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4 Asymptotic approximations to
crack problems in shells

4.1 Introduction

In nature, shells are the rule rather than the exception. The list of natural
shell-like structures is long, and the strength properties of some of them are
remarkable. It is logical, therefore, for man to utilize them in man-made
structures. But to do this safely, we must understand the fundamental laws
which govern the strength and displacement behavior of such structures for
they are not immune to failures, particularly in the fracture mode.

It is the intent, therefore, of this chapter to discuss a theoretical method
which enables one to determine the stress field that exists in the neighbor-
hood of a crack and furthermore catalog the stress intensity factors for
various shell configurations and loads.

In section 2, the author gives a concise summary of the classical shell
theory and its limitations. He then goes on to discuss the general character
of the equations and subsequently shows that for the two simple geometries,
spherical and cylindrical, the equations reduce considerably and in the limit
the governing equations of a flat plate are recovered.

Because the solution for a general arbitrary initial curvature presents
formidable mathematical complexities, in section 3 he chooses to display
the analytical method by specializing it to a spherical shell. In order to
preserve unity, he does this in some great length giving sufficient details.

In sections 5 and 6 he gives the stress intensity factors for a cylindrical
shell with various crack orientations and for other more complicated shell
geometries.

In section 7, he examines what effect, if any, elastic foundations have on
the stress intensity factors. Such information can be of great practical value
to highway construction and the designing of storage tanks for the oil
industry. '
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4.2 General theory—classical

In the following, we consider bending and stretching of thin shells of revolu-
tion, as described by the traditional two-dimensional linear theory and with
the additional assumption of shallowness*. In speaking of the formulation
of two-dimensional differential equations, we mean the transition from the
exact three-dimensional elasticity problem to that of two-dimensional
approximate formulation, which is appropriate in view of the ‘thinness’ of
the shell. We shall, furthermore, limit our considerations to homogeneous,
isotropic, constant thickness, shallow segments of shells, subjected to small
deformations and strains so that the stress-strain relations may be established
through Hooke’s law.

The basic variables in the theory of shallow shells are the displacement
function w(X, Y) in the direction of an axis Z and a stress function F(X, Y)
which represents the stress resultatnts tangent to the middle surface of the
shell. Following Marguerre [2], the coupled differential equations governing
w and F, with X and Y as rectangular cartesian coordinates of the base
plane (see Figure 4.1), are given by:

q(x,y)

Figure 4.1. Initially Curved Sheet

*w w Pwy *w  Pwy,  O*w
ap _ 0 - 0 - 0
ViE = B [2 XY 8XaY  9x* aY:  v* OX? } (41a)

* According to Ogibalov [1], a shell will be called: shallow if the least radius of curvature
is greater by one order of magnitude than the linear dimensions, i.e., L/R = 0.1; and thin
if #//R = 0.01. :
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1 PF  Pw,  OF 8w,

L _
DViw=-4-2 557 sxoy * ox2 vz T
0*F  9*w
+ 292 _Taxo (4.1b)

where V7 is the biharmonic operator, E Young’s modulus, h the thickness
of the shell, D the flexural rigidity, g the internal pressure and wy(X, Y) the
initial shape of the shell in reference to that of a flat plate.

The usual bending moment components M, M,, M, are defined in terms
of the displacement function w as

. Mx=—D:% +vgzylz] (4.2a)

l My=—D:v§;—M;+—§%j| (4.2b)

‘ M, ,=-D :(1 - ) ;Xz—g?} (4.2¢c)
and the membrane forces in terms of the stress function F as

N, = % (4.3a)

| N, = 52712 (4.3b)

Ny =— ;;gy (4.3c)

Finally, in view of equations (4.2) and (4.3), the bending and extensional
stress components become:

EZ *w 3w
o= i v2)|: oxz TV oy } (4.42)
EZ *w ’w
it vz)I: Yox T ay2] (44b)
9w
(b)) _
= 2 Gz[ ——my] (4.40)

and
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1 0*F

@.. =
oy = 5 372 (4.5a)
. L 3___2F (4.5b)

Y h 0X? '

1 0*F

e .. = 2
Txy = h  oxoy %)

with v being Poisson’s ratio.

Because of the coupled nature of the differential equations (4.1), it be-
comes apparent that there exists an interaction between bending and stretch-
ing. That is, a bending load will generally produce both bending and
extensional stresses, and similarly a stretching load will also induce both
bending and extensional stresses. The subject of eventual concern, therefore,
is that of the simultaneous stress fields produced in an initially curved sheet
containing a crack.

A theoretical attack of the general problem for an arbitrary initial curva-
ture presents formidable mathematical complexities. However, for the two
simple geometries, spherical and cylindrical shells, exact solutions can be
obtained in an asymptotic form. On the other hand, for other more compli-
cated shell geometries results can be obtained by a proper superposition of
these two solutions.

Spherical shell. For a shallow spherical shell the radius of curvature
remains constant in all directions; therefore,
9w, dtwy,  0*wg 1 (4.6)

oxoy — 0 ox2 T aY2 R

Substituting equations (4.6) into (4.1), one recovers Reissner’s equations [3]

Eh 92y 4 viF =0 ' (4.7a)

Véw — — V2F = —

55 (4.7b)

Sl

Flat plate. A flat plate represents a degenerative case of a spherical cap
when the radius becomes infinite; therefore,
Pwy  Pwy _ IPwg

oXoY _ 0X2  oY? =0 : (4:3)
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N

Substituting equation (4.8) into (4.1), one recovers the classic equations for
a flat plate, i.e.,

V4F =0 (4.9a)

4 4
Viw = 5 (4.9b)

Cylindrical shell. For a shallow cylindrical shell, one of the principal radii
of curvatures is infinite, hile the other one is constant; therefore,

| 9w, 3*w, %w, 1
|| axay ~ ax2 ~ % ay? TR (4.10)
‘ Substituting equations (4.10) into (4.1), one recovers the equations for a
! shallow cylindrical shell, i.e.,
| Eh  &*w 4
£now - 4.11
= gl V& =1 (4.11a)
1 o%F q
Sl ey ey e e 4.11b
VW= ®D ax? D (+11b)

Other shell geometries. 1f one chooses the coordinate axes X and Y such

that they are parallel to the principal radii of curvature*, then

‘ 3*w, 0w, 1 2w, 1

; =0 —9 — — . = — 4.12
\ XaoY 0; ax> R, 8Y? R (12)

X y

with R, and R, being the principal radii of curvatures in the X and Y
directions respectively.

