J] e

g
N

+
:
|
=
Yo 8

1

(ii) complementary stresses:

(c) (1- cos(e 1)

1T
_gi _J‘ {_ z 1\) Vs 2+B [ (sir(sz)+ B,z cos(Bv@)
[ 02
- B\)z sin(sz)] e SZ+B\)IY‘
(62)
® (l+c05(Y h)
- ﬁ \;Zx Vs 2+Y [—————— (sir(sz)+ Y2 cos(sz))
/! 2 ® f2,.2
- Y,2 sin(sz)] e SZ+Y\)|Y| —IIZI S sin(ocnz) g e o |y | } cos(xs)ds .
@ . L-cofB ) . /Bl y|
e =J‘0 {m- \,-Zl s R\)[_——B-\;l'_l—— (s:Ln(sz)+ sz cos(Bvé) - B\)z s:Ln(sz)]e v
© X (1+COE{Y I'D) -V 242
* i:—l ) s rl\f\) [— = > (sirfy, 2 Y,z cos(y,2) =,z sinfy,2] e ° +Yv|Y|
V=1 Y
o /52407 / (63)
+n£1 = L o S sir(anz)e- 2+°‘121|y| } sin(xs)ds .
(c) |
cz o m 5 R\)
e =J‘o { D) \)21 == [(1- cos(Bvl'D) B,z sin(B\)z)— B,h sin(sz)
[2 2
+ th sz cos(sz)] P +B\,IY|
% (64)
+ 2(:21-1) ) T\) [+ cos(le-D) Y2 sin(sz)- Y b sin(sz)
Vi1

)
Sl +Y\)IY| } cos(sx)ds .

+ Y\)h Y2 cos(Y. vz)] e
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™ 2's"Q 1 |y
= m- -sly] .
E% —'fo {[SPZ- s’z P~ m+11 - SIYIQI"'(j“—,_l‘)Ql] e
2 K _ S 2n
+ 'nT—l_l \)21 T\) [(1- cos(B\)l'D) cos(sz)— th Sin(sz)] hE +Bv|y|
2 (1-codB_h)
+ \)2-:1 R\.) (32+Bf)) [_—h RY [ cos(sz)-z—(ﬁ_—l—)- sz sin(sz)]
m-2 1 . _/ 2+82 y
- 2@D —é; [s1n(8vz)+-n:;2 B,z cos(sz)]:l e \,l I
(65)
s f2, 2
+ ) e s cos(azye s ol
n=1 n n

[(L+cody ) cody 3~ Y h sinly 3] ey |

© A (1 +cody _h)
+ vzl &\) (s2+'Y\2)) [:——’Yf)h_v [ cos(Y\)Z)-ﬁ ‘Y\)z sin(yvz)]

m-2

T 2(m-1) y_];’ [Sin(sz)"';% Y2 COS(YvZ)]:l g = +Y\)|YI}-cos (xs)ds .

(c)
T (o] -
= =%/ {ls@ -p)) + 25727, +;J2r—l- z2s2Q, +2|y|sq, - Q,le slyl
® (1 - cosB_h)
Jo2ig? v m_
= VZI sVs™+B Rv[__B-\z)Tl_ (2cos 2)--=7 Bz sin(B\)z))
n-2 1 m -/s%+82 |y |
- = E; ( sin(sz)+m_2 sz cos(sz))] e Vv 56)
o (1+ cogy_h)
2 ¥ N m_
— \;1 s/s Y] R [—Y\-z)h— (2 cos(sz\)- —7 Y2 sin(sz))
- z%i- -,Yl- ( sin(sz)+a%sz cos(sz))]e_ s +Y\)IYI
Vv
o (25?2 +0a?) ' /2. 3
- ) —= s cos(anz) g e +anIYI } sin(xs)ds .

=1 8



-Z—E-{— —J' {[SP +s2zP +m+l zsle +y SQI] e-SIYl
- o (1 -cosB h)
i - LR Loty Be sinfa)
-2 1 ) : -/ 2+82
Joz “2%1_—1) -B_\) [sin(8v2)+ﬁ sz cos(sz)]:I e '® \)IYI

/ey

5 | _1_ z R}:’ [(1- cos(gv}g) co(sz)- th sin(sz)] e

m
o [ cos(sz)—-z—(El—_T) Y2 sin(sz)]

(67)
E - [:(l-l-cos(Y )

T 2(m-1) Y
’\:

E L1 Z > [(1+ cos(Y, 1) cos(y,z)- Y, h sin(y, 2] e

[ 2.2
m=2 [s:.r(y z)+ 7 Y2 cos(‘sz:I e +Y\)|y|

-/s2+y2 |yl
o f2, 2

- ) ;/sz+0LI21 S, cos(anz>e - +0Lnlyl } cos(xs)ds.
n=1

By direct substitution, it can easily be ascertained that the above

complementary displacements satisfy Navier's equations and furthermore the

corresponding stresses cic) s Téi) y T;;) do vanish at the plate faces

z=0 and z=h .

Moreover, to satisfy the contlruity condltions, one must require

that:

L]

1
}7!
t H
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_3m-2 m 2 2
I: { [PZ - sz P3 2@l 2 sQl T %S (Pl ’s PZ)]

[e o]
+ 2 s, cos(anz)
n=1

o (1-cos(B_h))
+ 2 Rv Vsz+pg { 3 L. [cos(sz) 2(m 2(a1) sz sin(B z)]

v=1 th
e [Sm(B z) F— B (3 1} (68)
2(m-1) B Z CcOS z
D o (14+cos (Y. h))
2,2 V) m
+ \)Zlkv sy { Y\z)h [cos(¥,2) - Feapy Y2 sin(Y2)]
m-2
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2 Sl 2.2 w 23
[° {[sp, + _m__
0{[51 SzP+ SQ1+ zs(Pl+P2)

2(@-1) 2 (m-1)
l-cosB h
- Js2 v
| \21 s +B s R, {———— B h ) [cos(B z) - 2(m @1 sz sin(B z)]
- 2(:;_1) 4 [sin(B,2) +'— B,z cos(B, z)1}
(69)
© ~ (14cos(y. h))
- Z /52+ 2 s R\){ 5 v [cos (‘sz) —2'(——5' 'Y z Sin(Y z)]
Yybt
ﬁ:‘i—)‘ Y, [sin(Y z) +——' YyZ cos(Y z)1}
%9 52+a2
- 2 = SnCOS(Oan)} sin(xs)ds
n=1
(c) 2 2
T (U X z
+ ( ) s -+ <1
oy y=0 c2 a2
2 2
0 ; i1
c a

and:
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]: {[sP3 —'E%I szz (P1 + PZ) - —lI szQ1]

m-

(1-COS(B h))
o Z/s2+pz, CAAy = sin(B z) -

B z cos(B z)]
WA B R 2(m-1) D)

+ cos(sz) +-5?E%Iy sz sin(sz)} (70)
© e . (1#cos(Y h)) _
+ inv52+3E Rv{ Yvh ¥ [Z(E—i) sin(sz) E?E_IY Y,)2 cos(Y z)]

+ cos(sz) + sin(sz)}} cos(xs)ds =

2(m 1)Yz

(c) 2 2
— oW X z
+(3y )y=0 ’ c2 + a2 <1
x2 z2
0 s _i + '_2 ) 1
c a

Thus, by Fourier inversion, one has:
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. 3m-2 m 2 2
[Pz - SZPB - z(m_l) z SQl - 2(m_1) zZ s (Pl + Pz)]

o

+ Z S cos(OL a)
n=1

2

(1-cos(B_h))
+ z R, e 2 83 { L [cos(sz) 2(m ) B 2z 51n(B z)]
v=1 th

- T § 5 [sin,) + 205 Byz cos(8 )1) 7y

2

(l+cos(Y h))
m
+ vzl R Vs + Y - [COS(Y z) - 2_(51?1_) 'sz sin sz)]

_m-2 1

T 2(m-1) Y, [sin(y,2) + =5 2 Y,z cos(y, z)]} =

S
=72/ 4 (£,0,2) cos(st)ee

0



o

2 3m-2 23
[sP +szP +2( 1) SW+

1-cosB h
)' \/s +B 8 R {——) [cos(B z) -
B h

-—(%-i—) B [sin(B z) +-—- B z cos(B Z)]}

2
b

o © . ~ (1+cos(Y h))
- ) \/52+~y2 s Rv{ Y [cos(y,2)

_m=2

- 2@-1) Y [sin(y,z) + =5

- o
Sn cos(anz)

(c)
c ,du
¢ = )y=0 sin(sE)dg

16

2 (m=-1)

B .z sin(B z)]

2( 1)v

- -—-———'Yz (1:1-1) vZ siﬁ(sz)]

7 Y2 cos(‘Y z)1} (72)

™ . Easg(ﬁﬂ-?’z)]-f
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[sP3 —'E%I szz (P1 + PZ) -';%I sle]
(1-cos(B_h))
2 V m-2
+ Vs +B Rv { th [Z(m-l)Sin(sz) > (m 1)8 z cos(B z)]
+ cos(B z) + ( ) B z sin(B z)}
( (73)
© ~ 1+cos(y_h))
[2 2 V m-2 m
+ le s +YV Rv { — Yvh [Z(mrl) sin(sz) = Sl Y2 cos(sz)]
+ cos(sz) +'ETE:I$YvZ sin(sz)} =
S (c)
- 2 9
= Ioc (8; ) -0 cos(sg)dg
S (e)
_ .2 (c v
=t fo G, )y=0 cos(sE)dg

/ 2
where for simplicity we have defined Sc = ¢/l = EE- and in equations (72)
a

and (73) we have made use of the remaining two boundary conditions:

160 = (&) _ at y =0
Xy zy

The reader should notice that by adding egs. (71) and (72) one

concludes that

0 S
) &S cos(o,_z) ='I-%§ / c‘v’(c)(E,O,z) cos(sE)dE

= n 0
n=1 (74)

- s(P1 + P2)
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from which*,
— 8s ra Sc
58 =+ IO jo V(E,0,n) cos(sE) as (o n)d&dn (75a)

and

0]
(%]
I

8 Sc (o)
-2s (P +P)+£ ahcvcﬁmm)'
(75b)
+ cos(sk) dE&E.iW

Finally, we would like to solve for the unknown coefficients Rv
and Rv . To a ccomplish this, we proceed as follows. Using eq. (74) into

(71) and, upon differentiating w.r.t. 2z once, One has

3m-2

‘m 2
- sP3 -1 sz1 - ol zS (P1 + P2)

e (1-cos (B h))
+ ] R /eles) V- 322 a8 2) - Bz cos(B2)]

th 2 (m-1) 2( 1)
+ [ = COS(sz) +'§z-—I78vz sin(sz)]}
(76)
© o (1+cos (Y h))
/2, 2 Vv 3m-2 .
+ Z WE +Yv { 5 h [ - 2 (1) 31n(sz) -ETE—ISYVZ cos(sz)]

+ [ - cos(sz) +-§zﬁ:i7 Y,? sin(sz)]}

S, 5y(©
N N e ML CL:

* Notice that Sc is a function of N mnow.
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Utilizing, next, the orthogonality condition*, it is possible to determine
- O
the coefficients R, and R, in terms of the function (8z )

y=0 °
Thus
S (c)
a (¢ ,0v
R\) = fo IO (r)y=0 B(th,an) cos(st)dg cl’? (77)

and

H

) ~
y Iaf © G Bl YN cos(sE)AE L] (78)

Finally, inserting into equation (65) one reduces the problem to

that of the solution of a double singular integral equation**, i.e.

Bv(c)
[] (5r—) =0 HIx = E3By»Y,32,n1dEdn

crack (79)
faces

2 2

90 . x_ L2z
- 2g s 2 + 2 <1,
c a

where the kernel H consists of the sum of three infinite series of
Fhe type found in the through-the-thickness crack.

The explicit solution of this double singular integral equation,
will determine the displacement and stress fields. Unfortunately,
we have not been successful in extracting the solution to the equation
explicitly. It appears, however, that the solution is not separable

either in spherical or cylindrical coordinates.

" % See reference [2].
** Eq. (79) may be integrated to give another singular integral eq. with

v(c)(E,O,n) as the unknown.




[1].

[2].
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PART III

UNIQUENESS THEOREMS FOR DISPLACEMENT FIELDS WITH LOCALLY
FINITE ENERGY IN LINEAR ELASTOSTATICS



INTRODUCTION

The Classical Theory of Linear Elastostatics. The fundamental
prdblem of linear elastostatics is to defermine the equilibrium displaée-
ment field that is produced in an elastic body of known shape and |
composition by the action of known body forces aﬁd surface tractions or
éisplaceménts. In the classical formulation of the theory the displace-
ments and stresses are required éo be differentiable and satisfy the
differential equations of équilibrium in.the interior of the body and to
be continuous and satisfy the prescribed surfaée traction or displacement
conditions on the boundary. -This boundary value problem has a history
that begins with A. L. Cauchy's discovery of the equilibrium equations
in 1822; see reférence [18, p. 8]. The uniqueness of classical solutions
for bounded bodies with smooth surfaces was proved b& G. Kirchhoff in
1859 [12]. General existence theorems for classical solutions were first
proved during the period 1906-1908 by integrai equatiﬁn methods. The
ﬁrincipal contributors were I. Fredholm [6], G. Lauricella [17],

R. Marcolongo [19], A. Korn [15, 16] and T.’qugip [2, 3]. More recently
G. Fichera has proved the existenée of classical solutions in bounded
bodies with smooth boundaries by the methods of modern functional analy-
sis [4, 5]. Thus the theory of the classical boundary value problems of
linear elastostatics is essentially complete.

