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1. INTRODUCTION

In the field of fracture mechanics not much theoretical work
has been done in order to assess analytically what effect, if any,
does the specimen thickness have on the mechanism of failure. The
reason for this neglect is that three-dimensional fracture mechanics
 problems present formidable mathematical complexities. As é result,
most of our present day fracture mechanics concepts are based on already
existing two—dimensional analytical solutions. However, we all recognize
the fact that 3-D analytical solutions are essential for a better
understanding of this complex phenomenon. |

With this in mind, the author decided.to investigate this
subject further, at least within the framework of linear elasticity.
While he recognizes the fact that linear elasticity cannot include
the non-elastic behavior of the material at the crack tip per se,
nevertheless it can evince many characteristics which can help us
understand better the process of fracture and thus enable us to derive
more accurate design criteria.

As a practical matter, the common experimental observation of
a change from ductile failure at the edge to brittle fracture at the
center of a broken sheet material has so far defied analysis. Yet
knowledge of this could be invaluable for a complete understanding
of the interaction which exists between mixed loading modes.

In one of his recent papers [1 ], the author discusses the
three-dimensional character of the stress distribution in a thick
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plate containing a through~the-thickness plane crack and under the
action of a stretching load. Although the above work represents
accumulative part time effort on the author's part of approximately
eight years, the work is still not quite complete. The reason for this
is two-fold: First the problem is enormously difficult and second
insufficient research funding. Be that as it may, the author in this
paper would like to put forth in Writing some further information
that he has acquired since the publication of reference [1 ], but
most of all to elaborate on the physical significance of some of the

results.



2. PRESENT STATUS

Reference [1 ] discusses the three-dimensional character of
the stress distribution in a plate of an arbitrary thickness 2h and
containing a through-the-thickness plane crack of length 2c. At
infinity, the plate is subjected to a uniform stretching load 55

(see figure 1). Without going into the mathematical details, it is

found that:
(1) In the very inner layers of the plate, the stresses are:
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Similarly, the corresponding displacements are:
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where € and ¢ are the usual cylindrical coordinates and A is a function

of the crack to thickness and Poisson's ratios and is given by Figure 2.

In view of these results, therefore, one may make the following

remarks which are applicable to the very inner® layers of the plate:

(1)
(2)
(3)
%)
(5)

The stresses possess the usual singularity.
The stresses posses the usual angular distribution.
The stoess intensity factor K is a function of z.

Exact plane strain conditions exist only on the plane z = 0.

yiowever, a pseudo plane strain state exists and the

equation
= +a
o, v(o y)

is satisfied.

*That is the immediate layers to the plane z = 0.



(6) As h - «, the plane strain solution is recovered.
(7) As v > 0, the plane stress solution is recovered.

(8) The crack.opening displacement is
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y=0 : (1 ""Zh") (1 +5f]—)

suggesting® that the crack initiates at the center ("pop-in" or
"tunnel like" phenomenon). This phenomenon has also been observed
experimehtally [2.].

(ii) In the outer layers of the plate®#

-

all stresses: Gij ~ D L e el e o o
¥Ysin ©
1
2 -2V g'i (6 s¢’)

all displacements: u; <P

VYsin O

where p, 0, ¢ stand for the usual sprerical coordinates, and the

functions fij and g; are free of singularities.

*To verify this, one must assume that the crack advances an infinitesimal
distance Ac, which could be a function of x, y and z, and then resolve the
3-D problem by perturbation for the arbitrary shape Ac. A preliminary
investigation showed that this is possible.

#%Tnitially, one is tempted to write the inner expansion in terms of the
spherical coordinates, for example, the stress

W2 Je 1

¢?5~1/2+2v cos?” 0/5Tm 0
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A closer inspection, however, reveals that the above stress becomes
infinite as 6 ~ %u This of course contradicts one of the boundary con-

ditions and immediately suggests that something is wrong with the solution.
But this is not quite true. A careful investigation shows that other terms
also contribute to the same order of singularity and consequently must be
accounted for. Without going into the details (see reference 1) it can

be shown that
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where R stands for other terms of a lesser order and

(O)I = 0 / h2v -2 cos( *J { [h + z - 1a] + [hxz + 18]? =2V } % Rn

In view of these results, one may now make the following remarks which
are valid in the outer layers, i.e. the neighborhood of the point where
the crack front meets the free surface of the plate:

(1) TFor Poisson's ratios greater than 1/4 the displacements
become singular.