Substituting equations (4.12) into (4.1), one finds

1 a*w 1 a*w
hl — B YF = 4
| E{Ry % T R 3Y2]+VF 0 (4.13a)
3 [ 1 &F 1 &F q
4, 1y L or Lo _ _ 4
| v D[ £ m*tR o J = (4.13b)
|

* In general, when they are not parallel, equations (4.13) will contain additional terms of
the form (d2w/dX0Y)and (¢2F/cXCY).




122 E. S. Folias
4.3 The stress field in a cracked spherical shell
Formulation of the Problem. Consider a portion of a thin, shallow spherical

shell of constant thickness # and subjected to an internal pressure g(X, Y)
(see Figure 4.2). The material of the shell is assumed to be homogeneous and

TOP VIEW
\
| P— — ] —X
/ l SIDE VIEW
y z
o
h_\F ¥ % = —
) R CROSS
SECTION
y
z
R

Figure 4.2. Geometrical Configurations of a Pressurized Spherical Cap

isotropic and at the apex there exists a radial cut of length 2¢ with respect to

the apex. It is convenient at this point to introduce the dimensionless

coordinates

X Y
— Zi=
¢

Z
= (4.14)
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} in view of which the coupled differential equations governing the deflection
function w(x, y) and the stress function F(x, y) with x and y as dimension-
alized rectangular coordinates of the base plane, become

2
_ _b:f’Rc_ VZiw + VA F =0 (4.15a)
Ve + & oyrpo o 4 (4.15b)
RD D '

As to boundary conditions, we require that (1) on the faces of the crack, the
normal moment, equivalent shear, and normal and tangential membrane
forces vanish, and (2) away from the crack, the appropriate loading and
support condition are satisfied.

In treating this type of problem, it is found convenient to seek the solution
into two parts, the ‘undisturbed’ or ‘particular’ solution which satisfies
equations (4.15) and the loading and support conditions but leaves residual
forces along the crack, and the ‘complementary’ solution which precisely
nullifies these residuals and offers no contribution far away from the crack.

However, suppose that one has already found a particular solution satis-
fying equations (4.15), but that there is a residual normal moment M,
equivalent vertical shear ¥, normal in-plane stress N,, and in-plane tangen-
tial stress N, along the real axis |x| < 1, of the form:*

D n
MY = — =z Mo, V) =0, ND = -2 N =0 (4.16)

where, for simplicity, we assume m,, 1, to be constants.**

Mathematical Statement of the Problem. Assuming therefore that a partic-
ular solution has been found, we need to find two functions of the dimension-
less coordinates (x, y), w(x, y) and F(x, y), such that they satisfy the homo-
geneous part of the differential equations (4.15) and the following boundary
conditions. At y=0and | x| < I:

D| o*w 0w Dm Pp2
M (x,0) = —7[ % + V5 :|= 5> = (4.16a)

¢ 6

* For particular solutions see section 4.8.
** For mo, ng non-constants, see remarks after equations (4.40).
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Vi(x,0) = — %l: %; +2 - 352%] =0 (4.16b)
Ny(x, 0) = ciz 2275 % = hg'® (4.16¢)
No(x,0) = — C“lz ;;TF)} = (4.16d)
Aty = 0and |x| > | we must satisfy the continuity requirements, i.e.,
tim [;y (w*) = 5‘%— <w‘)J =0 (4.17a)
&1;1310 [;;,, (F") —%(F‘)_:I:O (4.17b)

for n =0, 1,2, 3. Furthermore, in order to avoid infinite stresses and
infinite displacements we require that the functions w and F with their first
derivatives to be finite far away from the crack. These restrictions simplify
the mathematical complexities of the problem considerably, and correspond
to the usual expectations of the St. Venant Principle. It should be pointed
out that the boundary conditions at infinity are not geometrically feasible.
However if the crack is small compared to the dimensions of the shell, the
approximation is reasonable.

Reduction of the System. Reissner [4] has shown that the homogeneous
solution to the system of equation (4.15) can be written in the following
form

w® =y 1 ¢, FW = _ Rp¢~2 Vii+y (4.18)

where ¢ and y are harmonic functions and x satisfies the same differential
equation as the deflection of a plate on an elastic foundation, i.e.,

(V*+ 1% =0 (4.19)
with

o _ Ehet 1201 —v?) [ ¢ \*

R RD = (R (ﬁ) (4.20)

One concludes, therefore, that the effect of the initial curvature is quali-
tatively equivalent to providing an elastic foundation for an initially flat
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plate, such that, as the radius of curvature increases, the foundation modulus
becomes weaker and weaker. This analogy has also been observed and
demonstrated experimentally by Sechler and Williams [5].

Method of Solution. We construct next the following Fourier integral repre-
sentations with the proper behavior at infinity

w(x, y4) =J: {Prexp[—(s* —ia®)* | y(]

T Pyexp [—(s* +iA%)F |y ]+ Pye™P} cos x5 ds (4.21a)

iA2RD [ ,
F(x, y*) = 2 L {Prexp[—(s* = ia)*| y ]

—Pyexp[— (s> +iA})? |y 11+ Pe™ "1} cos xs ds (4.21b)
where the P;’s are arbitrary functions of s to be determined from the boundary
conditions, and the - signs refer to y > 0 and » < O respectively.