The Need for a More General Theory. Unfortunately the classical

theory described above provides an inadequate foundation for the analysis
of most of the problems studied by applied scientists in their applica-
tions of linear elastostatics. Examination of any of the numerous bboks

1



on theoretical elasticity, oeginning with the classical treatise of

A. E. H. Love [18], reveals that most of the problems treated in them -
involve unbounded bodies, such as infinite plates or bare, aod/or bodies
having sharp edges or corners. Moreover, the stress fields are known to
have 51ngu1ar1t1es at re-entrant edges and corners. Examples of these
difficulties can be found in the theory of cracks; see I. N. Sneddon and
M. iowengrub [22]. It is sometimes argued that the classical theory is
a sufficient foundation for applications because real bodies are always
bounded and Soundaries with sharo edges and corners can be approximated
by smooth ones. However, although this procedure simplifies the problems
from the viewpoint of the classical theory, it makes theo inaccessible
to techniques such as separation of variables and integral transform
methods that are used by applied scientiests. Thus the real issue is
whether a mafhematical theory cao be devised that is sufficiently general
to provide a foundation for the analysis of the singular problems that

" are actually studied by applied scientists. The purpose of this paper

is to provide the beginnings of such a tﬁeory comprising a formulation of
the elastostatic boundary valoe problems that is applicable to bodies of
arbitrary shape and corresoonding uniqueness theorems.

Remarks on the Formulation of Boundary Value Problems; A

" wformulation" of a boundary value problem is a definition of the class of
funotions in which solutions are to be sought. The classical formulation
vof‘the elastostatic boundary value problem was described above. Meny
other formulations are possible. For example, the continuity conditions
may be replaced at some OT all boundary points by boundedness or inte-
grability conditioms, the equilibrium equations may be required to hold

in a weak sense, etc. In principle, any formulation is acceptable if

e



there is an existeﬁce theorem, stating that there is at least one solu-
£ion in £he class, and a uniqueness theoreﬁ, stating that there is at
most one solution‘in the cléss. In_practice th; choice of a solution
class turns on technical considefatioﬁs. The proof of an existence
theorem is facilitated by choosing a large solution class but uniqueness
is lost if the class is too large.. The proof of a uniqueness theorem is
facilitated by choosing a small solution class but existence is lost if
the class is too small. For example, Kirchhoff's theorem on the unique-
ness of classical solutions of the elastostétic boundary value problem
can be proved for bodies having re-entrant sharp edges but in this case
no classical solution exists.

The Role of Existence and Uniqueness Theorems. A pure existence

theorem for a boundary value problem demonstrates that the properties
chosen to define the solution class are not contradictory; i.e., there
afe functions with these properties. In the presence of an existence
théorem a uniqueness theorem showé that the defining properties of ;he
solution class characterize the solution completely. However, a unique-
ness theorem can be even more valuable when no general existence theorem
is known. -In such cases it may still be possible in certain instances,
corresponding to special choices of the boundary or data, to comstruct a
solution in thg chosen solution class. A uniqueness theorem then shows

that the solution is the correct one. An interesting example of this

"occurred in the theory of the diffraction of electromagnetic waves by a

. perfectly conducting circular disk. In 1948 J. Meixner [20] proved a

uniqueness theorem for this problem and used it to show that a solution
that had been published in 1927 was incorrect. Of course, in the absence

of a general existence theorem it is desirable to prove uniqueness in as



large a solution class as possible since this facilitates application of
the uniqueness theorem in specific instances.

The Boundedness Question for the Displacement Fields. Linear

elastostatics is an approximation that is valid for small displacements.
If the displacements are bounded then by‘éuitaple scaling they may be
made arbitrarilybsmall. Hence it is natural to make boundedness of the
displacements a defining property of the solution class. indeed, this
property has often been employed‘in constructing solutions of particular
probleﬁs‘ It has aléo been used by J. K. Knowles and T. A. Pucik [14]

in the formulation and proof of a general uniqueness theorem for plane
crack problems. However, it is shown in this paper that uniqueness holds
in the 1argér class of solutions with locally finite energy, without
boundedness conditions. This result shows that the boundedness hypothesis
is redundant and the boundedness property, in instances where it holds, |
must be derivable from the other hypotheses.

Displacement Fields with Locally Finite Energy. In this paper

it is taken as a fundamental principle that equilibrium displacement
fields in elastic bodies must have finite strain energy in bounded por-
tions of the bodies. Such displacement fields will be called displace-
ment fields with locally finite energ§ (or, for brevity, fields wLFE).
The equilibrium displacement field corresponding to prescribed body
forces will be characterized among all fields wLFE, by the principle of
virtual work. The class of displacement fields that obey these two
principles will be called the solutions with locally finite energy (for
brevity, solutions wLFE) of the elastostatic boundary value problems.

~ The principal results of this paper are uniqueness theorems for this

class of solutions. In particular, the uniqueness of solutions wLFE in



bounded bodies is proved without additioﬁal hypothéses concerning the
boundary or the displacement field. The uniqueness of solutions WLFE in
upbounded bodies is proved under a growth restriction on the behavior of
the stress or displacement fields at infinity. Moreover, it is shown by
examples that a growth restriction is necessary for uniqueness.

The remaiﬁder of thé paper is organized as follows. The class
of displacement fields WLFE is defined in §1. §2 contains the definition
of the class of solutions WLFE in homogeneous elastic bodies of arbitrary
shape, subject to prescribed surface tractions, prescribed body forces
and pres&ribéd displacements or stresses at infinity. The regularity
properties of solutions wLFE are also discussed in this section. §3
presents thé uniqueness theorems for solutions wLFE of problems with
prescribed surface tractions. In 84 the methods and results of §3 are
extended to the other classical boundary valﬁe problems of linear elasto-
statics including problems with prescribed surface displacements,
problems with mixed boundary conditions, problems for inhomogeneous
elastic bodies and ﬁ—dimensional generalizations. §5 contains a

discussion of related literature.



1. DISPLACEMENT FIELDS WITH LOCALLY FINITE ENERGY

A fixed system of Cartesian coordinates‘isAused throughout the
paper and points of Euclidean space are identified with their coordinate
triples (xl,xz,xa) =x € R3. With this convention each elasticvbody in
spaée is associated with a domain (open connected set) ¢ R® that
describes the set of interior points of the body. The closure and
boundary of § are denoted bylﬁ and 30 = Q - Q, respectively. The nota-
tion of Cartesian tensor analysis [11] is used to describe the physical
variables associated with elastic bodies. In particular, teﬁsors of
various orders are denoted by subscripts and the summation convention is
used.

The fundamental unknown of elastostatic boundary value problems
is the displacement field. It is denoted below by u, = ui(x). . The
notation ui;j = Builaxj is used for the covariant derivative of Uy The

strain tensor field eij(u) aséociated with ug is defined by the differen-

tial operator
(1.1) ' e..(u) = l'(u +u | )
' ; ij 2 " 4,] 3.1

It is assumed, following G. Green [7 and 18, pp. 11-12 and 95-99], that
for quasi-static isothermal small deformations of an elastic body there

is a positive definite quadratic function of eij’

: 1
.2 V=7 Cijke Cij oke

such that for all KC Q



_ - .
.(1.3) A W =73 IK L) eij(u) ey (w) dx

is the strain energy of the displacement field ug in the set K. The

positivity assumption means that

(1.4) > 0 for all e = eji #0

€150 %ij kL
The stress-strain tensor cijk& is uniquely determined by w if the natural

symmetries

(1.5) Ci5ke - Syike T keji

are assumed. The stress tensor field oij(u) associated with'ui is given

by the differential operator
(1.6) oij (u) = cijkl eu(u)
The positive definiteness of w implies that oij = cijkl erq has a unique

- =1 =1 :
solution eij = Yijkz Ukz and w 2 °ij eij 2 Yijk& °ij Opge In

particular,
. , 1 1
(1.7) wK =i JK cij(u) eij(u) dx = 2 JK Yijkz oij(u) lecu) dx

is a functional of oij(u) alone. A body is hdmogeneoué/if and only if

cijk£ is constant in . It is isotropic if and only if [11, 18]
(1.8) cijk2 = A 61j sz + u(Sik 5j£ + 612 ij)

where A and Y are scalars such that p > 0, 3\ + 2u > 0. The results in
§2 and §3 are formulated for the case of homogeneous anisotropic bodies.
In §4 it is shown that the uniqueness theorems hold for the more general

case of inhomogeneous anisotropic media with bounded uniformly positive

p—yl



definite stress-strain tensor. This means that the components cijkl(x)

are Lebesgue measurable and there exist positive constants cg and ¢, > ¢,

such that
(1.9) cg eij eij < cijkz(x) eij e <c eij eij for all x—E Q
andlall eij = eji'

The most general uniqueness theore>s for solutions WLFE will be
obtained by making the class of displacement fields wLFE as large as
possible subject to the LFE condition. Hence it is natural to define thé
energy integrals WK(u) to be Lebesgue integrals and to inferpret the
differential opérators eij in the distribution-theoretic sense. -It can
be shown that this choice has the additional advantage that the set of
displacemeht fields wLFE is a complete space in the sense of convergence
in energy on bounded sets; It was by using such complete function spaces
that Fichera proved the existence of solutions of the elastostatic
boundary value problems in bounded domains.

In the remainder of this section several fupqtion spaces are
defined that are needed for the formulation and proof éf thé uniqueness
;heorems. In the definitions Q Cc R® denotes an arbitrary domain.

The definitions are based on the Lebesgue space
(1.10) szﬂ) = {u: Q-+ R | u(x) isAL—measurable, Jh Q(x)2 dx < =}
and the‘associated spaces
Lfoc(ﬂ) = {u: @ * R | u€L,(K) for every bounded

(1.11)
measurable K C Q}



(1;12) int(.Q) = {u: 2+ R l u € L, (C) for every compact cc 9}

and

(e com($'2) = L @ n {u | u(x) is equivalent to 0 outside
(1.13)
a bounded set}

' =
It is clear that L§°m(9) cL,(Q) C Lloc(g) c Lint(ﬁ). Moreover,

com(S’Z) = LZ(Q) Roc(g) if and only if § is bounded. Note that the
condition u € Lfoc(ﬂ) restricts the behavior of ‘u near 3N because che
sets K in (1.11) can be any bounded open subsets of Q. The condition
u € L%nt(ﬂ) is weaker because it does not restrict the behavior of u near
30. All of the function spaces used below are spaces of tensor fields
on 2 whose components lie in certain linear subspaces of Lint(ﬂ).
The space L (Q) may be 1nterpreted as a linear subspace of

L. Schwartz's space D'(2) of all distributions on ® [21]. Thus functions
u € L%nt(ﬂ) have derivatives of all orders in D'(Q) and if

(1.14) A= T A a|°‘|/ax‘{‘1 %32 3x3°

| 0slo|<m

(where a = (al,az,aa), |a|'= o, +a, + “s) is a partial differential
operator with constant coefficients then Au € D'(R). The notation
A = Lint(ﬂ) (resp. L2 (Q) L, ), Lcom(ﬂ), etc.) will be interpreted
to mean that the distribution Au is in the subspace L (Q) (resp.

p¥oc ), (v L§°’“(sz), etc.). If A, Ay,-*", A is a set of partial

differential operators with constant coefficients the following notation

will be used.

(1.15) Lz(A1sA2,°°',An;Q) =L, () n {u | Aju €L,(,]= 1,2,°,n}
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(1.16)  LE%%(a,,A,,°%,A50)

’"°°(9)n{u|AueL C(@),j = 1,2,°+,n}

int(A

1.17) LI, .A,,000,A50) L@ n {u | Aue Li"t@),5 = 1,2,+++,n}

(1.18)  L5o™(A A, ",A Q) = LEO™(R) N L, (A LA, 0 5A50)

In particular, if'{Al,A2,°-°,An} {a|“|/a . Bxaz Bxa3 | 0< Ial < m}

the following notation will be used.

(1.19) L3(Q) = L,(A,,A,,°* A ;%)
(1.200 12400 (@) = 1700 (A, 48,50 05 AL9)
(1.21) it @) = 1375 (A, .4, --,An;Q)
(1.22) o L2 COR(Q) = LEOP(A, 1 Ap 500 s A D)

Notations such as u; € Lloc(g)’ €3 € L,(Q), etc. will be inter-
preted to mean that each component of the tensor field is in the indicated
space. With this convention the classes of displacement fields wFE (with

finite energy) and wLFE may be defined as follows.

Definition. A vector field u; on Q is said to be a displacement

field wFE if and only if it is in the function space
(1.23) E@) = {u | u, € L@, e, () € L@}
. i 2 » S50 Z

Similarly, ui is said to be a displacement field wLFE if and only if it

" is in the function space
; 2oc foc
(1.24) @ ={u]uy €Ly ), e (u) € L @}

Note that Eloc( Q) = E(Q) if and only if Q is bounded.
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The terminology used in the definition is justified by the obser-
vation that if the stress-strain tensor satisfies (1.9) then eij(u) € L,(Q) -

implies oij(u) € L,(2) and hence u € E(Q) dimplies

’

‘(1.25) | WQ =

Nl

JQ cij(u) eij(u) dx < o

Similarly, if (1.9) holds them e; (u) € 150¢(q) implies 0y, (0) € 12o¢ 0

and hence u € E%OC(Q) implies

‘ 1
(1.26) WK =5 JK Gij(u) eij(u) dx < @

for all bounded measurable sets K C Q.