(2) The strength of the singularity, however, is such that
the local strain energy is finite for all Poisson's ratios.®

(3) Mathematically, stress fields with such type of singularities
are admissible.®*

(4) Physically, linear elasticity is inadequate®** in predicting
the actual behavior of the material at such corner points.

*Consider a hemisphere with center the corner point z = h. The strain

p -— I li. 2 I < ] "2 ! ;_ 4 *
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w o~ d?j dv ~ (1-2v)
Tocal

Thus w - 0 as p~> 0.
Tocal

#*%*The uniqueness proof was given by Professor Calvin-Wilcox, Department
of Mathematics, University of Utah. For a sketch of this proof, see
Appendix.

#%%*This, however, does not imply that the three-dimensional, linear
elastic results have no practical value whatsoever. The physical
interpretation and use of these results is discussed later.



3. GENERAL DISCUSSION

- The author in this. section would like to elaborate on a few

points which in the past have been misinterpreted by some researchers.

CL)

(2)

(3)

(4)

The enclosed uniqueness proof (see Appendix) clearly shows
that solutions which satisfy the edge condition of local
finite energy are admissible. Unless one can dispute this
proof, one cannot dismiss the solution on the mere sup-
position that the displacements must be finite.

The total strain energy of the system is finite for all
values of the Poisson's ratio. For incompressible materials,
it should be noted that Navier's equations do break down*.
But even for this case (assuming that the same singularity
prevails) the total strain energy is finite because of

the factor (1-2v) which is present®*.

There are no inconsistancies with regard to the satisfaction
of the boundary conditions. This matter is discussed
extensively in reference [1].

The analysis clearly shows that the stress intensity

factor K increases as one moves from the inner layers

to the outer layers of the plate. Consequently K is not

%See Sokolnikoff, [3 1 P. 79.

#%See equation (127) of reference [1 ]. Note that A

(k)

¥ ~ (1-2Vv)
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a realistic parameter to use for the prediction of
three-dimensional fracture. Interestingly enough;
Gyekenyesi and Mendélson [4 ], using the numerical
method of lines, were able to thain recently the same
type of behavior. Furthermore, they conclude that at
the corner the stress intensity facfor possesses a
singularity.

(5) Alblas in his investigation [5 ] does not discuss the
upper layers of the plate. Turthermore, the author
believes that it is incorrect to compare the problem
of a circular hole with that of a sharp corner—édge
crack. |

- (8) The expression for the stresses

(c) o -1/2-2
O’].J. o] * s
is valid for all v # 1/4.  When v = 1/4, the®
SO v, L0,

1

which upon differentiation yields
(c)
ot O F e
953 0

(7) From reference [1 ] and in particular equation (110)

(c)

it becomes clear that the stress UZ +~ 0 as 6 » %—

only because of the factor cos 8. The same is also

(c) and T(C) .

Xz yz S

true for the other two stresses T
the other hand, the remaining stresses do not have this
factor and therefore do not vanish as 6 - %—. Conse-

quently, K does not have to go to zero as z + h.

*See also remark on page 16.
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(8) The shear-lip [6 ] is a consequence of the fact that all

(9)

stresses in the neighborhood of the corner point possess
the same order of singularity.
From reference [1 ] one may deduce that all stresses at

the corner have at least one term of the form

o ~ W22y Tig(00)
Bal vsin 6

T oo s s

where the functions fij(G,Q) are free of singularities
and may be expressed in terms of definite integrals.
Furthermore, one sees that the asymptotic expansion of
the stresses in fhe inner layers of the plate represent
only the first term of the series fij'
Thus, if one considers only this first term of the

Stresses and computes the octahedral shear stress at the
corner, for ¢ = 0 and v = 1/3, he finds that the max.

value is attained at 6 = 142° or at an angle of 38°

from the crack front.

“~

z =R i shear 1ip

YA S S Sy G By
7 J !//

crack P .
face / 38

Experimental results obtained by Mr. F. Foreman at

the Space Center NASA given values between 31° and 32°.