Assuming that one can differentiate under the integral sign, one finds by

formally substituting equations (4.21) into the boundary conditions in
equations (4.16) that:

. P —(s2—ji2)1 N — (s24+712)1/2
lim {P1(ves® — idY)e=2—ian 2yl Py(vos® + id%)e™ ST+
ly]=0 JO

+ v052P3e_s"’|} cos (xs)ds = —mg,; |x| <1 (4.22a)

4 f {P1(s® = i2%)* (vos? + i22) + P,(s2 + iA%)* (vos? — i1?)
0

+ vos°P3} cos (xs)ds = 0; | x| <1 (4.22b)
lim — i’lszfw {Pie™ P TIEDI_ p g~ p o sy
Iv|=0 ¢ 0
5% cos (xs)ds = — ng; x| <1 (4.22¢)
and
iA’R

q:

2 Df {P1(s* — id%) — P,y(s% + iA%)* + Pys} ssin (xs) ds = 0;
0

[x] <1 (422d)
where again the | signs refers to y >0 and y <0 respectively, and
vo = 1 —v. If one, now, chooses

VoS’ Py = —{(s* — iA%)} (vos® + AP, + (5% + i22)F (vgs? — i22)P,)
(4.23a)
sPy = — {Pi(s* = iA%)* — Py(s + i2)})) ‘ (4.23b)
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then equations (4.22b) and (4.22d) are satisfied automatically and equations
(4.22a) and (4.22c) become, respectively

f {[vos® — iA% — 571 (52 — iAD)t (vps? + iAh]P,

0
+ [vos® +id% — s71(s% + iA2)F (vgs? — i2%)]P,} cos (xs) ds = — my;
and [x| <1 (4.24a)
27459 e}
- AR f [(1 = s74s% = i2)HP,
0
— (1 =s7'(s* + iA)H)P,] s*cos (xs) ds = ny; | x| <1 (4.24b)

Furthermore, it can easily be shown that all the continuity conditions are
satisfied if one considers the following two combinations to vanish

j ~P; (s* —iA%)*cos (xs)ds=0; |[x]|>1 (4.25a)
0 S
® P2 2 a2\ L .
5 (s +id%)*cos (xs)ds=0; |x|>1 (4.25b)
0

We have reduced, therefore, our problem to that of solving the dual integral
equations (4.24) and (4.25) for the unknown functions P(s) and P,(s).

Reduction to Singular Integral Equations. For the determination of the
unknown functions P,(s) and P,(s), we reduce the problem to a set of coupled
singular integral equations of the Cauchy type. This can be accomplished if
one lets

L % (s> — i2%)* cos (xs) ds = u,(x); |x|<1 (4.26a)
QPR iA%)* cs) ds = ;x| <1 (4.26b
. o (s* 4+ id%)* cos (xs) ds = uy(x); |x]| < .26b)
which by Fourier inversion give
252 1
P(s* — iAH)t = — f u (&) cos (s&) dé (4.27a)
0

2 1
Py(s? + i3 = 2—; f (&) cos (s&) d& - (4.27b)

0
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where the functions u,(¢) and u,(&), due to the symmetry of the problem, are
even. Next, substituting formally equations (4.27) into (4.24) one has after
changing the order of integration and rearranging

2iA2RD (*
N, = — = J_I (U (OLY — uy(&)L) de (4.28a)
2D (1 . . '
M,= — -1, {ur(OLY + uy(&)L¥) de (4.28b)
where
© 4 — (<2 _ i12y%
L¥ = %J; S _exp [(SZ(S_ le)i) 1] cos(x — ¢&)sds
1 0
— Zf s*e™* 1V cos (x — &)sds (4.29a)
0

1 s* exXp [— (S2 + iiz)%l y ]]
[* 7 oS (x — d
? 2fo (S2 + 1'82)7 ¢ S( C)S ’

- %f s’ 1V cos (x— &)sds (4.29b)
0

w0 2 2 _ 2
s = 3 [T P e - iy
0

— s(vos? + i) e sy '} cos (x — &)sds (4.29¢)

1 [ [s°(vos? + i1?) 2 5 osqd
* T - L ) _ LAY
L4 = 2J\0 { (52 + 1/12)% exp[ (S + 1’1 ) ,} l]
— 5(vos® — id¥) e~ ¥ '} cos (x — &)sds (4.29d)

The integration in equations (4.29) may now be carried out explicitly by
making use of the Fourier cosine transforms [6]

fme_'”scos(Cs) ds=12 (4.30a)
0 p

£ —(c2 2\%

f 0 exp [ (Eﬁ ++a‘j)3 Ll os sy s = Ko(ap);Rea > 0 (4.30b)

and similar results obtained by differentiating them with respect to x and y.
In these formulas p? = 2 4 ||2, and K, denotes the modified Bessel
function of the third kind of order #.
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The expressions in equations (4.29) then become respectively

2
ur = 2 { —i% ~ 3151 Ko(4Bp)

3p343 .
- [‘L fsc + 2;5/} @ - 3ly|2)] K,\(2Bp) + %i_. 8%’\6”} (4.31a)

o 12 ZC

ar = 2 {—

o (L2 =31 y1® Ko(Aap)

13 3¢3 2 : 2 8 )
[ ;‘f - p;?c@ —31y12)JK1<Aap)+7§_£J)6L'} (4.31b)

,/12 2
2 = L {— 2 @ =31 Ko
3p3¢3 3
- vo[*ff + 2@ -3y mJ Ki080) = 28 gy
2 8 2 2/{2
i ;35_\5'26' Yo _ “_pi C} (4.31c)

IF = i {_ Vo'12 ZC

p (€ = 31y %) Ko(2ap)

/13 33 20 2)3a
[ S ey mh] Ky(p) = EZ5 ¢ i)
2 2 292
" _ _ 801y [P | ﬁ#} (4.31d)
p* p° p
where for simplicity we have defined o? = i and B = —i. Thus, the limits,
as|y| -0, of N, and M, are found to be respectively
21,12RD d
lim N, = f {ui(OLy — uy(¢)L,) de (4.32a)
[y[=0 mc’
lim M, = — ——f ()5 & uy(¢)L,} dé¢ (4.32b)
Iy[=o0 m dx

where the integrals are understood to be of Cauchy principal value and

oL, = ——ﬁ KoGiBIL]) - ( 3 ,%l fff,) KiOBILD + 2
(4.33&)
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__ M (s L, 2 2
2s = = S Kol (Aa |<:|+cm> K |0 + 5
T VOAZ'BZK(AB|C|)—V (3/33 ¢ 2w>K(,1 [C|(433b)
i o\ T gy Ka@BIED
o 93.2p 5 2"0_05_/12
Ao B|CIK(iﬂICI)+ & ; (4.33¢)
122 .
oL, = — YA Kouaw:n—vo(w %+%>K(Aa|cn
_ p2g3, & 2vg _ pR
BlaluK(iaICIH 73 R (4.33d)