Each of the function spaces defined above is a complete space
with respect to a suitable topology. Several examples of this will be
indicated. It is well known that L,(Q) is a Hilbert space with scalar

product
(1.27) (u,v) = JQ u(x) v(x) dx

Similarly, E(R) and EROC(Q) are Fréchet spaces [28] with respect to the

families of semi-norms defined by

1/2
(1.28) pK’E(u) = [JK ui(x) ui(x) dx + Jﬂ Gij(u) cij(u) dx}

and

(1.29) g

| 12
(| oy 0,60 + 045 o3y ex)

respectively, where K is any bounded measurable subset of . In parti-

cular, if Q is bounded then EQOC(Q) = E(R) is a Hilbert space. These
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completeness.reguits play no role in the uniqueness theorems given below.
However, they are essential for the validity of e#istence theorems for
solutions WLFE. This is evident from the proofs of Fichera's existence
‘theorems for bounded bodies.

In the definition of<E2°c(

Q) the operators'eij(u) defined By

(1.1) are interpreted in the distribution-theoretic sense. Hence the

condition u € Ezoc(ﬂ) does not necessarily imply that the individual

derivatives ug j € Lfoc(ﬂ). ‘However, it is known that if u € Eloc(n)
9
then ug j € L, (C) for every compact set C C Q. This is a consequence of
’

Korn's inequality in the form

le

‘ 3 .
. 2 < Tu,l? +
(1.30) _nui’jan(C) <y |2 ulan(K) b

2
e g b Pl w

L e [W1 )

- which is valid for all u e EQOC(Q), all bounded ofen sets KC Q aﬁd all
compact sets C C K with a constant Y = Y(C,K). This result can be
derived from the version of Korn's inequality due to J. Gobert [8].
Moreover if 2 has the cone property [1l, 9] then one may take C = K in

(1.30). Hence in this case

1.31) ue BN =y, e L) toC

(DN

In particular, fdr domains that are bounded and have the cone property

(1.32) u € E() =u, € L;(Q)



2. EQUILIBRIUM PROBLEMS WITH PRESCRIBED SURFACE TRACTIONS

In this section elastostatic equilibrium problems are formulated,
and regularity froperties of the solutions are discussed,.for hbmogeneous
anisotropic elastic bodies of arbitrary shape that are squect to
prescribed body forces, prescribed surface tractions and, in the case of
unbounded bodies, prescribed displacements or stresses at infinity.. The
cases of prescribed body forces Fi’ zero surface tractions and zero dis-
placements or stresses at infinity are discussed first.

The Princiﬁle of Virtual Work. Let £ C R?® be an arbitrary domain

and let u € Eloc(g) be the equilibrium displacement field wLFE corfespond—
ing to body forces Fi € L:om(g) and zero surface tractions. Imagine that
the equilibrium is disturbed slightly by changing ug to us + vy where vy

is a field wFE from the set
(2.1) EC%@) = E@ n {v | e; (M) € Ls (@)}

Let K C Q be a bounded measurable set such that eij(v) is equivalent to
zero in - K. Then WK(O(u)) and WK(O(u + v)) are the strain energies in
'K before and after the disturbance. Hence the work done against internal
forces during the disturbance is WK(G(u +v)) - WK(G(u)). The energy
norm of v can be made arbitrarily small. If this is done and terms

quadratic in v are dropped, in keeping with the linear theory; the

- difference becomes

(2.2) I o..(u) e,,.(v) dx = Work done against internal forces
Q ij 1]

Moreover, if the body forces are constant during the displacement then

15
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(2.3) —I Fi vy dx = Work done against body forces
Q

No further work is done during the disturbance if the surface tractions
are zero. The principle of virtual work states that the true equilibrium
field ui(x).is characterized by the property that the total work done
against the internal and external forces in any (small) disturbance of
uy consistent with the constraints is zero [23]. Thus in the present
case
(2.4) ; - JQ cij(u) eij(v) dx - ]Q Fi vy dx =0
for all v € Ecom(ﬂ). This motivates the following

'Definition. A displacement field ug is said to be a solution
WLFE of the equilibrium problem for the domain  with body forces

F,. € Lcom(ﬂ)'and zero surface tractions if and only if u e Eloc(g) and
i 2 ]
(2.4) holds for all v € ESOB(Q).

Necessary Conditions for the Solvability of Problems with Zero

Surface Tractions., The fields

- 3
(2.5) vi(x) = a, + Eijk bj X, s XE€ R

where ay and bi are constant vectors and eijk is the alternating tensor
[11] satisfy eij(v) = 0 in R?® and hence v € Ecom(Ra). In particular,
v e Ecom(ﬂ) for every domain Q. It follows from (2.4) with this choice

of v that necessary conditions for the existence of a solution WLFE are
(2.6) | j F; dx = 0
Q

2.7) JQ (Fi xj - Fj xi) dx = 0
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Physically, these conditions mean that the body forces Fi exert no net
resultant or moment on the body. They are assumed to be satisfied in
the remainder of the discussion of problems with zero surface tractions.

Non-uniqueness of the Disp}acements for Problems with Zero -

Surface Tractions. Equations (255)'define a displacement field that
describes a rigid body displacement [11]. Moreover, since eij(v) = 0 in
R? tﬁe fields (2.5) may be added to any solution u of (2.4). Physically,
this means that the equilibrium displacement fields are determined only
up to rigid body displacements. Hence, the natural uniqueness thedrem.
for problems with zero surface tractions asserts that ﬁhe stress and
strain fields are unique while the displacement fields are unique modulo
fields of the form (2.5).

Bounded Bodies énd Displacement Fields wFE. If Q is bbunded then

EZoc(g) = E(Q) and every solution wLFE actually has finite total strain
energy in . More generally, if u is a solution WLFE for an arbitrary

domain Q and if u € E(R) then u is said to be a solution wFE. The

uniqueness of solutions WFE is proved in §3 without additional hypotheses

concerning § or the displacement field.

Unbounded Bodies and Equilibrium States with Prescribed Stresses

or Displacements at Infinity. If Q is unbounded then, in general, solu-

tions WLFE in Q are not unique. Simple examples of non-uniqueness are
available for the case {i = R3. The field ui(x) = bi x, with constant

373
= 3 =
bij bji # 0 is a solution WwLFE in R with Fi(x) = 0 and qii(u)
= Cike by # 0 since eij(u) = bij and cij(u) eij(u) = Ciik2 bij bk£ >0.
A second example is provided by the homogeneous isotropic plate with

domain © = {x | X)X, € R,|x3| < h} and stress-strain tensor (1.8). In

" this case u; = (A + 2u)x;, u, = (A + 2u)x2, ug ='-2Ax3 defines a



e &7

0, zero surface tractions and

displacement field in @ with Pi(x)

02# = 6)\11 + 4].]2, all other Uij = 0.

These examples show that uniqueness theorems for solutions wLFE in

constant non-zero stress field g,,

unbounded domains cannot hold without some growth restrictions at
i ni o s
infinity on u; or Gij

The problem of finding suitable growtp restrictions on u; or Gij
that guaréntee the uniqueness of solutions vLFE is a special case of the
classical problem of elastostatics of finding equilibrium diSplaceﬁent

fields that have prescribed stresses or displacements at infinity. Many

problems of this type are discussed in the treatise of Love [18]. To

formulate the problem with prescribed stresses at infinity let
.8 o =2n{x| |x] >R
2.8 oo | 1=] > &}

and let Ozg(x) be a stress field that is defined in QR’w, for some R,
and has the desired behavior at infinity. A solution wWLFE in § is sought
such that Uij(u)(x) is close to OIS(x) at infinity, in a suitable sense.
One possibility is to require that Uij(u) - 0:3 & LZ(QR,m) or,
equivalently,
(2.9) | PN IO
R,

This suggests the

Definition. A solution WLFE of the equilibrium problem for an
unbounded domain Q is said tq have prescribed stresses 0;3 at infinity
if and only if (2.9) holds for some R > 0.

Solutions WLFE with stresses 0:3 = 0 at infinity are just the
" solutions wFE defined above. Condition (2.9) is correct in this case,

at least for exterior domains where the stresses generated by body forces

F

5 € Lfom(ﬂ) are known to satisfy oij(u)(x) = O(lxl—z), |x] =+« [13].



19

To formulate the problem with prescribed displaceménts at infinity
let d:(x) be a displacement field that.is defined'in QR,N for some R, and
has the deéired behavior at infinity. A solution wLFE in Q is sought
such that ui(x) is close to u:(x) at infinity, in a suitable sense. One
might try the condition u; - u: S Lz(QR,«)’ in analogy with (2.9).
-However, this condition is to§ strong. In fact, it is known that if
u: = 0 and © is an exterior domain then the displacements generated by
body forces F; € L;°"() have the exact order uy (x) = o(lx|™), |x| +=
[10]. Thus a weaker'coﬁdition consistent with this estimate is needed.

In what follows the condition

(2.10) : Ju - u 12 5= 0@, T
r,

is used where

(2.11) full?

6 = Igr 5 ui(x) ui(x) dx ,

@1 R g=antx|r<xl<x+d

and § > 0 is'a constant.

Definition. A solution WLFE of the equilibrium problem for an
unbounded domain @ is said to have prescribed displacements u: at
infinity if and only if.(Z.IO) holds for some 6 > O.

A sufficient condition for (2.10) to hold with u; = O is
(2.13) u (%) = o(lx|™?), |x| + =

Of course, the precise order condition on ug that is sufficient to guar-
antee (2.10) in particular cases will depend on the geometry of Q near

infinity. For example, if @ = {x | ]x,| < b} then fnr g & 0(r),
. ’
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r + «, and ui(x) = 0(1) is a sufficient condition for (2.10) with u: = 0.
1f @ = {x I'(xl,xz) € G, x; € R} where G C R? is bounded then

fhr 5 dx = 0(1) and ui(x) =b(|x|1/2), |x| » 5, is sﬁfficient.

Ellipticity of the Cauchy-Green Operator. The principle of
virtualAwork (2.4) with v; € C?(Q) C Ecom(Q) implies that the equilibrium
fields u; are weak solutioné of the system of partial differential equa-
tioﬁs oij,j(u) + Fi =0 in ©. If the body is homogeneous, as is assumed

in this section, then the system may be written

(2.14) Aik U + Fi =0
where

_ - 2
(2.15) Aik cijk% ] Iij axz

The matrix differential opefator (Aik)’ with coefficients that satisfy
the positivity and symmetry conditions (1.4), (1.5), will be called the
Cauchy-Green operator. Conditions (1.4), (1.5) imply that (Aik) is
strongly elliptic (cijk£ ny My Ej EE # O.for all non-zero Ny, Ei)'and
hence elliptic (det (Cijk2 Ej Ez) # 0 for all non-zero Ei) [12, p. 20].

_G. Fichera [5] has used the theory of elliptic boundary value problems

to prove both interior and boundary regularity theorems for weak solutions
"of (2.14). The interior énd boundary regularity properties of solutions
wLFE that are implied by Fichera's results and methods are described here
briefly.

Interior Regularity of Solutions wLFE. Fichera's interior

regularity theorem [5, p. 36] implies the following results.

Theorem 2.1. Let  c R® be an arbitrary domain. Let .

ui_e L%nt(ﬂ), eij(u) € L:nt(Q) and Fi = L?’int(ﬂ) where m > 0 is an
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integer. Assume tﬁat (2.4) holds for all v; € Cf(Q). Then

mt+2,int
u, eEL, "’ Q).

Corollary 2.2. Let QC R® be an arbitrary domain and let u be a

solution wLFE of the equilibrium problem for { with F, € L?’c?m(ﬂ). Then
u, € 1372010 ),

Corollary 2.3. If the hypotheses of Theorem 2.1 or Corollary 2.2

hold then-ui € Cm(Q).

Corollary 2.4. Let 2 C R® be an arbitrary domain and let

: foc ; _1 _ foc ’
u€ E () satisfy eij(u) =5 (ui,j + uj,i) =0 in.L2 (). Then there
exist constants a;, bi such that ui(x) = a; + eijk bj %, in Q.
Fichera proved Theorem 2.1 in [5] under the hypotheses f € L?(Q),
u € L,(2). However, the theorem as stated above is an immediate conse- ,
quence of his theorem. Corollary 2.2 is a special case of Theorem 2.1.
Corollary 2.3 follows from Theorem 2.1 and Sobolev's imbedding theorem
[5, p. 26]. Corollary 2.4 may be verified by noting that u is a solution
'WLFE in  with body forces F; = 0 in Q. Thus u; € CQGQ), by Corollary
. 2.3, and u, , +u = 0 in Q. The proof that every such u, has the form
i,3 J.1 i
u; = ai-+ eijk bj X is classical [11, p. 71].
Boundary Regularity of Solutions wLFE. Fichera's theorems on

regularity at the boundary imply the following results (see [5, Chapters
10 and 12]). |

Theorem 2.5. Let £ C R? be a domain with boundary 3% € c”. Let
u be a solution WLFE 6f the equilibrium problem for  with

F, € Lgom(ﬂ) N Cw(?l'). Then u, € Cm('fl-) and

i

(2.16) Oij(u) nj = 0 on R

where n, is the unit exterior normal field on 98Q2.
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Corollary 2.6. Let x € 92 and assume that there is a meighbor-

hood Na(xo) ={x | |x - x°| < S} such that 32 N Né(xo) € C". Moreover,
let F, € L@ n C@n Ns(x,)). Then u; € C (3N Ng(x,)) and
Oij(u)nj =0 on 02 N Né(xo).

. Corollary 2.6 is an immediate consequence of Théorem 2.5 since
boundary regularity is a loca{ property. Boundary regularity results
can also be proved when 9Q and Fi have a finite number of derivatives.
The following results cén be proved by the methods of [5]; see also [1].