The author believes that the reason for this fairly good

agreement is due to two facts: (i) all stresses have the

same approximation and (ii) the remaining terms of the
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series become extremely important primarily for angles
6 = m/2 + 6%, where 6% < 20. Of course, the latter is
only a conjecture on the author's part.
(10) If now one computes after deformation the displacement

function v for the very neighboring layers of the plane

z = 0 and for [x| < ¢, he finds that
5 :
V(C)l ~ x| 2| A (1) 1 + L S
-0 26 2 2V = 2V
y= (1 ”}]“) (1+4)

which represents a family of ellipses. Furthermore, on
the plane z = 0, the ellipse is the sharpest and as one
moves to the upper and lower neighboring layers the
ellipses become progressively less sharp. This suggests,

therefore, that the crack (assuming that h > h where

crit
slant fracture only prevails) initiates-at the center
first and assumes a bell-shaped form. This.phenomenon
has also been observed experimentally and is known as the
"pop in" or "tunnel like" effect [2].
(11) Exact plane strain conditions exist only on the plane
z = 0. However, all along the imner layers a "pseudo
plane strain" state prevails and the equation
g, = \)(ox + Oy)
holds.
(12) The author's theoretical results are based on linear
elastic theory and on a 3-D mathematical crack. In most
experimental works, a crack is in general machined in

the specimen and subsequently fatigued in order to come

closer to the shape of a mathematical crack. But the

. ve 3



11
mere process of fatigue most likely smooths out the 90°
corner and such a comparison of stresses could be

- meaningless. Moreover, the theoretical results show
that linear elasticity is inadequate in ﬁredicting
the actual behavior of the material at such corner
points and that non-linear effects do take over.
Therefore, the "complementary" problems corresponding
to the experiments and theory are not comparable. This
is because, in the former case, the principle of
superposition is no longer valid.

While undoubtedly the experimental results of
Villarreal, Sih and Hartranft [ 7 1 represent a substantial
contribution to the field of experimental fracture mechanics,
Vone may not use them to disprove the author's results
for reasons stated above.

Be that as it may, the material, due to the presence
of the high stresses in the vicinity of the corner point,
yields and a plastic region (shear 1lip) is created.
Theoretical results based on linear elastic theory can
give us a good approximation of the shape and volume
of the shear lip region but cannot tell us what the stress
values are at any point within.

(13) Finally, a comment on Benthem's work [8 ]. His analysis
shows that the stress intensity factor decreases as one
approaches the outer layers of the plate. His results,
therefore, constitute a contradiction to those of

reference [1 1.
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In general, Benthem's work is a substantial
contribution to the field of fracture mechanics. His
clever manipulation in constructing solutions in terms
of Legendre functions is most ingenious. However, the
author has some reservations concerning the validity of -
his results. Is the solution really separable*; parti-
cularly in 6 and ¢? Should the numerical determination
of the singularity be trusted?

It becomes evident, therefore, that a third,
independent, analytical solution is most desirable.
Moreover, the question of completeness for both methods
of solution (i.e. reference 1 and 8) is no longer an

academic question but a practical necessity.

% See remark on p. 16.



4. FUTURE RESEARCH

As it was pointed out previously, considerable more research
must be carried out in order to fully understand the phenomenon of
three-dimensional fracture. The following list represents only a féw
of the immediate goals that should be pursued for the completion of
this study:
(1) An independent corner analysis for the verification of
the corner singularity.

(2) The explicit and complete determination of the stress
distribution in the vicinity of the crack throughout
the thickness.

(3) The complete determination of the shape and volume of
the shear 1lip envelope®.

(4) The exact numerical evaluation® of the stress coefficient
A for various crack to thickness and Poisson's ratios.

(5) Reference [1 ] gives the total strain energy of the
system as

ﬁ(1~v2) Gg c” 2n

W= 3

F(v, ¢/h),

*A knowledge of this will determine that portion of the fractures surface
where "slant fracture" prevails. Furthermore, it will give us a very
good estimate of the "critical thickness," hc’ below which only shear
fracture prevails.

*%See Footnote 9 of Reference [11].
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where | is expressed as a double series. We must

seek the complete numerical evaluation of the function

F.



5. A TEW FURTHER REMARKS

Reference [1 ] gives the stresses at every point in the plate
in terms of Fourier Integral representations, which are yet to be

evaluated explicity, at least within the immediate vicinity of the
crack tip. Moreover, the asymptotic expansions (90) - (95), in
retrospeét, are valid only in the immediate layers of the middle plane.
However, in order to find the complete stress distribution for all
|z| < h, it is essential that one solves the complete system defined
by the two equations (72) and 75 (a,b,c).

For example, the complete solution of the difference-differential

equation (82), for all |t] < 1. has now been found to be%®

F1+0) +f(0-2)=c 1-a%%. 0. ;)2“2\’}

1

4 (1-g2) 22y OZO C2n+zj " (+ )32 4. c€)3-2v
n=o0 o] (-I + C)2"‘2\) (-I _ C)Z"Z\)

+fD (]+;)+fp “"C):
where fp stands for the particular solution and where the unknown

coefficients CO,Y,a2n + T’bZn ;7 are to be determined so that

eQuation (72) is also satisfied for all |z| < h, or |g| < 1. Notice

“For a proof of this see Appendix II.
15
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that the terms leading to the previously reported singularities
are also present here®.