If we set N,, M, in the limit as [y| — 0, equal to — n, and — m, respectively,
integrate with respect to x, then we find that they must satisfy the integral
equations

! nngc?

j_l{ul(é)ul = u()2Ly)dC = — o X Ix] <1 (4.34a)
1

J {ui(O2L; + uy(&)2L,} dE = —mmox; | x| <1 (4.34b)
—1

where the kernels L, L,, L5, L4, have singularities of the order 1/{ = 1/(x—¢&),
as can easily be seen by observing their behavior for small arguments:

_ A2 [5 3 3 |x — &
2L1 = — 2(x f) + /14,34()( - é) _ﬁ — 'g —_— g— In /lﬁ —T'i'
+OM(x — & Ini|x — E|) (4.352)
_ 2202 5 3y 3 | x — €]
R e R R e ~2__}
+OUS(x — &3 Ind|x — &) (4.35b)
Ao’ (4 — -8 4 =3
2Ly = = o:;.(gc 3) ol 2 ) |:5v032 L
(y b I gyl 5')} + O (x — &3 Ind|x — &) (4.35¢)

A,Z 2 4 = _ o
o= = g(fc - é)VO) H A=) [5v032 g g
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<y + In M%Qﬂ +0(S(x — & Ind|x—&) (4.35d)

We require, therefore, that the solutions u,(x), u,(x) be Holder continuous
for some positive Holder indices p; and y, for all x in the closed interval
[—1, 1]. Thus in particular, u,(x), uy(x) are to be bounded near the ends of
the crack. '

However, because of the complicated nature of the kernels L;, an exact
solution for the unknown functions u,(x) and u,(x) is extremely difficult. On
the other hand, for most practical applications the parameter A attains small
values as follows from the definition of 1, namely

2\7+
1= Lﬂé{/}T‘;l(c/h) = [12(1 — v)]*(¢/R) (R[h)* (4.36)

It is clear that 2 is small for large ratios of R/ and small crack lengths.
As a practical matter, if we consider crack lengths less than one tenth of the
periphery, i.e., 2¢c < 2nR/10, and for R/h < 10° a corresponding upper
bound for A can be obtained, namely 2 < 20. Thus the range of A becomes
0 < ) < 20 and for most practical cases is between 0 and 2, depending
upon the size of the crack.

Solution for Small . For the simple case ). = 0, the problem reduces to
that of a flat sheet under applied bending and stretching loads, the solution
of which has been investigated by many authors. For example, the problem
for both bending and stretching for an orthotropic plate, containing a finite
crack, was investigated by Ang and Williams [7] and a solution was obtained
by means of dual integral equations. It can easily be shown* that the dual
integral equations can be transformed to two singular integral equations of
the type (4.34) with simpler kernels. Furthermore, these are not coupled and
the solutions can easily be obtained as in § 47 of [9]. Without going into the
details they are found to be of the form A(1 — &?)*, where A4 is a constant.

Similarly, the solution for an initially curved sheet must, in the limit,
check the above result and because u (&) and u,(¢) are in particular to be
bounded near the ends of the crack, it is reasonable to assume solutions of
the form**

u (&) =(1 — ¥ [Ag + 24, (1 - &) +..1; &< (4.37a)

* See Noble [8].
** In fact, one can show [10] that this is precisely the form of the asymptotic solution for
small A.
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U (&) =(1 =& [By+ A*B, (1 = &) +...]; [&l<1 (4.37b)
where the coefficients 4y, 4, ..., By, B, ... can be functions of /. but not
of &.

Substituting equations (4.31) into (4.34), and making use of the relation

! Jo| x — & T 2202 T
— O (x - HIn———-dE = —(1 +1 x + —x3
j_l(l E)Y(x —¢&In 3 dé i + In T \+6A
(4.38)

we find by equating coefficients that*

_omee® [, w2 8= 3wy 2% <8 —Tvy 4 -3y )
1

A = La
°T FRD ' T 6 d-, tio,

32 8
2.2 _ 2, 2,2
Afa” 4 3vg In A*a l-l- - m
16 4 — v, 16 " 234 — )
A2 8 — 3v 7 3y 3 Ao\ |
1+ ™ Yo 4 a252( L Y 2 7242 :
{+16 4—v0+/a<32+8>+16)a<1+]n T )J
+ 0(4%1n 2) (4.39a)

nyc? Jn 8 =3y A% (8 —Tvy 4 —3v

B, = 0 1 7% Y 0 Yo 0

° A“RD{ 6 4—v, 4 - v0< R TR i)
252 4 _ 202 32 _
AP 4 —&)]niﬁ +122”10 J1+A7T 8 —3vg
6 4—v, " 16 [TPFRE - T T6 4y,

3 3 12 2
4222 <% + %) " E;.2[32<1 + In ’lg >} F0(2In4)  (4.39b)

It should be pointed out that if coefficients 4, B, of higher accuracy are
desired, say up to order A*", then it is necessary to solve an n x n algebraic
system. In effect, this is a method of successive approximations for which
the question of convergence is investigated in Reference [10].

It thus appears that for 2 < A* the power series solutions of the form

N

uM (@) =(1 =) Y 4,4%( - &Y, (4.40a)
n=0
N

uy” (&) =1 —-&H Y BAM(L - &Y, (4.40b)
n=0

* For brevity, in this analysis we will restrict ourselves to terms up to O(12).
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in the limit as N — oo, will converge to the exact solutions* u,(¢) and u, (&)
of the integral equations (4.34). However, since most particular solutions
will give us a non-uniform residual moment and normal membrane stress
along the crack, it is only natural to ask how the solution changes. Suppose
for [x| < I, we expand m, and ng in the form Y, a,x*" (even powers because
of the symmetry of the problem), then our previous method of solution will
still be applicable. And as can easily be seen from equations (4.34), although
the coefficients 4, B, in this case may change, the character of the solution
will still remain the same. Finally, because we desire to focus our attention
upon the singular stresses around the neighborhood of the crack point, we
need only to compute coeflicients 4, and B,.