Theorem 2.7. Let Q c R® have a boundary point x, such that
N N Na(xo) S Ck+2 for some 8§ > 0 where k > 0 is an integer. Let u be a
solution WLFE of the equilibrium problem for @ with F, € LO7(@) N
1E@ n N(x,)). Then u; € LT 2@ N N(xp)) -

Corollary 2.8. Under the hypotheses of Theorem 2.7,

k 0 ' =
u € c@n Nd(xo))' Moreover, if k > 1 then Gij(u)nj 0 on

302 N Ny (x,) -

Corollary 2.9. Let  C R3 be a domain with boundary 93§ e>Ck+2,

k > 0. Let u be a solution WLFE of the equilibrium problém for Q with

Fi S Lf’com(ﬁ). Then ui.E Ck(ﬁ). Moreover, if k > 2 then uy is a
classical solution of the equilibrium boundary value problem with body
fofces Fi € CE_zfﬁ) C Lg’ccm(ﬂ) and zero surface tractions; i.e., u,

satisfies (2.10) and

(2.17) | cijkz uk,jz 4 Fi =0 in

Bodies whose boundary 3Q is a piece-wise smooth surface with
piece-wise smooth edges with corners are of great interest for applica-
tions. A class of bodies of this type are the C-domains, defined and

studied by N. Weck [24]. Solutions wLFE in such domains are regular and
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satisfy the boundary condition (2.16) near smooth points of 3R, by
Corolléry 2.8. At edge and corner points of 32 céndition (2.16) is

~ meaningless, because n, is undefined, and the only fggularity property
that remains is the LFE condition. For this reason the LFE condition is
sometimes called the "edge condition" [20].

Equilibrium Problems with Non-Zero Surface Tractions. The formu-

lation (2.4) of the principle of virtual work is appropriate for the case
of zero surface tractions. The surface traction at a point x, € o0 is

by definition the vector Gij(u(xo)) nj(xo) and hence is defined only at
boundary points where the boundary values 6ij(u(xo)) and the normal vector
nj(xo) exist. if a portion S C 9o is sufficiently smooth for ny and
boundary values of cij(u) to exist on it then the principle of virtual

work can be extended to include the boun&ary condition

ti on S
(2.18) Oi.(u) nj =
. J 0 ond -8
To do this the temm
(2.19) —J ty v, dS = Work done against surface tractions

must be added to (2.4), so that the extended principle becomes

(2.20) Iﬂ Oij(u) eij(v) dx - JQ Fi vy dx - js t; vy dS =0
for all v € Ecom(Q). Moreover, it is known from Sobolev's imbedding

com(SZ) has boundary values v € L,(S) on smooth

theorem that every v € E
portions S C o2 [1, p. 38]. 1In the important special case where 39 is
piece-wise smooth then Uij(u) n.j exists almost everywhere on 9 and S
may be replaced by 9Q in (2.18), (2.19) and (2.20).

L o

- .



3. UNIQUENESS THEOREMS FOR PROBLEMS WITH PRESCRIBED SURFACE TRACTIONS

The strain energy theorem for classical solutions of the elasto-
static equilibrium problem with body forces Fi and zero surface tractions

states that [18, p. 173]

=1 =1
(3.1) WQ =32 JQ Uij(u) eij(u) éx =3 JQ Fi uy dx

Thé uniqueness of classical solutions is a corollary. 1In this section
the strain energy theorem is extended to arbitrary domains § and all
solutions wFE (= solutions wLFE and zero stresses at iﬁfinity if Q is
unbounded) and so;utions wLFE and zero displacezents at infihity. The
uniqueness of solutions WLFE with prescribed stresses or displacements
at infinity follow as corollaries. The simple case of solutions wFE is
treated first.

Theorem 3.1. Let u be a solution wFE of the equilibrium problem
with body forces Fi € Lgom(ﬂ) and zero surface tractions in a domain
2 c R}, Then the strain energy equation (3.1) holds.

. The proof is immediate from the representation (1.7) for Wb and
the definition of solution wWFE, since one may take vy =u € E(Q) in
(2.4).

(1) )

" Corollary 3.2. Uniguenéss of Solutions wFE. Let uy T, ug

two solutions WFE of the equilibrium problem with the same bodj forces

F; € Ecom(ﬂ) and zero surface tractions. Then

(3.2) cij(u(‘)) - oij(u(z)) inQ

and there exist constant vectors ays bi such that

25



(3.3 o760 - ufP e - ay + ey by x in 0

Proof. u; = ugl) - ugz) is a solution wFE with body forces

Fi = 0 in 9 and zero surface tractions. Thus (3.1) holds with F; = 0

and Gij(u) = 0 in L,(?) by the positive-definiteness of the energy.
Moreover, Oij(u) € Cm(Q) by Corollary 2.3 and hence oij(u)(x) =0in
which implies (3.?). Finally, Corollary 3.4 implies ui(x) = ai*'eijktﬁ Xy
which implies (3.3).

Corollary 3.3. Uniqueness of Solutions wLFE with Prescribed

§1), uiz) be two

Stresses at Infinity. Let & C R® be unbounded and let u

solutions WLFE of the equilibrium problem with the same body forces Fi’
zero surface tractions and the same stresses 0:5 at infinity. Then (3.2)

and>(3.3) hold.

. M, _ .~ (2) ©
Proof. By hypothesis, both Gij(u ) oij and Gij(u ) Uij
are in Lz(QR o) for some R > 0. It follows that the difference field
t]
) (2) g ;
u; = ug ug satisfies Oij(u) € Lz(QR,a)’ Hence u; is a solution

wFE with body fo;ces Fi = 0 in f and zero surface tractions. Equations
(3.2), (3.3) follow as in the proof of Corollary 3.2.

The uniqueness theorem for solutions WLFE with prescribed dis;
placements at infinity will be based on the following generalization of
Theorem 3.1.

Theorem 3.4. Let u be a solution WLFE of the equilibrium problem

with body forces F, € Lcom(ﬂ)'and zero surface tractions in an unbounded
2

i

domain © ¢ R®. Moreover, let u satisfy

® -2
(3.4) JR T’ dr =+

-l



for some R > 0 and § > 0. Then u is a solution wFE in & and.the strain
energy equation (3.1) holds.

A proof of Theorem 3.4 is given at the end of the section,
following the statement and discussion of the remaining uniqueness
theorems.

Corollary 3.5. Uniqueness of Solutions WLFE with Prescribed
1) ()
i Y%

Displacements at Infinity. Let © C R® be unbounded and let u; °,

be two solutions wLFE of the equilibrium problem with the same body
forces Fi, zero surface tractions and the same displacerments u: at

infinity. Then (3.2) and (3.3) hold.

(k)

Proof. By hypothesis lu - u”ur 5= O(rvz), r+o, k=1, 2.

It follows by the triangle inequality that the difference field

= ugl) - ugz) satisfies Iuﬂr 5= O(ruz), r + @, or equivalently

Yy

(3.5) llulli_5=0(r), r -+

H

which implies condition (3.4). Moreover, u is a solution WLFE with
Fi = 0 and zero surface tractions. Hence (3.1) holds with Fi = 0, by
Theorem 3.4, and the conclusions (3.2), (3.3) follow as before.

Uniqueness Theorems for Problems with Non-Zero Surface Tractioms.

The uniqueness theorems proved above are valid for arbitrary bounded and
unbounded domains £ C R¥®. No local or global regtrictions are imposed
on Q or 9. If a portion S C o2 is smooth enough for the surface
tractions Gij(u) nj and surface integrals (2.19) to be define@ then

. solutions WLFE with non;zero surface tractions t; on S are defined by
the principle of virtual work. The uniqueness theorems for solutions

with zero surface tractions extend immediately to this case because the



28

difference of two solutions with the same surface tractions ti is a

solution with zero surface tractions.

Other Growth Conditions at Infinity. It is clear from condition

(3.4) of Theorem 3.4 that condition (3.5) is only one sufficient condition

for uniqueness. Generalizations are obtained by replacing (3.5) by

(3.6) . nun; 5= 0(p(x)), £ >+ =

b

where p(r) is a function such that

(3.7) J“ p(’::)_l dr = 4
R

If  is an exterior domain ({x | |x] > R} € @ for R > R;) and if
the body is isotropic as well as homogeneous; i.e., (1.8) holds,  then
the uniqueness theorem can be proved under weaker growth restrictions

than (3.4). Indeed, under these conditions Fichera [4] has proved that
(3.8) ug(x) = 0(1) = u;(x) = 0(]x|™") and 0,4 = 0(|x]™*)

M. E. Gurtin and E. Sternberg [10] have rederived this result and proved

the complementary result that

j(x) = 0(1) = u;(x) = 0(lx|—1) and Gij(x) = 0(|x]™®

G99
Moreover, these results are based on an expansion theorem for biharmonic
functions in a neighborhood of infinity and are independent of 02. Thus
the uniqueness theorems for solutions WLFE with prescribed displacements

or stresses at infinity in homogeneous isotropic solids are valid for

arbitrary exterior domains Q under the conditions

(3.10) ui(x) - u:(x) =0(1), [x| +



and

(3.11) oG - o5 = o), (x| e

respectively.

Proof of Theorem 3.4. The idea of the.proof is to put v, =u

i
in the principle of virtual work identity (2.4), as in the proof of

Theorem 3.1. However, this cannot be done directly when u is a solution

com

wLFE because v € E () must have compact support. Instead, let

vi(x) = ¢(x) ui(x) where
(3.12) o(x) = ¥((]x|] - R)/&), R >0, § >0, x e R®

and | € Cw(R) is a function such that ¥'(T)

1IN

0, 0 <Y(t) €1 and

1,T

IA
o

(3.13) Y(t) = <{

~
v
[

These properties imply that ¢ € C?(Rs), 0

IA

$(x) <1 and

1, |x| <R

0, |x|

(3.14) o(x) = <[
R+ 6

v

It follows that for all u € EX°S(Q), v = ¢u € E°°™(Q) and

(3.15) Vi3 =_¢ui,j + ¢,j ug
Moreover,

(3.16) - | 6,50 = v (=] - R/8) xy/8]x|
and

(3.17) _ supp ¢ 4 C &g o

i



With this choice of vi

(3.18) | egy (V) = ¢ ey () + %-(¢’i u + 6 5 ug)

and hence

Qij (u) ®5 W =¢ Oy (u) €43 (u) + %3 (u) ¢>,i uy
(3.19) ’

'; ¢ 0y (w) eijgu) + 87 (x| - R/8) 0y () 25 uy

where ﬁj = xj/|x|. By assumption F, € Lgom(ﬂ). Choose R, so large that
supp Fi c {x l lxl < Ro} and substitute vy = ¢ ug and (3.19) in (2.4)
with R > R;. The result can be written

V' Uij(u) ii uy dx

- |
JQ [0} Gij(u) Vij(u? dx + § Jg

(3.20) R,§

- F, u,dx=0
[ 5n
The goal of the remainder of the proof is to calculate the limit
of equation (3f20) for R + «© and to show that the limiting form is the
energy equation (3.1). To this end define
-1 :
(3.21) £(R) = JQ P&~ (x| - R)) cij(u) eij(u) dx - Jg F; u; dx, R > R,

By equation (3.20) an alternative representation is

=1

(3.22) £(R) = -8 VT (x| - B) 0;4(w) Ry uy dx

s |
The properties of £(R) that are needed to complete the proof of Theorem

3.4 are described by

Lemma 3.6. f € C![Ro,mD and has derivative

(3.23) £'(R) = -6 J P~ (x| - R Gij(u) e;.(u) dx >0
.6 ’



In particular, f£(R) is monotone non-decreasing on [R,,®). Moreover,

(3.24) £2(R) < M*Julg & £'(R), R 2 Ry

0<1<1

Proof of Lemma 3.6. Form the difference quotient

where M2 = (87 ¢,) X |y (D)].

hMER + h) - £R)} = J o™ (x]-R-h)) - w8 (| x]-R))}
. 0 ‘
(3.25) R, R+h+6

X Gij(u) eij(u) dx
The quotient
(3.26) B YT (|x|-R-0)) - W8T (|x|-RNDF > =87 v (87 (|x]|-R)), h+ 0

uniformly for x in bounded sets in R®. Moreover, Gij(u) eij(u) is
Lebesgue integrable on bounded subsets of 2. Thus passage to the limit
h+ 0 in (3.25) is permissible by Lebesgue's dominated convergence theorem.
Hence f'(R) exists for all R > Ronand is given by (3.23). It is easy to
éhow thaﬁ the integral in (3.23) defines a continuous function of R which
is non-negative. The monotonicity of £(R) follows.

To prove the inequality (3.24) note fhat (3.22) implies the

estimate
(3.27)  |£@®| < 67! J AR EI S N Ioij(u) ﬁi“?jl dx, R > R,

2,8

Moreover, by repeated application of Schwarz's inequality

(3.28) log @) 25 u,] < (05(0) 8 0y, () ﬁk)llz(uj uj)‘/2
: 3 1/2
(3.29) loij(u) ﬁjl < [121 Uij(u)]

— |



: 1/2 " Z1/2
Oij(u) X; ij(U) X < [le (o, (u) £;) ] [kgl (05 (u) xk) ] 3
(3.30)
-3 ' -
= 2 = - -
- jzl (0;5C0) £)% < 1_2__1 ng 0f () = 0 (W) o)

Now eij = Yijkl O together with (1.9) imply

-1 . -1

(3.31) cy oij %5 < Ti5 €14 = Yik0 i 0o < € i3 Uij

for‘all Gij = g,,. Combining these inequalities gives

ji

(3.32) Io‘ij(u) 2, u | < ¢ 1/2 CH (u) e (u))l/2 (uj uj)V2

h|
Substituting in (3.27) and using Schwarz's inequality again and equation

(3.23) gives

:
lewy| < 67 c}’ZJ L' (87 (|x|-R)) | (0 (u) e (u>>’/2 (u, uj)llz s
O, 8
- [ - 1/2 1/2
(3.33) < &7 .c}/Z IQ (o' 0;5(0) ey (w) dx} U o' vy uj-dXJ

R, 6 QR,5

IA

-1 1/2..1/2 1/2
-5 c, K (6 £'(R)) ﬂuﬂR’G

where B = Max [¢'(x)|. Squaring (3.33) gives (3.24).