)

In fact, if one uses the coefficients Aéo , which were obtained
numerically from the truncated system (78) and (79), he can conpute the

function

J=-f"(+z) - -g)-= E 1 ASO) (6‘\,h)2 cos(f; h) cos(B hz),

J=7 .
the graph of which for v= 1/3 and C/h.= 4 is given by fig. 4. It is
interesting to note that the function J varies only slightly in the
interior portion of the plate and that it undergoes rapid variations
in a boundary layer adjacent to the plate-faces. This reflects, there-
fore, the presence of a weak singularity at the ent points ¢ = + 1.
Finally, in the neighborhood of the corner point, the author

believes that the behavior of the displacements is of the form##:

L o« >
ug~ % T B (sin)7F 4 £ (0,4) + VG (6,0)m0t,
where the,fi and g; are functions of 6 and ¢. Moreover, these functions

may not be‘separable.

*Tt is possible that equation (72) may also lead us to other
singularities of a lesser strength.

**The reader should note that this is consistent with the author's
statement in reference [1 1 where it was reported that the displacements
are proportional to p%—Zv.
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UNIQUENESS

Boundary Value Problem. Basic unknowns are the displacements gi(x) , 1 =1,2,3 |

3
 where x € @ CR™ ; the fileld equationms:

1
ey = 70,3 Ty, 0

T, = e . (C

13 = Cageetie 7 Vagee T Croig = Cyake T €150 $ in Q.

T +¥F, =0 :
B i3,] 3 ’ '
% . ‘ }
The boundary conditlons are: ) |
T =0 on o0

— 13"3
where nj is a unit vector mormal to 3. .
The energy density is:

3 T
W= 5 Cijkleijekﬂ. (posit lve definite) .

and the total energy becomes

&(K) ==f Wdx = energy in a set i K.
% ,

Remark: &(K) <e®e € Lz(K) < Tij = Lz(K) for V i,j.

i3

‘Edge condition: :

' loc loc —-\
(= = v, €

,ui i {i eij L2 (Q)J

Ceneralized boundary condition: Note that 1f

2 — 1,—
ui§C (K) > ViEC(I\)

~then

f ij jvid\-}- f Tijvij =f (T'ijnj.)‘vi.ds‘
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Solution with Locally Finite Energy. Defined by

w €3 (o7, € 1°@)

13
thus '
- F.v.dx + T }-CV + v )d}{=6.
i1 ij 24,3 Jisd
Q 2
| for
e 1VOX @y N 3Vo*
vy, €L, (€9 a .

_where :
| KVO# = {Vi:'(vi,j + vj’i)e szfo‘x(-ﬁ)>

-(;:.cte: .’-.’o:: - means vanishes outside a compact setjp A

',Ter.mindlogy: uy is a solution w L.F.E. (With.locally_finite energy).

Remark: If u, € Cz(—ﬁ) is a solution w L.F.E. and @2 dis smooth then u,

i
is a classical solution of the field equations and boundaty conditioﬁs.
Regularity. Fi € Cl(_Q‘) = ui € H3(§ N K) where X is any compact set such
that o2 NK {s smooth. Hence (Sobolev inbedding theorem) v, = Cl(ﬁﬂ K) , ug

satisfies the field equations in. £ and satisfles the boundary condition on

the smooth portions of 9.

We now define a fimc:tion 6(x) such that (see figure 3)
1 for 0<r<R-29
$(x) = ¢(r) = (0 for r 2> R

with a smooth transition acraoss ©

and

O(x) EC , 0<¢(x) <1.



Consider now Fi = 0,
We take fifst

¢u & LVOX N .,C'VO‘(

Vi 2

then

il
o
°

1 . o
f Tij 0 (¢ui) . & (¢uj) dx
,j . :i '
% .
We take second

v, = (r - <§))u:L

and integrate over QR. On QR M supp (1 - ¢), u, is smooth so

i
1 - '
(1 - < = waifl =
j 49,9 (1 fb)ui dm—f Tij 5 (A -u)  + (1A ¢)uj) dx
. (zR ’j !i
—f (T jr )u ds .
=R
Adding .the first and the second equation ome finds
f Tijeijdx =f (Tijrj)uids v
QR r=
or .
2 j Wdzx = f (Tijrj)uids
=
1f now we choose uy = 0(1) and Tijfj = 0(R) as R - = then the second

integral vanilshes and

Hence the solution is unique.
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