Alternate Method of Solution. It is also possible to solve the coupled dual
integral equations directly by using a method which was developed by the
author some time ago [I11] and is parallel to the previous method. Thus
motivated by equations (4.25) and (4.26), one assumes the unknown func-
tions P, and P, in the form

2 _ 2y o
Py(s S—Zli) :k; A, J(';;klﬁ) (4.41a)
and
2(5 + "12)~ o Ji1(9)
. S s (4.41b)

where the coefficients 4, and B, are constants to be determined.
The advantage of such a form is that equations (4.25) are automatically
satisfied and furthermore,

uy(x) = P2 (s — iA%)* cos (xs)ds = 3 AkWLS(l ol
| o "2 (k4 3) (4.422)

and

u(x) =L -8—2(52 + iA*)* cos (xs)ds = Z B, m(l N

(4.42b)

In general, the functions u;, have some physical meaning. For example, in
this case their algebraic combination represents the crack opening displace-

* This matter is discussed at same length in [10].
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ment and as a result such an expansion is plausible.
It follows that equations (4.24) take the forms

S e 4 922
VoST = iATST 2 2
k;ofo {I: (s* —ir%)? $(vos™ + id ):lAk

4 < 2
VoS + iA%s . Jira(s
! [ (052 +i5)t s(vas” = MZ)]Bk}ﬁFL(T)COS pe

(s)
S et (4.43a)
and
e} 0 SZ SZ
. J(’;Tﬂfﬁ)cos (xs)ds =no; | x| <1 (4.43b)

Multiplying, subsequently, both sides by

- xl)j+%
2T (j + %)\/n

and integrating with respect to x from 0 to 1 one finds

Y {AG, (A5 0) + B,Gy, (A =)} = —moH;; j=0,1,2,... (4.44a)
k=0

and
kZO {ALFy, j(A; i) — B,F,, M =D} =neH;; j=0,1,2,... (4.44b)

where for simplicity we have made the following definitions

® {vos4 — iA%s?

Gy, (45 1) =f _ S(VOSZ + ilz)} Ji+1(8) Jj+1(s) ds

o L7 =i () (o)
(4.452)
i N Jir Jis
Sl = —fo i (1 (s —S i,12)%> (’;)klfi) é)ﬂ(f) ds
(4.45b)
and
Hi= - 1 (4.46)
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Equations (4.44) now represent two infinite systems of algebraic equations
which are to be solved for the unknown coefficients* 4, and B,. Such
systems have been studied extensively and the questions of existence and
uniqueness of the solution are discussed in reference [13].

As a practical matter now, if one addresses himself to the major contribu-
tion of the solution, which comes primarily from the terms with k = j = 0,
and uses the following integral approximation

° (s LOV . _[* @D (16
L ’ {1 (s2+ﬁ2)%} { ®) } ds‘fos 7y (/32/2){ ®) } ds

- (%){1 = 20,(8/ Y KBl D)}, (4.47)
then

Ay ~ — % Foo(h; —i) + ;’—Z Go o(h; —1) (4.48a)

By = — 28 Foo(kii) = 59 Go,olk: 1) (4.48b)

in which 4 is given by
A > Fy o(A; =) Gy, o(4; 1) + Fo, o(4; 1) Go, o(4; —1) (4.49)

Furthermore, in view of the approximation (4.47) ,one has

Fo old; i) = + i; L(e™™* A J2)K, (e™™* 1/ /2) (4.50a)

12
Go, o(A; +1) = voFg, o(4; +1i) + i’;— {1 —=2I,(e”™*//2)
K (e~ A J2)} — iA? (4.50b)

It is clear now from the above, that the general expressions for the coef-
ficients A, and B, are complicated series expressions involving the modified
Bessel functions I, and K,. As complicated as they may seem, the use of an
electronic computer makes the work a routine.

* In the field of fracture mechanics it is only necessary to compute the first coefficients
Ay and By for only the first term of the series in equations (4.41) lead to the well known
[12] 1/4/r stress singular behavior ahead of the crack tip.
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Determination of w and F. In view of equations (4.27), (4.37) to (4.39) and
the relation

J s~ " J,(as)cos (xs)ds
: {\/n(Za)_” [F(u+ 1] " (@> = x*)""*; 0<x<a ;Repu > —1

0; a<x<ow;Reu>—1
(4.51)
which can be found on page 44 of [6], we have:
Py(s) = (52—_81-7)_%{140']1(5) + 32°4, Z(S) + 0(,14)} (4.52a)
P,(s) = (SZ—J}IW{BOJI(S) + 312 B, (S) + 0(/14)} (4.52b)
Py(9) = = (Ao + Bo)(5) — 32°(4, + B,) 2
"12 — Bo)J 4(s) + 0(2%) (4.52¢)
Py(s) = — (Ao — Bo)J1(5) — 34%(A4; — B,)s™ ' J,(s) + 0(A*) (4.52d)

Therefore a substitution of the above relations into equations (4.21) will
determine the bending deflection w and membrane stress function F.
Furthermore, the corresponding integrals will converge and the differentia-
tions under the integral sign are also justified at least for y # 0. The values
of the derivatives at y = 0 and |x| < 1 can be obtained by a proper limiting
process.

The Stress Field. Without going into the details, the stress distribution
around the crack tip for a symmetrical loading* is found to be:

Extensional stresses: through the thickness

(e)

ol? = (’2‘ i cos (0/2) [1 — sin (0/2) sin (30/2)] (4.53a)
(e)

l? = ('2‘ )ﬁcos(9/2) [1 + sin (0/2) sin (30/2] (4.53b)

* The antisymmetric loading case will be discussed later.
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] (e)
o) = (zc (2ryF oS (0/2) sin (0/2) cos (30/2) (4.53¢c)
Bending stresses: on the ‘tension side’ of the shell
(b)
o =— (I; % k[ 3 cos (0/2) + cos (50/2)] (4.54a)
ki + 5v
ol = PBL Kl:COS (56/2) + cos (9/2)j| (4.54b)

(b)
gh) = (12< B k[Sln (50/2) + (
where v is Poisson’s ratio and (r, 0) are the polar coordinates around the
crack tip. In general, the stress intensity factors k' and k" are functions
of crack size, geometry of the shell, material properties and Joading charac-
teristics. In this case, they are related to the coefficients 4, and B, by the
expressions

A*RD
5pot (Ao + Bo) /e (4.55a)

I :) sin (9/2)] (4.54c)

k(e)

iEh
ko= IEM By G+ (4.55)

41 —v)e
Thus, in view of equations (4.39), the stress intensity factors
_ 3n (D) (1 —v?)* L3 A
(e) _ =(e) (b) _ ik
kY = \/c{1+ 5 } N 32 g A +1ng
+ 0@ In A) (4.56)

and

2(2%
KO = 5© 23 ‘)\/c {1 +7v L+ 3v<y 1o i)}

A =v)*GC+v)] 32 8 4
1+3v 7l
_ ) 4
G \/c{l Ty 32} +0(A*1In A) (4.57)

are obtained.