Proof of Theorem 3.4 Concluded. Lemma 3.6 implies that f(+=)

exists as a finite number or +®. It will be shown that £(4+°) = 0. There
are three cases to consider.
Case 1. 0 < f(+») < 4+», 1In this case there exists R, > R, such

that £(R) > £(R1) > 0 for R > R;. Hence (3.24) can be written

4d [_1 ET(R): . -2 :
(3-34) - dR [f(R)] fZ(R) - M lluﬂR’G 9 R 2 Rl

and integration gives



R

L=2 .
“uir’sdr Y R Z R1
1

. A 1 1 -2
(3.35) &) “Im > M JR

In particular, since f(R) > 0 for R > R,,

M2 R -2
——
(3.36) (5, 2 JRI “g“r,ﬁ dr for R > R,

But this contradicts hypothesis (3.4) of the theorem;' Hence Case 1
cannot occur.

gggg;g. f(+*) < 0 and f(Rl) = 0 for some R} > R, . In this case
0 < £(R;) € £(+) < 0; d.e. £(+) = 0. |

Case 3. f(+°) < 0 and f(R) < 0 for all R >2 R,. In this case

(3.34) and (3.35) hold and the latter can be written, since |f(R)| = -f(R),
(3.37) 1, L N * Jui~%, dr, R> R
. TE®T = TE®RD | R, D% 7 - '

Hence condition (3.4) implies that f(42) = 0.
It has been shown that (3.4) implies £(+) = 0; that is,
(3.38) 11;;:& JQ Vs~ (x| -R) Uij(u) eij(u) dx = L} F, uy dx
Since W(G-l(lxl-R)) is a monotone increasing function of R for each
. fixed x € R® and tends to 1 everywhere when R > <, (3.38) implies equation
(3.1). In particular Wb < o« because fh F, ug dx is finite. This

completes the proof.

W



4. UNIQUENESS THEOREMS FOR OTHER EQUILIBRIUM PROBLEMS

The purpose of this secti§n is to show how the methods.and results
developed above can be extended to the most general equilibrium problems
of linear elasﬁostatics. Equilibria subject to other boundary conditions,
equilibria in inhomogeneous anisotropic bﬁdies and n-dimensional general-
izétions are discussed. In each case the bbundary conditions for d;s-
placement fields wFE and wLFE are defined by approPriéte subspaces of

loc(g), respectively, and a corresponding form of the principle

E(Q) and E
of virtual work is given. Regularity and uniqueness results for the new
problems are indicated without proofs. In fact, the proofs of sections

2 and 3 are valid with minor modifications.

Equilibrium Problems with Prescribed Surface Displacements. The

case of zero surface displacements is discussed first. Suitable subspaces

of displacements fields are

com

(4.1) E,(2) = Closure in E@) of E°®"(® n {u | supp u c 0}

com

(4.2) Eloc(g) Closure in Eloc(g) of E- () n {u | supp uc }

0

The.topologies in E(Q) and Eloc(ﬂ) are those defined by (1.28) and (1.29),

respectively. The notation

(4.3) ECP(@) = E°7@) n E, @)

is also used. A solution wFE of the equilibrium problem with body forces

F, € Lgom(g) and zero surface displacements in a field u € E;(Q) that

i
satisfies (2.4) for all v € E (2). Similarly, a solution WLFE of the
same problem is a field u € E%oc(ﬂ) that satisfies (2.4) for all

35



com

"vE€E; (2. Problems with ndn-zero surface displacements

(4.4) ui(x) = fi(x) , X € 39

may be reduced to the preceding problem if there exists a field
u; (S EQOF(Q) N {u | Uij(u°) € L:om(ﬂ)}. Then ui =u; - ug is é solution
wLFE with zero boundary displacements.

The rémaining boundary conditions can be formulated only when 3§
is piécewise smooth. It will be assumed that 9 is a C-domain in ﬁhe
sense of [24]. For such domains the unit exterior normal field ni(x) is
defined and continuous at all points of o) except edges and corners and
one can define the normal and tangential components of vector field on

30 by
vV, T _V_
(4.5) u; = ug + ug o, ug = (uj vj) vy

Y
Moreover, ug vi = 0 for all ug, vy and hence

(4f6) . u; v o= uz v

. +u
i i

T . T
iV

Equilibrium Problems with Prescribed Tangential Surface Tractions

and Normal Surface Displacements. Suitable subspaces of displacement

fields are defined by

(4.7) C E,® = E® 0 {u | u’ = 0on 32}

fLo0c
E\)

ERoc

(4.8) @ = (@ n{u ] u =0on 3}

fLoc

- The existence of v’ and u® on 30 for all u € E*°(Q) follows from Kornm's

inequality and Sobolev's imbedding theorem. A solution wWFE of the

com

equilibrium problem with body forces F, €L, (Q), zero tangential

surface tractions and zero normal surface displacements is a field

i
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u € Ev(Q) that satisfies (2.4) for all v e Ev(Q). Similarly, a solution

COC(Q) such that (2.4) holds for

wLFE of the same problem is a field u € E
all v G'Esom(n) = Ev(Q) N Ecom(ﬂ). P;obleﬁs with non-zero surface trac-
tions and displacements are treated by reducing them to the preceding
cése through subtraction of a suitable field.

Equilibrium Problems with Prescribed Normal Surface Tractions

and Tangential Surface Displacements. This problem is dual to the

preceding one. Appropriate classes of displacements are

(4.9) E.(Q) = E®@ n {u | u" = 0 on 30}

(4.10) Ef°°(n)

@) n {u | u¥ = 0 on 30}

Equilibrium Problems with Elastically Supported Surface. Physi-

cally, this corresponds to the case where surface displacements produce

surface tractions that satisfy Hooke's law:
(4.11) Gij(u) nj + B u; = 0 on 99

where B > 0 is defined on 3. A solution wLEE is a field u € EX°°(@)
such that

B ug vy ds - 0

f of

‘(4.12) JQ Uij(u) eij(v) dx - J Fi vy dx + J
for all v e ES°™(Q). Identity (4.12) is the principle of virtual work
for this problem, the last term being the virtual work done against the
induced surface tractions by the virtual displacement v. It follows from

(4.12) that (4.11) holds at smooth points of o2.

Equilibrium Problems with Mixed Boundarv Conditions. A mixed

problem that includes the preceding problems as special cases can be

formulated by decomposing 92 into five portions and imposing one of the
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boundary conditions défined above on each portion. Thus, if A

(4.13) o = s, v 82 V) S3 U S“ Q S5 (disjoint union)

and

(4.14) Eﬁoc(ﬂ) = EQOC(Q) Nn{u]u=0on S;, w’ =0 on Sz,.uT = 0 on S,}
then the principle of virtual wofk

(4.15) JQ Uij(u) eij(v) dx - JQ Fi vy dx + JS B ug vy ds =0
5

for all v € E;ém(ﬂ) = Ei?c(ﬂ) N Ecom(Q) characterizes the solutions of

the equilibrium problem that satisfy u = 0 on §,, v’ = 0 and
T

0 and (O‘ij(u) nj)v =0on S,, Uij(u.) nj= 0

T
(Gij(u) nj) Oon S,, u
on S, and cij(u) nj + B uy = 0 on S;.
Regularity and uniqueness theorems will be discussed for this

mixed problem since it includes the others as special cases.

Regulérity Theorems. The interior regularity properties of
solutions WLFE of the mixed problem follow from Theorem 2.1 and are.
exactly the same as for the case discussed in section 2. Concerning
boundary regularity, it can be shown ﬁy the methods of Fichera's
monograph [5] that iﬁ ! is a C-domain of class c” such that Sa = interior

of S, in 32 is a C manifold for k = 1,°++,5, and if F, € @ n L% @)

com
Kk -

then solutions WLFE of the mixed problem satisfy
uy € Cw(ﬂ U Sg U Sg U] Sg V] Sg U Sg) n Li’zoc(ﬂ). The condition

u, € L%’zoc(ﬂ), which follows from Korn's inequality and Sobolev's theorem, %
is the "edge condition" that is needed for uniqueness. The boundary ' -

conditions on §,, Sy and S; are not discussed by Fichera in [5] but can

be treated by his methods.



Uniqueness Theorems. Solutions wFE of the mixed probiem lie in
(4.16) Em(ﬂ) =E@) Nn{u| u=0ons,, w’ =0 on S,» ut =0 on S,}

and satisfy (4.15) for all v e Em(Q). The strain energy theorem for the

problem is

‘ _1 1 1
(4.17) WQ =3 JQ Oij(u) eij(u) dx + 2 Js B u, ug ds 2 Ig Fi uy dx
5

wheré the first equation defines the strain energy for the mixed problem.
The uniqueness of solutions WwFE is an imﬁediate corollary. Solutions
with prescribed st?esses or digplacements at infinity will be.definéd by
(2.9) and (2.10), respectively, as in the surface tractions problem.
Moreover, the strain energy theorem, Theorem 3.4, extends to solutions
WwLFE of the mixed problem.. In fact, the same proof is valid because if
u€ EC%(®) and ¢ € Cy(R?) then v = ¢u € EE"(@) = E_() n E°"(@). The
uniqueness of solutions WLFE of the mixed problem with prescribed dis-
placements at infinity is an immediate corollary. It can élso be shown
that the displacement fields for the mixed problem are unique except in

the special case of the pure surface tractions boundary condition (S, =3Q).

Inhomogeneous Bodies. The uniqueness and energy theorems given-
above remain valid if the constant stress strain tensor cijkl is replaced
by a field cijkz(x) that is Lebesgue measurable in 2 and satisfies (1.9).
The interior and boundary regularity theorems of section 2 are valid

when cijkE(x) has sufficient differentiability in Q and ﬁ; respectively;

cf. [1, p. 132].

n-Dimensional Problems. Fichera [5] has developed his theory for

an n-dimensional generalization of the equations of elastostatics. All of

the theorems given above extend to this n-dimensional problem with only

e



notational changes. The cases n =1 and n = 2 are applicable to elasto-
static fields that are functions of only one or two of the Cartesian

coordinates.



5. A DISCUSSION OF RELATED LITERATURE

Fichera's péper [4] of 1950 proVided the first significaﬁt exten-
sion of Kiréhhéff's uniqueness theorem to unbounded domazins. His result
(3,85 implies that equilibrium fields in homogeneous isotropic bodies in
exterior domains have finite energy if the displacements vanish at
infinity. The uniqueness of equilibrium fields in such bodies is an
jmmediate corollary. Corresponding results for fields wﬁose stresses
vanish at infinity follow from the 196; result (3'9),°f Gurtin and
Sternberg.flol.’ The author knows of no general uniqueness results for
anisotroPiﬁ bodies in exterior domains or for bodies whose boundary is
unbounded.

In Fichera's monograph [5] of 1965 the existence and uniqueness
of classical solutions to elastostatic equilibriuﬁ problems in bounded
domains with smooth boundaries is proved by the methods of functional
analysis. This provides an alternative to the classical integral equa-
tion methods cited in the introduction. However, the formulation and
techniques employed by Fichera can provide more general reéults.
Fichera's semi-weak solutions (Lecture 7) are essentially the solutions
wFE of this paper. Hence, Fichera's results (Lectures 7 and 12) imply
the uniqueness of solutions WFE fof bounded domains and boundary condi-
tions for which Korn's inequality is valid. For the zero surface dis-
placements problem the inequality hﬁlds for every bounded domain. For
the zero surface tractions problem it holds for domains with the cone

prbpérty.

41



The literature on uniqueness theorems in linear elastostatics up
to 1970 was surveyed in a monograph by R. J. Knopé and L. E. Payne [13]
p;blished in 1971. This work also contains uniqﬁeness theorems for a
class of weak solutions. However, the hypothesis that the displacement
fields are continuous in § restricts the scope of thesg results.

Uniqueness tﬁeorems for plane crack problems were proved by
J. K. Knowles and T. A. Pucik in 1973 [14] under'the assumption that the
diéplacements are bounded, but not necessafily continuous, at the crack
tips. The elegant differential inequality method used in this work
provided the insﬁiration for the proof of Theorem 3.4.

The methods employed in this paper to prove uniquengss theorems
for solutions wLFE in arbitrary domains were introduced by the author
during the feriod'1962—64 in a series of papers on boundary value
probiems of the theory of wave propagation [25, 26,.27]. The article
[27]'coﬁtains as a special case uniqueness theorems for elastodynamic

problems in arbitrary domains.
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PART IV
COMPLETENESS OF THE EIGEN FUNCTIONS FOR
GRIFFITH CRACKS IN PLATES OF FINITE THICKNESS



Introduction.

E.S. Folias [1] has constructed the displacement and stress fields |

near a Griffith crack as an expansion:in eigenfunctions. The eigen-
functions were derived by an operational method due to Luré [2] and the
question of.completenéss arises. The burpose of this report is to
prove the completeness by a constructive method. The method employed
is'to solve the boundary value problem by Fourier analysis and to
evéluate the reéulting iﬁtegrals as residue series. The terms in these

series are precisely the eigenfunctions used by Folias.

]



"Notation.v
A system of Cartesian coordinates (X,y,z) is used. The plate

occupies the region defined by

“© < X<®, -®y<o, -ch<z<h

The crack is defined by



The components of the displacement field in the stressed plate are

ulx,y,z) , v,y,z) , wXy,z)

The corresponding stress tensor components are
]

_.u, v, oW Bu
oy " AGx * oy * 3P * Oax
; = .a_u.. _a.\i =
Txy = G(By T T Tyx

_ ~ou oWy _

Txz ~ 6Gz * 3% = Tax

o =>\(g§-+-a—v—+ﬂ)+2G")V

y dy oz oy
_ A OV, OWy =
Tyz ~ 6z * ?y Tzy
_,0u , OV , oW ow
Oz—k(ﬁ""g—};“"-ﬁ)‘*ZG-a—z

The displacement field satisfies the field equations

2 2 2
ox ay 0z x e y z

2 2 2
v , v oV 2 9 Ou oV oW

+ + +a° — (=+—+77) =0
axz ay2 aZZ dy ox 9y oz
oy , 0P, 2Pe, 2 2 g dv, Bwy
sz Byz az2 9z ‘Bx dy 9z

where a’ = 28 . The boundary conditions are

G



., =0, .. =0, oz=0 for -» < X,y <® , z=z*h

T =0 5 T =0, o, = -0, for -;<x<c, y='0i, ,[.z|<h

u,v,w = 0(1) for Xt + y2 o, |z| <h

Synm etries.

X
u(x,y,z) ‘ odd
v(x,y,z) _ even
w(X,y,2) ' : even

If follows from the symmetries that

3 oy
V=0,§—§=0,—a—z-=0 for |x| >c, y-=
Ju oW .
= =0 — =0 for |x] >c,
v =0 5y | x| y
whence
'rxy=0,'rzy=0 ~ for |x|>c, ¥

Moreover, if

y z
even - even
odd even
even odd

=0, |z|]<h
=0, |z|<h
=0, |z|<h



ut (x,0,z) = u(x, €,2)

e+0

etc.

[u] (x,0,2) = u' (x,0,2) - u (x,0,z)

then
[u] = [ ] —[az] =10 fbr @ <x<w, |z] <h W
[w] = [aw] = [aw] =0 for = <x<w, |z] < h + even in-y
[ay] =0 | for -» < x < ® » |z] <h |

while

du, _ ., du,+ ’ + .
[5§J = 26539 , [vl=2v , etc.} odd iny

Note: these vanish at points of continuity.

Application of the Fourier Transform in x and y .

Define

5 = e T o-ipx :
802) (Zﬂ)l/zf Gy,

etc.

[}

u(p,q,z) = - 1/2 Je-iqy i6p,y,2)d
(211') s> y

-00

7 | [ 1O ugy, iy

é'—‘a

etc.



Then
Couy . A 'Bzu ~ 2~
&Y =8, &P = v
oX
- R
(—— = —33’-—' ’ etc.

However, u,v,w and their derivatives may have discontinuities across

 the crack. Note that, if £09(y) e L, ®) for k=0,1,2 and
fecl@) nc?®) and £(0x) , £(0%) are finite

©o

£ (q) = - 1/2 I ) e 1 £1(y)ay

.é‘——-so

(2m)

1 @1 gy ¢ el g . 2
et @V £ |V )L i _i
E?)ﬂ+iqﬂm
il
and hence
e @=-E i@ @

I R - 3
(2m) 1/2 1q, (Zﬂ)l/z q f(a)

These results and the symmetries (p. 3) imply

e 'Y £(y)dy)



I
1]
[
Q0
[+

- &V - L ((%593—5 BY” 04,2

etc.

~
(s
c
hubs
I

@V"--(ﬂ”“ +iq v

2,1/2 2 2
--1q()/ 0~ a4 V-

iqw

(3 w) _ C_JI/Z(HW _ q2 o

Taking the Fourler transform of the field equations (p. 2) and using the

above results gives

2"‘ l A’

2 ~ ~ 1/2,% 2, 2~ ~ 1/2 diw
v p’u-q ()/zu +al(- pPh - pa ¥ - ipGM Py, s ip I
dz
2~

” -~ ~ 2 ~ g2~ 1/2

g—%-pzv-qzv-lq()l/z +a(-pa - a2 ¥ - iaBAY 0+q51‘—")
Z
w2~ 2 1/2, 3w, " 1/2 v, b . a%
‘a"z'p W (_) [ay)o"'a (1Pa'"+1q dZ () ( )0 :1“2‘) = 0
Z Z

or



2~

d div 1/2 o B
d—zz-(p +q)u-ap(pu+qv-1d‘7f =(—)/[( ) + ip a” v]
% 2. 2~ 2~ . dw VY 2 ~

-E;T'(P"Q)V‘acﬂpu*qvflag): quV+1qa VO]

B e
2 2 2~ a 1/2, 3
ma)_zdw (+q)w+1acpdz V)—(—)/[(W : “")1

Note that
f(x) is even < %(p) is even and
o) = A7 cos px £0a2 = F W)
0
£x) = &2 J cos px £(p)dp
| 0
while

£(x) is odd < f(p) is odd and

Fp) = -1 B2 f sin px £(x)dz = -1 F_£(p)
! |

£x) =i & )1/2_[ sin px £(p)dp = (11)1/2 J sin px F_£(p)dp
| 0 0

The analogous formulas are valid for functions of y . Hence the

symmetries, p. 3, imply

-



R=-iU, Vv=-iV, W=W
where U, V, W are real-valued. In fact,
_ 2 .
U= FJ f sin px cos qy u(x,y,z)dxdy
00 '
V= _TZr'J J cos px sin qy v(Xx,y,z)dxdy
00
- 2 '
= FJ J cos px cos qy w(x,y,z)dxdy
00 '
Hence the differential equations for u, v, w onp. 7 are equivalent
to
2
d’u _ 2 dW _ 2 2 2 =_1/2 duy, _ 2
P o2 Aap(pU+qV) " +qU = (D [s(ay)o pa’F vl
d 2 dw 2 2 2 1/2 2
PR T a’'qpU+qV) - (" +q)V= (—) /2 - (1+a™)qF v,]
z ’ A
2. a2, du, AV, _ 2, 2 2.1/2,, 3
n’) Sl rag) - @ v AN &Y PGy + a’r &Y D]

This can be written as a 2nd order 3 x 3 matrix system of ODE's,

namely



where, if U= (U,V;W)T (T = transpose)

T d U dU
U = A ——7-+ B af-+ cU
0 0
A= 1 0
0 1+a
0 -azp
_ 2
B = 0 -aTq
azp an 0
2.2 2
-a’p -apg O
Cs= -azpq _anZ 0
0 0 0
Note that
T i ) 94

It follows that L is formally selfadjoint with respect to the scalar

product

m,v)=J o7 ¥ az
Z

In fact, integration by parts gives

ol



2 - .
CU,LV)=J @ AT+ T 7+ T ¢ Dz
a z1
zz' ZZ o
T AT + T BV [ @TAT + 0T BT -
‘ Z1 z
1
. z2
AT - T AT+ T BV
21
22‘
-% @TA-TTB+T C)TVdz
21
z2 z2_ . o
- [0,7] +J W+ BT +CcD)T T az
:'_-'Zl Z-
1
ZZ 3
= [0,V]  + (LU,YV)
a1
where
T TTATV+T BV

If the index notation
T= U.,U0,,0)7 , V= (Vy,V,,Vs)
_ 127273 2 1°°2°°3

is used the bilinear form [U,V] can be written

e o gy T e e o e

T ¢ V)dz

10



UV + UV (1+a)UVy

[O,V1 = UVp * 5%2
.
R AR A AR ¢ T LA

asz1V3 - aquZV‘3 + asz?)\/1 + aqu3V2

Boundary Conditions Associated with L .

The synmetry properties of the displacémént field wrt z (p. 3)

“imply that
u _ OV - ‘ -
@Y, =0 GPao™ 00 0™ "
It fbllows thaf
di(0) _ dv(0) _ _
—— 0, —a;— 0, WO =0
Note that |
B.C.1 ‘ Ui(O) =0, U'Z(O) =0, US(O) =0

is selfadjoint for L ; i.e.

U and V satisfy B.C.1 = [U,V]Z___o =0

The B.C.'s at z = *h imply corresponding B.C.'s for U . To write

then note that (p. ©6)

1
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- . . ~dU
sz=G(§z_+ ipw) = -i G(E—pW)
~ dv . dv
Tyz = G(a%+ iq w) = -1 G(EE -qW
EZ=)\(ipﬁ+iq{‘r—()1/2 +g§i)+2G§1lw
aw
SA@UraV + 020 I G255
2
=ApU+aqVvs LA - Y2y 3
-1
since
A=26 26_ ., 1+'2_G=m-1=az+1
m-2 ° X A a2_1
a2=%, ma2-2a2=m, rn(az~1_)=2a2
m = 2a° A a-1 m _ 2a°
b = I o
al,’ W72 ml~ 25

It follows that

L -pwmy =0, N g wm -0

2 P
PUM +q vy + HLEM - HYZ ] g,

a -1

Note that

ol
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o
0
[SS)

Up(h) - p Us(h) = 0, Uy(h) - q Ug(h) = 0

Z
p U () + q Up®) + 2 U3) = 0
a -

is also selfadjoint for L . In fact, if U and V satisfy B.C.2 then

[0V, = P UjVz + q UpVy - (@"-1)U; (p V3 *+ qVy)

z=h
- P U3V1 -q U3V2 + (a"-1) (p .Ul +q UZ)VS

2 2 L2 ' 2 _
—apUle—aqU2V3+apU3V1+aqU3V2—O_

BV Problem for U = (Ul,Uz,Uz‘)Te w,vwl .

LU—(p2+q2)U F, 0<z<h

MOU(O) + NOU'(O) =0
MhU'(h) + NhU' (h) = G(h)
where
- ouy _ 2 -
Fs(é—f)o pa Fc Yo

Fo) - AV | - axd aF v,

ow. 2. OV
L FC(W)O i Fc(a_z)o :

]
o
“

=

]
(-]
o

M
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-p: 0
M = -q N, = .0
h o Ny )
P q -0 0 0 a+1
az—l
and
0
G(h) = 0
' 251/2
(F) FC VO

Method of Solving the BV Problem for U,v,w .

To solve the BV problem the general solution of L T - (p2 + qZ)U =F

and BC at z = 0 will be constructed as a function of the parameters

Uy = U(0) , vy = V() , wy= MO

The B.C.'s at z = h will then be used to calcuiate u v

0 ° O,W(').

Solutions of the Equations L U - (p2 + qZ)U =0 .

This equation, written in terms of components '(Ul,UZ,US) = o,v,w) ,
is obtained from the system on p.8 by setting the right-hand side equal
to O . Note that this system coincides with Luré, p. 150 (3.2.12)

under the correspondence

Fil=u, -iVvVev, Wey

. . . . W dw
ip(-i0) +iq-iV) + P =pusqu+ Wesyg
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Luré has given a complete solution of the system L U = (p2 + qz)ﬁ in

equation (3.2.15), (3.2.17). To adapt them to the present notation write

52=p2+q2, s=¢p2+q2?0, D=1is

cos zD = cos isz = cosh #z , sin zD = sin isz = i sinh sz

Then the solution (3.2.15) becomes

2. )
a” 'z sinh sz

2 .
U = (cosh sz)uy + 5 —5—— (puy *+ pavy + pwy)
: a2z sinh sz 2
V = (cosh sz)vo s R (pqu0.+ qQ Vg * qw('))
: sinh sz a2 sinh sz '
W= S w(‘) B S (——s—— - z cosh sz) (pu0 MG/ w('))
This solution satisfies B.C.1 at z =0 The solution (3.2.17) becomes
. 2 s s .
sinh sz a i sinh sz , z cosh sz, , 2 s -2 :
U==>-—=ul + ( + ) (P uy + pavy + ps” W)
B 0 2(a2+1) e +s? 0 o0 0
. 2 . o
sinh sz a sinh sz , z cosh sz 2 2
v vy o+ = + ) (pquf + q°vy * qs"w,)
s 07 SRh) o8 <2 0 0 0
W = (cosh sz)w, - a’ 2 sinh sz (pul + qvl + szw )
0" Y@ty S 0" Mo 0

This solution satisfies

B.C.1' U) =0, V(0)

[}
o
-

and

du(0

ug = WOy - TO = o)



Solution Basis for LU= (p

2

+ )0 .

Vo © w(') =0 gives

(ot

Similarly

2

e

cosh

E
2

( w &
cosh sz 5

' a2 z sinh sz _2
2=

S
az Z sinh sz
> s Pq
El__]’ﬂ_;__S_Z_ -z cosh sz)p |
2 ..
a“ z 'sinh sz
T s Pq

a2 z sinh sz 2

Sz * =5 T s q
sinh S2 _; cosh sz)q
2 .

a~ z sinh sz

2 S

az z sinh sz
2 S a

sz ., a (sinh Sz
s

\

-z cosh sz)

7

16



i v

e 2 s 2
, U4 ) ( sm}sx sz , a2 (z cosh sz - Sll’l}sl sz)_;_)7 w
Z(a +1) s
4 -l sinh sz
U = ——— (z cosh sz - ———————JE%-
Z(a +1) S S
A 3 Z ..
| W _ 22 z sinh sz ‘
SR B C 2(a%+1) s . )
ub =0, vb =1, Wy = 0 gives
(v -——%i—;-(z cosh sz - Sinh —chlu iy
2(a"+1) ;7
5 sinh sz _ . a’ sinh sz.q°
A = = t— (z cosh sz - ———g—-aﬂz
2(a™+1) - s
: 2 e
W _ zz z sinh sz
\ J \ a(a +1) S J
ub = vb =0, Wy = 1 gives
6 a’ sinh sz, _
(U°) ( -~—7———-(z cosh sz S )
a(a™1)
9 K
V6 = _a (Z cosh sz - im}__l_si) q
2 S
2(a™+1)
W6 cosh sz ; aZ sz sinh sz
\ J \ 2 J
2(a"+1)

It is evident from the B.C. at z = 0 that these six solutions are

linearly independent and hence span the solution space of

LU= @ +q)0 .

Solutions of L U - (p2 + qz)ﬁ'= F(z) .