The reader should be cautioned for equations (4.56) and (4.57) represent
exact asymptotic expansions up to 0(4%) terms. Consequently, they are good
approximations for 0 < /. < 1. For larger values of 4, one must also include
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higher order terms in order to guarantee convergence. This can be done by
either of the two methods discussed previously and the aid of a computer.
For example, the numerical solution of the system of equation (4.44) leads
to a numerical result that may well be approximated within a 5% error by
the simple relation*

K >0 Je (1 + 0.466 12)* (4.58)

which is valid for all values of /.

In view of the above, one may conjecture that in an initially curved sheet,

1. the stresses are proportional to (c/r)?,

2. the stresses have the same angular distribution as that of a flat plate,

3. the stress intensity factors are functions of the shell geometry and, in
the limit, we recover the flat plate,

4. the stresses include interaction terms for bending and strectching.

A typical term for a spherical shell is

e o4 (kim0 ) 4 o (4.59)
Oplate Rh ! ! (Rh)* R

where the expression inside the parenthesis is a positive quantity. One con-
cludes, therefore, that a spherical initial curvature, in reference to that of a
flat sheet, is to increase the stresses in the neighborhood of the crack tip and,
as a result, reduce its resistance to fracture initiation.

It should be emphasized that classical bending theory has been used in
deducing the foregoing results. Hence it is inherent that only the Kirchoff
equivalent shear free condition is satisfied along the crack [15], and not the
vanishing of both individual shearing stresses. While outside the local region
the stress distribution should be accurate, one might expect the same type of
discrepancy to exist near the crack point as that found by Knowles and
Wang [16] in comparing Kirchoff and Reissner bending results for a flat
plate. In this case the order of the stress singularity remained unchanged but
the angular distribution around the crack changed so as to precisely be the
same as that due to solely extensional loading.

Recently, Sih and Hagendorf [17] investigated this matter further by
deriving an improved theory of shallow shells which incorporates the effect
of a transverse shear deformation. As expected, their results** showed that

* For the prediction of failures in pressurized vessels [14] the contributions of A”” are
negligible in comparison to those of l\(")
** See chapter 6.
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classic theory cannot adequately predict the exact angular dependence of
the bending stresses in the vicinity of a crack. However, in general, these
bending stresses are so small when compared to the extensional stresses that
can be neglected. On the other hand, for very long cracks such contributions
become significant and consequently may no longer be neglected. Unfortu-
nately, in such cases bulging effects become extremely important and any
theory, whether classic or shear, is inadequate.

In-plane Shear Load. 1f on the other hand, the residual loads, i.e., equation
(4.16), are of the form

M =0, VP =0, NP =0, N = =5 (4.60)

then the solution can be constructed in a similar manner [10] and the results
are

Extensional stresses: through the thickness:

(e)

@ = — (’Z‘F sin (0/2) [2 + cos (6/2) cos (30/2)] (4.61a)
k(e)

o) = o —2_sin (0/2) cos (0/2) cos (30/2) (4.61b)
/\(L)

o\ = (2~) cos (0/2) [1 — sin (0/2) sin (36/2)] (4.61c)

Bending stresses: on the ‘tension side’ of the shell:

(b)

o = (g = h[sm(S()/Z) (9 + )sm (0,2)] (4.622)
kP

ol = 2t Kk[sin (0/2) — sin (50/2)] (4.62b)

) ko Iv+5
Oyy = 2 AT cos (0/2) — cos (50/2) (4.62c)

where the stress intensity factors k% and k%" are given by

ko = — 7@ e {1 £y _L + 0(A*In ,1)} (4.63a)
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K — g V3G V) T +v—4G -y S—v "
’ 21 —vH? 16(1 —v) 41—y 4
+ 0(/12 In /1)} (4.63b)
with
=0 64
toT he? (4.64)

In the limit, as 2 — 0 one recovers precisely the results of references [18]
and [15]. Here again the results are correct up to 0(A*) terms and as a result
they are only good approximations for 0 < A < 1.

Effect of Transverse Vibrations. In addition to the usual external applied
loads, pressure vessels are frequently also subjected to vibrations. Conse-
quently, an investigation was carried out in order to assess analytically what
effect, if any, do vibrations have on the mechanism of fracture. The analysis
has shown [19] that in general, transverse vibrations reduce the stress
intensity factor. However, when the forcing frequency w approaches the
natural frequency of the uncracked shell, the stress intensity factor increases
without bound. This phenomenon, coupled with the usual 1/{/r singular
behavior, causes the pressure vessel to fail at nominal values even lower than
the yield stress.

Thus, without going into the mathematical details [19], the stress intensity
factors for a residual load* of the form

D
M = —~z Mo cos (wt + ¢), V=0, (4.65)
NP = — %O cos (wt + ¢), N& =0, (4:65b)
are

case (i) A*>0:

(z) myE 7 3 1 . . '
Jc{hc (3+v)R[32+8<”1“ +0(2*In &) cos (ot + )
(4.66a)

* See equation (4.16).
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MRngJe [1+7v 143y A
b _ ) 0 —
k= { 21 = vz)cII: 2 T (Y o 4>J "
ﬁ% + 0G4 In 1)} cos (wt + ) (4.66b)
case (ii) A*<O0:

(e) _ O meE (7 3 A
g */C{ [”32 J+R(3+v)[32+8”1“4

+ 0(1* In i)} cos (wt + ¢) (4.67a)

ARng Je[l+7v 1+ 3y A
) _ ) _ 0 =
ki ‘{ 2(l—v2)c4|: 2 Ty <”+ln4)}+

moEh (/¢ A2 14 3y i
+ 21 = A l: 2 34y + O(A" In 4) p cos (wt + ¢) (4.67b)
where
= - (4.68)

p “ T Rp>

 the forcing frequency and p the density of the material.

From these results, the following special limiting cases of practical interest

can be examined:

I. If o - 0and R # oo, the stresses of a non-vibrating cracked spherical
shell are recovered and coincide with those obtained in [10].

2. Ifw # 0and R — o, we recover the vibrating cracked plate expressions
in [20].

3. If @ =0 and R — oo, the stresses of a flat sheet are recovered and
coincide with those obtamed previously for bending [15] and extension
[18].

4. If 2 - 0, i.e., when the forcing frequency reaches the natural frequency
(E/p)* (1/R) of the uncracked shell, the extensional stress intensity fac-
tor becomes infinite.

As a practical matter, it is of some value to compare the dynamic with the

static stress along the line of crack prolongation. For ¢ = | in,, n = 0.1 in.,
R=32.6in,v=1/3, E=16 x 10° psi, p = 0.315 1bfin.2.

(i) forny # 0, my=0:
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[0.67(1 +0291%) — 1.24,14<O.25 + 013 1In %)J
Oyaynamic _ | €OS (01 + ¢); 2* < 0

il [0.67 - 1.2412<0.25 +0.13In %ﬂ cos (ot + ¢);
A*>0 B

(ii) forny, =0, my,#0:

2
[0.87(1 + 0.1842) + 0.14( 0.43 + 0.19 In f—6 >]

c
Jdynemie — 1cos (wt 4 ¢); A* <0

Ystatic 2
[0.87 + 0.14<0.43 + 0.19 In /11_6 ):I cos (wt + ¢); A* >0

where
M=21x10"%p2 -1

The plots of the ratio

I = O-Ydynam ic

aYstatic cos (a)t + ¢))

for various values of w are given in Figures 4.3 and 4.4.
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Figure 4.3. Ratio of Dynamic and Static Stresses vs o for my =0
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Figure 4.4. Ratio of Dynamic and Static Stresses vs @ for ng =0

4.4 The stress field in a cracked plate

The problem of a flat plate containing a finite crack has been investigated
by many authors for various types of loadings and the results are reported in
other chapters of this volume. The solution, however, for an infinite plate
(see Figure 4.5) may also be obtained from that of a spherical cap by simply

I\

T
‘q(x,y)

Figure 4.5. Cracked Plate Subjected to a Lateral Load ¢

letting R — oo or A — 0. Thus the stress field around the crack tip is given
by equations (4.53) and (4.54) where the stress intensity factors now are
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K =6 /e (4.69a)
KD = —6® e (4.69b)

4.5 The stress field in a cracked cylindrical shell

For a cylindrical shell, one of the principal radii of curvature is infinite and
the other constant. It appears therefore that this geometric simplicity leads
to rather straightforward analytical solutions. However, the fact that the
curvature varies between zero and a constant as one considers different an-
gular positions—say around the point of a crack which is aligned parallel
to the cylinder axis—more than obviates the initial geometric simplification
and therefore increases the mathematical complexities considerably. For
this reason, Sechler and Williams [5] suggested an approximate equation,
based upon the behavior of a beam on an elastic foundation, and were able

i
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Figure 4.6. Geometry and Coordinates of an Axially Cracked Cylindrical Shell Under
Uniform Axial Extension N, and Internal Pressure g,
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Figure 4.7. Geometry and Coordinates of a Peripherally Cracked Cylindrical Shell Under
Uniform Axial Extension N, and Internal Pressure g,

to obtain a reasonable agreement with the experimental results. Subsequently,
using the method of section 2, the author investigated this problem in a more
sophisticated manner and the details for an axial and a peripheral crack
(see Figures 4.6 and 4.7) can be found in references [21] and [22], respectively.

Again, omitting the mathematical details, the stresses around the crack
tip are given also by equations (4.53) and (4.54), where the stress intensity
factors are:* '

* It should be emphasized that these results are only valid for small A and that for large A
one must consider more terms of the asymptotic expansions. Using the method described
previously on the alternate method of solution, the stress intensity factors have been
determined numerically for v — 3+ and 6® = 0 and may well be approximated within a
6% error and for all A by the simple relations:

K =v/c (1 4 0.317 A2)}
and

KO =v/c( +00519t
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(i) for an axial crack (see Figure 6)

2 22
ko ‘“”\/c{um }+a<’”(l v)iA2 e

64 V33 +v)
{965 - :) * 16(T_Vv) ' <V +1n g)} +0(% Ind); A< 1 (4.70a)
W _ e . N3AT (5437 145y A\l
kY = o \/C’(l_vzﬁT 9 + 6 /1+h]8f

2 2
_6([,)#{] 1 +2v + 5v* A

_mﬁ}+ 0(A*Inl); 1<1 (4.70b)

(if) for a peripheral crack (see Figure 4.7)

k(le)z _(E)\/C{I +Tc_j'2_}+&(b)wc~

64 V3G + )
{3(21(1+—v1) T 1(61(1+—V)v) <A +1 %)} +0(A*In2); A<2s (4.71a)
{ - (% %2} + 00 2); 2<25 (4.71b)

(ifi)  for an arbitrary orientation crack™> (see Figure 4.8)

Figure 4.8

2 in’ 2 1 —v¥)*2 /e
© _ =) (5cos” a + sin” a)nd _my &
ki = \/C{l ’ 64 T BB
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5437 L 1+ 5v +ln/lcosoc cos a
56 —v) T 60—\ 8

L+v 1+v Asina) | . 2 .
S Ind); A<l
+[32(1—v)+16(1—v)(y+1n A )]sm oc}+0(/1 ni); A<
(4.72a)