The variation of constants formula will be used. For this purpose



it is convenient to write the equation as a 1st order system. The

equation has the form

where
(a2l ol o)
CS = szl -C= azpq 52' + anZ 0
o 0 s?

Now AT =A>1 , whence

A= A2 V2 G2 GUT g

0 0 1+a

Thus
A2gea a2y - N2 U= naY2E
Put
()
v-a27=|
| /iva? U




( 3
Vi
T-aY27= v,
{ V:,)/‘/1+a2 )
Then
v Y2 V7 - a Yl aVv-n
or
Vi o+ BAV' - CAV=E |
where
o -1/2 . -1/2 _ T
By = A B A = QA
-1/2 -1/2 _ T
Cy = A Cg A7 =Cy
g =aY2F
Explicitly,
0 0 -p
o2
B, = 0 0 -q
A 142Dyt ?
p q 0
[(s” + azp2 azpq 0 )
CA = apq s + a2q2 0
<2
| 0 0 TeaZ |

19
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A 1st order system equivalent to the above 2nd order system may be -

obtained by setting

.
X= (Z) (Vt)
Then
P v . . 1 = o= o -
Y \Y Z 5 L v BAZ+CAY+G
and
0 1 0
X' = X+ |
CA -BA G
or
X'=MX+H(z), H= (G)
where
0 1
M=
Co  “Ba

A fundamental matrix for X' =MX is a 6 x 6 matrix solution &(z)

of

3'(z) = M o(z)
®(0) =

An explicit representatlon of ®(z) can be derived from the solution

basis for- L U = sZU . Indeed, each solution UJ = (U:l VJ WJ )T of
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LT = s°0 ~gives a solution X of ¥'=M¥ , namely

; ANNIVERT
X e d . = =
VJ 1 Al/Z I—J‘J '

Thus, in view of the B.C.'s at z =10,

2,6

@) = o X @) VB K XS (ad) VS

| M, M
r vt v et VAP W ® @AY
€k s | o Ve
aadVad (VAP WS YAt aahyVH® W
- oL 2 ()b e R X
T N . T w3 N T X 3
@Y (Y52 wr Ok (Y2 o W

where U9, V', W are defined on pp. 16-17.
The fundamental matrix makes it possible to calculate a solution of

X' =MX+H, namely
Z
o [] "1 .
X(z) = ¢(2) [ ol ) HE
0

Indeed,

.
X @(z)?f o L) H(x)dr + 9(2) @ 1 (2) H(z)
0 .

]

MX+H

Moreover,




_ ‘ 22
X(0) = 0
Thus the general solution of X' =MX +H is given-by
. ‘ z
X(2) = 5(2) X, + 0@ | 0@ BE)

0 _ o
The direct calculation of @(;)-1 is difficult, but note that if

and
E(z) = —12—X(2)T P X(2)
then X' =MX~=

E'(z) = X(2)T P X' (2) = X(2)T PM X(2) = 0

because
c 0} (O 1 0 C
0 -1 CA "BA -QA BA
and hence
@nT = - M

Thus E(z) = const. ¥ solutions of X' =MX. Take X(z) = @(z) XO

(X0 eZR6 arbitrary). Then

2E() = () X)T P 0(2) X = Xp ¢ () P () X,
=X P X = 2B(0) ¥ X eR
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It follows that

<I>(z)TP<I>(z)=P. ¥zeR
Since P is non-singular

@l e P) o(2) -

whénc:e
o)t = Pl ag)Tp
Thus
. i . Z .
¢ X@ =@ X+ @ [ e@T R HEE
o 0

Solution of the B.V. Problem of p. 13.

Recall that

X = (V.) = (U, U, (+a 2y1/2 U U Uy (L4a B2 gy

XO = (u (1+a )1/2 ul v} (1+a )1/2

Wy Uy Vo wp)

Thus the solution (*) satisfies B.C.1 (at z =0) <= u(') = v(') =Wy = 0.

Thus if we write
Z
X"(2) = 0(2) 21 [ 0@ 2 HEo):
0

then substituting in (*) gives

R — e s e AT e
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1/2 . m
U (z) = @11(2) U, L @12(2) Vo + (1+a ) 16(z)w0 + Xl(z)

U, (2) = 0,1 (2) uy + 8,,(2) vy + (I+a B2 o () wy + X3 (2)

1/2

@a) Y2, (2) = 051 (2) uy + 85,(2) v + (4 B2 g (2) wy + Xi(2)

Y X ,

or (see p. 21) if- U"(2) = x‘l‘(g) , V'(2) = X(2) , W (z) = (1+a%)
U(z) = U'(2) uy + vl (2) v, + ) wy + U (2)
V(2) = V'(2) u + vA(2) v, + V() w + V' (2)
W(z) = W (z) uy + W (2) vy + W) W)+ W (2)

Thus (p. 15)

2.
: a” 'z 'sinh sz
(cosh sz) Y + -~

U(z) (%uy + pavy + pig) + U (2)

2 .
- a” z sinh sz 2
V(z) = (cosh sz) vy * —2———3—1—5——-—-— (pql__zo +qvy * qw(')) % Vﬂ(z)
c 2
sinh sz inh sz
W(z) = -—i?f-— wh o+ —z— (Sl 52 . z cosh ;z) (puo Qv * w(')) + W (2)

To complete the solution of the B.V. problem of p. 13 the initial values

uo,vo,w(') must be chosen so that the B.C.2 at z = h is satisfied. The

" derivatives U',V",W' are needed. They are given by

2 L3 4 )
. nh + h 2
U'(z) = s(sinh sz)u0 * EZ' (Sl =z S Se B sz) (p uy * Pavy * pw(')) + Uﬂ'(z)
2 .
. inh * h 2
V'(z) = s(sinh sz)v0 + —2— (S1 SZ S Sz €03 SZ) (pqu0 +qvy + qwb) + V1 (2)
2 8 '
W'(z) = (cosh sz)w(') % %— ( -sz sinh sz) (pu *qug tw ) + W' (2)

Thus the B.C.2 (p. 13) gives
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U'(h) - p W(h)

Pt 3

: | ' inh ‘sh + sh ¢osh ‘sl
s(sinh sh)u0+§2_(51 sh + sh cosh sh

S )(p Uy * Pavy * pwg)

n

sinh sh - az' -sinh sh

s— Y " 7 ( = - h cos_h sh) (pu0 *qvy * w('))

+ U ) -p W () =

V@) - q W)

2.

s(sinh sh)vo & :11T (smh sh + sh cosh sh

2
= )(pqu Qv+ qwp)

sinh sh Wl - qa2 ('sinh sh
s 0 . 2 ]

- h cosh sh) (puy + qvy + w})

+

V'th) - qW(h) =

w2
PUR) + q V() + 22 W ()
a -1
2 i -
p(cosh sh)uO A p; h Slnlsl sh (pzuo + pqvo + pw(')).

1]

2
q(cosh sh)v0 ¥ qg i smh sh (pqu +q v + qw )

e a2+1 2
( )(cosh sh)w + (—Z-——) %~ (-sh sinh sh) (pu + qv0 + wo)

+

+

a-l

2 A
pﬂm)+qﬂm)+ﬁ*Hw'm) &Yy

+

v, (h)
This is a system of linear equations for Ug>Vy ,w(') of the form

dyqug *+ dy,vg + dygvh = £ 0, (= U (h) + p W (h))

dyquy + dyovy + dywl = £,(p,9) (= V' (h) + q W' (h))

: 2
%%+%%+%%-%mm@mﬂm-qﬂm-é#wwm

2, 1/2"
5125, m))
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where
422 42,2 ;
dj; = s(sinh sh) + _75— (sinh sh + sh cosh sh) - -215’— (sinh sh - sh cosh sh)
. 272
= s(sinh sh) + a"p”~ h cosh sh
a2 51nh sh e sinh 'sh
d12 = > Pq q (——+ + h cosh sh) - Pa (———s-—— - h cosh sh)

13

21

25

31

22

azpq h cosh sh

2 . g ' 2 e
= ':12__ P (__.__---Sm}s1 Sh 4 h cosh sh) - gsinh sh - a_T P (________5111]51 1 - h cosh sh)
= azph cosh sh - p smh sh-
a? sinh sh a? sinh sh
=5 pq ((—5— * hcosh sh) - 5 pq (= - h cosh sh)
=a2 h cosh sh = d
Pq 12
a2 2 sinh sh a? 2 sichsh . _
= s(sinh sh) + - q (———-g——- + h cosh sh) - - q v(—"”g"“‘ - h cosh sh)
= s(sinh sh).+ azq2 h cosh sh
a?  sinh sh sinh sh a’ _ sinh sh
=5 q (__T__+hcosh sh) - q——g.———-—z— q (———s—-————-hCOShSh)
. q .. 2
= -Esmh sh + a“gh cosh sh
2 2 2,, .2
=pcoshsh+-a—— p3h51nh sh+§— quhsmh sh - (a+1) —~—shp31nhsh
2 S 2 S az-l 2

B .aZ a2+1
p cosh sh + (5 psh - (

1}

) -2— psh) sinh sh
2 g 52
p cosh sh + - psh (-—7—) sinh sh = p cosh sh - ——1p sh sinh sh
a“-1 ‘ a-1
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33

The

%% pqu}l—s—v}—-——-ghsll+ q cosh sh + %— q

I

2 2 2
-2 p hisish sh .2 qzl‘._él_gh..s-}l iz‘ilcoshsh_- (‘”1)7 hs sinh sh

L g2 3 h sinh sh _ a+1 2
L

: -
q cosh sh + _a?_ qsh sinh sh - 22- a +1) gsh sinh sh
, .aZ _ 9 ‘
q cosh sh + —- gsh sinh sh (——)
a“-1
. . .az v
q cosh sh - —— gsh sinh sh
a -1

2 h'sinh sh

a-1
2 . 2
ET shsinhsh—.%— (a +1) sh sinh sh+2 +1

a -1

cosh sh

al ‘2
-2 .
(~—2———) 92— sh sinh sh + 321—1—
a-1 a-1

cosh sh-

. 2 .
iz’i cosh sh - —5— sh sinh sh
- a“-1

Cofactors of Q = (djk_)___._

Let ‘ij = (con)jk

e, a8ss d32d23

-+

+

22733

2 _
(s sinh sh +_azq2h cosh sh) (a *1 cosh sh - sh sinh s)
_ v Z

a -1 a“-1

2
(q cosh sh - -3— q sh sinh s)(+ 3 sinh sh - a2qh cosh sh)
a -1 ' =

21

)-— shqsmhsh

4 2.2

—21“ [(32+1)S sinh cosh - azszh sinh2 * (a2+1)a2qzh cosh2 -aq
221 ; .
21 .. 2 2 a’ a* :
q [— sinh cosh - a"h cosh™ - T— h smh + 2 1h s smh cosh]
a -1 a
(a +1)a azs h a2 'Zh y
o (-———-——9—- a qzh) cosh + ( ——g——) sinh
_ 1 a-1

+

a2+1 a4 2hzs qu | h S .
(_2___5 __fzjrau.g- -r—--fl————a ! ) sinh cosh

h®s sinh co
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- 2,2, 2y 2,2 2 2
anZh —2-— c:osh2 3—(-57:9—1}3 sinh2 g 205 +c21 ) * P ginh cosh
-1 s(a —1)

. 4 2
=a(S+Q)h Zaqh—a(s+q)hcosh +a(5+Q)+}Lsmhcosh

e -1 s(a -1)
25 T 22 |
-2 (5 M . aI%hCOSh2 ghie 2= (S +q) +PLsthsh
a2-1 - oat-1 s(a -1)
- (dyydgg - dgydys) = dgpdps - dyqdz3

2 |
(p cosh - —g—— psh sinh) (- < sinh + aZqh cosh)

2
(a pqh cosh) (—2—— cosh - 2_1 sh sinh)

2
pq sinh cosh + azpqh cosh & E__g@ sinh -——Eq—-— sinh cosh
(a”-1) _ a -1

= a__(%__t_l_)_ pgh cosh + E_Els_]l_ sinh cosh

+

-1 a -1
& a4+a2)ggh 2
_Pﬁ.- + (a pqh + __g__q ) cosh

(- qu-) sinh cosh

a2 h a2+1 21
- +a pqh 1+ —7—-— —7——) cosh™ - qu— sinh cosh
a-1 a -1
2 2
- —295& 9—793}1 cosh sh - smh 2sh
] a -1
=d..d,, - d;,d

1]

21732 31 22
2 - a2 -
(a“pgh cosh) (q cosh - ——4 sh sinh)
a“-1

2
(p cosh - ——azl—— psh sinh) (s sinh + anZh cosh)
a -1l ,

2 _
(cosh - g sh sinh) (-ps sinh)
a -1 :

2 E .
2 phe? sinh” sh - ps sinh sh cosh sh
a -1



2 L o
- -—%—— phs2 + a phs2 cosh2 gh, = 2 smh 25h
a -1 o a —1
= - (s - dgydyg) = dgydyg - dypdss
2 ’ 1nh
(q cosh —-2——— gsh sinh) (a ph cosh - p )

]

1}

+

s 2
(a pqh cosh) (—T—— cosh - —-2-— sh sinh)

-1

29

a-1
a pqh cosh2 - p_g sinh cosh - —99-—-— sinh cosh + ——p-C-L s1nh
a -1
P
9——@2:-1—2‘1)—(111 cosh # -—Pﬂ}-l-—s— sinh cosh
a -1

- ___%’ﬂ__az h, (azpqh + .—?— ———2———E—a (a +1) qh) cosh

a"-1 .
(- %q~) sinh cosh

2, .2 o
_a“pgh _ a’pgh 2 _pq sinh 2sh = Q
_ZPE._ —-%3_9— cosh” sh 55 12

=d,.d,, - d;,d

+ (

11735 31713

2 2
(s sirh + a’p’h cosh) (52‘11— cosh - —5— sh sinh)
-1 a -1

2
(p cosh - —2—— psh sinh) (a ph cosh - B sinh)

2 2
f’—(—%—:—l—)— sinh cosh - —2—-—— smh + a——i—?)—z——}l cosh
a -1 _

2 2
2pzh cosh? + P sinh cosh + ——R——— sinh cosh - —{L

42.2
- il’fﬁ-sinh cosh
Ly

1 a”-1
_—(———E-—)—]l(cosh -1) + (9.—(3:’—112—}1 - a p h) cosh2

s(a +1) ' p2 .
p— & ’5“) sinh cosh
a -1 g
o2plsshh , 2 (a®+Dp2 _ 2 s2ap? 2
> + a"h ( 7, = P -—-Z-P—l—)cosh.
a - a -

a -1



+
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(a ﬂ) b (a -1) sinh cosh

s(a -1)
2.22:
=2 (p2+s I_g qzhcosh sh + 2 (sPpyed” sinh 2sh
-1 a -1 2s(a”-1)
- (djqd3y - dgydyp) = dgypdyy - dpqdy,

i}

]

n

"'at2 Z 2
(cosh = =5~ sh sinh) (a“p“gh cosh)
a -1
o
q (s sinh + a P h cosh) (cosh - _az__ sh sinh)
a-1
o2
(cosh - —3—— sh sinh) (- gs sinh)
a -1
azs2 h 2
- gs smhcosh+———2-ﬂ— sinh
a -1
22, .22 o
- asqh+asthosh2 sh - &2 sinh 2sh

az-lA A a2-1 2

dypdys - dypdy3

(azpqh cosh) (—‘ Esl sinh + azqh cosh)

2.2

(s sinh + a’q’h cosh) (a’ph cosh - 2 sinh)

2 2

a“phs sinh cosh + p sinh

y 2 a2 ohs -
-p + p cosh™ sh - ——%— sinh 2sh

- (44,5 - dydig) = dyydyg - dydyg
(azpqh cosh) (azph cosh - g sinh)

(azpqh cosh)t % sinh + azqh cosh)
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1

,(,azpqh cosh) '(azh (p-q) cosh +Q_;E sirh)

1,

= sinh)

1

(azpqh cosh sh)(p-q)(azh cosh -

dy1dp5 - dpdyp

Q3 =
= (s sinh + azpzh cosh) (s sinh + anZh cosh) - a4p2q2h2 cosh2
= 52 sinh2 + (azpzsh P azqzsh) sinh cosh
= sz sinh2 sh + azssh sinh sh cosh sh
|Q] = det(djk) can be calculated from Luré, p. 153 and the correspondence .
(see p. 14) |
ip = al y 1= ay s is<=D
This gives
TN S T ~'$in 2ish
Q] = 2a"h(is)” sin(ish) @ + ==75)
I R 'sinh 2sh
=2a"h s s;nh sh (1 + ———EEE——O

Qs = 12185,

T~r00

- k=1
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[ 1l wg = Qqqfy * Quf, + Qs

) | 1 1R1vp = Qpfp + Qpfp * Qapfs

L Q] wy = Qafy * Qpafy * Q33f3

The only real zero of |Q(s)| is at s = »/p2+q2 =0 . Thus
¥ real (,0) 4 (0,0)

( -3 le(p,q)fj (p,q)
@ = L T e

3..Q;,(,9);(P,q)

vo(p,q) = »jzl |Q(s)_|
3..Q;5(P,)f; (P,q)

1 = J

wy (p,a) jzl, QG|

Substituting for uy,vy,wWy in the equations on p. 24 gives

Ulp,q,2) » V(P,9,2) , W(P,q,z)

Residue Series Representation for u(p,y,z) , Vv(p,¥,z) , w(p,y,z) .

The equations on pp. 4-8 give

. .1 iyq i Y9 yep.,
U(P,}’,Z) W Je u(p’q’Z)dq (2'[1')1/2 Je U(p,q,z)dq

~ __i s '
v(p,y,z) = 2 J e’V V(p,q,2)dq

.w(p,y,z) = ?2—17]77 J el}’q W(P’q:z)dq



33
In particular,
b@a0 = 2y [ e ue,ad

(2m)

. ERIF S
V(p,}’:o) W J e vo(p’q)dq

owp,y;0) - 1 . J o1 1 ¢
= p,q)dq
0z (2“)1/2 _ 0

=00

Now the équations on p. 32 and p. 24 give U,V,W,uo,vo,wb as meromorphic
functions of q for each fixed p . Thus residue series for the above
functions can be obtained by deforming the contour in the upper half of
the q-plane for y > 0 (lower half for y < 0). The poles of the

0
are holomorphic in the g-plane. Examinations of the formulas for

integrals U,...,w' are the zeros of |Q(s)| . The cofactors ij(p,q)

U“,V“,Wm and fi(p,q) shows that these functions are analytic everywhere
except at s = 0 , because pl= 0(5'2) . Thus special care is

necessary in calculating the residue at s =0 (q = +ilp]) .

zeros of |Q(s)] .

There are two families of zeros

1) sinh sh = -i sin(ish) = 0 <> ish =is h=nr , n= 0,1,2 ,

Thus
2 2 'nmwm _ .nm 2 2 " nm\2
*n " fqn-:'i_ﬁ——lpﬁ_’ pT*ay = - ()
2 oy 2 . 2 2 :
- ol DY), =i A’ = 1
qy = i Ipl



These are simple zeros of |Q(s)| for n>1 . However

Q)| = 06sY , s 0

©% + )% = @~ ilph?@ + ilpD? ~ ilph?a@ - ilph’

Thus q ' is," in general, a highér-order pole.

. sin'2sh _ ., _ .'sin‘2ish _ . ;2ish* sin 2ish, _
D 1=t l-ig A G )70
e o [T .
=3 21gh = levh—Zth*” Sy = p+q\)——18\>
2. 2 .2 2_ .2 .2 . 72
PUra, =By, a;=- @ +B), q,=1 /DB

Calculation of F(z) .

F(z) is defined on p. 13. Now on y = 0%

Ty = cGy + =0
sz = G(-g% + %;i =
Thus
Gy, = - @
Fs(-'?)’l)o = Fs(%)o = pAFc Yo
Felpo = - Felro
Thus

o o — S e e o ey ._v
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@Y @ - -2 F

‘1 )

Y E, @) = - (+a) Fovg

- m1/2 PR N

) Fo(2) = (1-a ) Fe (82)0
calculation of U™,V W, ULV W L

From PP- 18-19.

' [0 0 ‘
H(z) =" _ :
. {ETET] L\'l’ ZFcz)}

PH(z) = =1
{0 -1 |G(2) -G(2))

Write
11 (2) 12 (2)
o) =
(2) 2oy 0B
Then.
. {QllT(C) ®21T(C)]
o (¢) = :
leT(;) QZZT(;)
Hence

i- : - [plaT o21T) [ o - +21Tg
¢ () PH(L) = - " 3 O e
o127 222T| |G 22275
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@ P ¢’ (z) PHE)

1 .
@Z*(z) : <I>22(2) QZZT

.— [Qll(z) @12(2)) [_ CA}@21T(§)E(C}]
(z)G(z)

22T

) {-¢“(z)c;1¢mc;)'€(c) + o (@)0 (;)’G‘(c)]
e GO 522 (13622 (135 (2)

Thus (pp.23-24)

W (2),V" (), ()" = XY HeuB Ul

(@) =
. |
- j A 20122)622 (0 - o @ycleP T A Y )
5 .
A L/211 - (ﬁlﬁzﬁ6) 4172
A12412 4 - ST
o217y = WL/2 gt WYT A—l/Zcﬁl,ﬁZ..ﬁé. JTAL/2

¢22T

@) = PCATGRITRAIR )Al/Z)T A Yg "US"UZf' yTpL/2

K V2232 12 - @@ @B @ ah @ @ @)’
52+a2q2- -“azpq v 0

2

AV 2 L L cafoq  sPealp? " i

A Fanad)
s (1+a™) g Sz(1+az)
K V2N e AT = @ @T @ @) O @ GLIGIE

Put



of

M@ - CRPEPE) , L) = TETETE)
Then |
Z L . .
T @) = f o @AM @) - .12(z)c;1haé(g)T}F(;)d;
0 .
0" (2) = {l\il(z)AnlM]'_-(z)T - I\Iz(z)C;ll\lé(z)T} F(z)
Z T
+ J {M:'l(z)A—ll\ii(?;)T = Mé(z)CjMé(C) } F(r)de
0 | ~
Similarly, )
G (2) = A7V Z(XZXEXE)T
Z
- [ £V @0 ) - oM e T Ty
0 e ,

A Y2522 36221 (a2 - (ot )T ()T @A @ @0 T @)T

A3 5 T a2 = @b @t @ e Vg et @)

z - .
M@ - | ogen e - meghy e Fos
0

T(2) = M @AM ()T - M@ FE)

. Z |

H f {Ml-(z)A‘IMiT(;) = Mé(z)c;lMé(c)T} Fr)de
0

AT™ (2) + BT (2) - 0" (2) = A{I\li(z)A-llei(z)T - m@e M@ F)
| =1

T (@)% @)



38

An alternative derivation is as follows.
Try . R (z) = 1\1-1(7;)52(2)? Mz(z‘)fl(z)
T (2) = rr«icé)fz'(z) + Mg@?:‘l(z)

" hil(é)fé(z) # Mz(z.)'ii('z) « set = 0
| T (2) = h-nl'(é)ﬁz(z) + nrzvcé)él(z)

+Mi(z)§é(z) + M3 (2)CT} (2)

AT+ BT - ¢ T = AM )Ty () + A (T} (2) = F(z)
Thus |

hil(é)t‘é(z) '+ M,(2)C{(z) = 0

M (2)Cy(2) + My(2)Ty(2) = A1 Fz).
or

Tttt ol ci o]

| [U]’"Uz' & ohoh U3v] [EJ [A‘lr,
or

] 0 »
o [g) [

Note that
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~ Thus (p 22)

) A2 0 ) 00T A2 o {A'l/ 2csA'l/ 2 o) (al/% 90 A%
o A2 o AY? 0 1) |oal/2] " loa 2

-1/2 : -1/2

A 0 C 0 A 0

= [ _1/2]®0(Z)T{ ° l@o(z){ _1/2] V
0 A 0 -A 0 A

{A—I/ZCSA-I/Z : 0}

and A .
A2 o {Al/ 2 gY) (c. 0O
: P - S
o A2 o A2 (o A
0 c 0
QO(Z)T[ s \@0(2) _ { s ]
0 -A A
or

-1

g 0 c. O

0zt = { s _1]®0(Z)T{ s l
0 -A 0 ,'A

Applying this to the system on p. 38 gives

@0(2) {_i} - {MZ(Z) Ml(Z)}F_i] _ { _(1)_\
s M;(2) Mi(z) .Cé A “F)

@) ¢t o i0) (2) MéT(z)“cS o” o‘
o) Lo Y@ wi@ile A AE)
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0T

oOVY———-N

(z)

i

0

=11

g:i-=A

. Q;lmf(z) F(2)

A‘lMiT(z) F(2)

0
| ] o°(2)
-A

T

M, My [CM,
CHER R
MIC M, - My A
ic M, - MiTAMé
c, 0

-A

'Mg(z)' MéT(z) C,

0

C o (- M (2) Fez)

- MiT (z) F(2)

{Mlcz)A’lmiT(;) - M, ()M ()} Flo)de

Mz(z) Ml (z) C 0

M) (2) M@)o A e Mm@ o A

CM

_AM?

A

T, T
MCMy - My A

T
1

- 'T |
M Cle 11 AM1

Calculation of Coefficients in the Residue Series.
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(U VR U Ut u
M, (p,q,2) = vV, M (p,q,2) = Vv v
woow oW Wow W

The Poles a,

= 1 = = » = (- n
cosh snh = oS 1snh cosh_anh cos nm = (-1)

sinh s h = -i sin is h =
n n

(

-isinnm =0

-n* 0 a2y n°
2(a™+1)
. . - n .athn W
M,(p,q >h) = |. 0 (-1) (-1)
2P | 2(a%+1)
2
- &0 - Ezllc -1)q -n*
r azhp2 1" 'azhpqﬁ(—l)n
2(a"+1) (-o2) 2(a”+1) (o)
2 2. 2 n
a“hpq a“hq_(-1)
M, (p,q_,h) = (-1 . 0
1 (P> h) 2(a%+1) (-ofnr) 2(a”+1) (-o2)
L 0 0 (-1)
Faly & azhpq
2 n-n" 0
2 2, 2
lahpq_ . a“hp
Mé(p’qn’h) = an(—l)n . ] n("'l)n 0
2, 2
a“(-a))
0 0 - — 2 (1"
~ ' 2(a”+1) : J

T ——
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( ) ..
G 0 MR
' h = | 0 n" 2 (1)
Mj (0,5 ) = (=1} ~hq (-1)°
L ey R R I T
| 22%1) 2@%1) P J

For a simple pole ét qQ=q,*= |p|

1lim

iyq =
Res {e™™ u,(p,a)} g

{(a-qg) 7% uy,)
q, 0 - ' _

a>q

For a double‘pole

iyq _lim 3 o032 Jiva
%fs {e uO(p,q)} 4>, 5 {(a-qp)” e uO(P,Q)}
q, |

_ lim iyq 9 Y . _iyq IRY
a4 [e 5q {(@-qp)" yy} + iy e {(@-qp)" uyt]

- eiYIpl Res u0(p,q) +iy e—Ylp| a_z(uo)
N qo 1 .

For higher order poles, correspondingly higher order powers of y appéar.
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