,(b)____—(e)M _5_+i7_v 1_+_5_v m cos? o
ki e | I TRET y+1—g

I+v 14+v Asin o . 2
+|: D + 6 <y+1n—’8 )]sm a}

_o® Jedl - (1 +2v+ 57 cos? a + (54 2v+v?) sin? o lr_}t_z
G+ =V 64
+0(*Inl); A<1 (4.72b)

and*

2
kK = 79 /e {1 + ‘/5%} sin 201}

(1 = v 5437y 1+ 5v Acosa\ |*
70) . |
+ 27 Ve 3G 5 | 96— | 16 =) y+in—g

(1+v) (1+v) Asina) | . ) 4 o
— — O0(A* 1In 4); < 1(4.73
\:32(1—v)+ 161 =) y + In A sin 200 + O(A"In A); 4 (4.73a)

2 +
(b)__(e)\/SA Je |l 5+ 37 1+ 5v Acosa
K =7 ) 96 16 y+In—yg

1 1 A si o
‘:——;Z_V“L 1+6V<V+1n Slgaﬂ}smza
2 L2 P 2
=(b) (5vo” — 12vg + ) (v + 2v + 5)* EA_ .
139 e {1 + Vo, = sin 20
+0(*Ina); A<1 : (4.73b)

4.6 Approximate stress intensity factors for other
shell geometries

Because the complementary or perturbed solution presents contributions
only in the immediate vicinity of the crack tip, one may consider —at least

* The reader should note that the angular distribution here is given by equations (4.61)
and (4.62). ‘
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locally — the principal radii or curvatures constant. Thus, assuming that the
crack is parallel to one of the principal axes, say along the x-axis, one may
hypothesize that the stress intensity factors depend primarily on the curva-
tures that one observes as he travels along and perpendicular to the crack
prolongation. Consequently, one may estimate the stress intensity factors by
a proper superposition of the results of an axial and a peripheral crack in a
cylindrical shell. In particular, for ¢ = 0

md, 2 Smd, ?

64 T4

() o 5@ V3e [S+3Tv.,  L+5v,, A
kY ~ -y ,%{ 06 AC + 16 A, y+ln8

1 1
e Vg o L Vg g <y+1ni>}+0(,141n1); A<t (4.74b)

k{® ~ 5 \/c{l + } +0(*Ind); A<l (4.74a)

32 °F 16 8

In order to check the validity of such a superposition we will consider as
our first example* a spherical cap the stress intensity factors for which we
know exactly.

Example 1: Sphere. For this shell the curvature is constant in all direc-
tions; therefore, in view of equations (4.70a) and (4.71a), one has

L 3nA?
kO o~ 5@ \/c{1+”6—4+ 24} “”{1+ ;2} L<1 (4.75)

which is identical to equation (4.56). Similarly,

) —(e) \/3 /1. \/C d + 37v 1 + Sv i
i (1= )t { 96 T o6 (7tIng

1+v 14w A

B _(e)\/3/12\/c —0.1+5v 14 3v AL,
= T 7 + 5 y+1n4 ;A< (4.76)

which agrees fairly well with equation (4.57). One may conclude, therefore,
that such a hypothesis may not be unreasonable.

* In the following examples, we have assumed ¢(®) — 0.




148 E. S. Folias

R, = R-ctane
Rop = R+ctane

Figure 4.9. Conical Circular Shell

Example 2: Circular conical shell (see Figure 4.9). In this case, one curva-
ture is infinite, the other finite; therefore,
(i) for an axial crack:

K ~ 5@ \/c{l + Z—Z—Af}; A <1 (4.77a)

KO o 5 \/c{1 4 %Z-A} 2, <1 (4.775)

(ii) for a peripheral crack:

K o 6© \/c{l + %ig}; Jsy <1 (4.78)
where

C2

2 _ - S
i =0 -] (R — ctan g)h

2
, R
75 =020 = R can o

2

2 _ N T 4.79
22 =120 = v9)] R , (4.79)
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Figure 4.10. Toroidal Shell
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Example 3: Toroidal shell (see Figure 4.10). For an axial crack in the outer

surface

5 ,
k' ~ @ \/0{1 +éif + 6%/1%}; Ay, <1

for an axial crack in the inner surface

5 .
K ~ 5@ \/c{l + 6—;1112— 6%2%}; A i<l

for a peripheral crack in the outer surface

S o ,
K ~ gt \/C{l -I—é/tg + 614/1%}; A, <1

and for a peripheral crack in the inner surface

Sn . > ;
KB e 5t \/c{] — 6—ZA§ + &if}; A i<

4.7 Plates on elastic foundations

(4.80)

(4.81)

(4.82)

(4.83)

Analyses of plates resting on foundations usually fall into two groups. The
first group follows the well known theory of Winkler and Zimmerman [23]
in which the elastic foundation is considered as a system of separate uncon-
nected springs. Such a hypothesis simplifies considerably the analysis of
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structures on elastic foundations and leads frequently to incorrect results.
The second group follows the theory in which one describes the physical
properties of the natural foundation more accurately by the hypothesis that
the foundation is an elastic isotropic semi-infinite space [24]. Here again,
such a hypothesis leads to cumbersome calculations and therefore the method
becomes impractical.

Recently a new theory based on Vlasov’s general variational method [25]
has been proposed [26]. This theory considers the elastic foundation as a
single or double layer model whose properties are described by two or more
generalized elastic characteristics. The advantage of this theory is that it is
more accurate than the theory of Winkler and Zimmermann and simpler
than the theory of the elastic semi-infinite space.

Winkler-Zimmermann Foundation. The characteristics of the fracture of
plates resting on a Winkler-Zimmermann foundation have been investigated
and the results are reported in references [27] and [28]. In this case, the
governing differential equation for the displacement function w(x, y), with
x and y as dimensionless coordinates (see Figure 4.11), is given in the classical
theory by

=g 'T_I__x == TOP VIEW

T
tz=zz=2x=2xzx=x223 SDEVEW

£

l
RE T

l_h
]

Figure 4.11
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4
(V¢ 4+ 24 i, y) = L8N (4.84)
where
e Lo (4.85)

and k the elastic foundation spring constant. In reference [27], the author,
using the method described in section 4.3, was able to obtain an asymptotic
expansion of the solution for small values of the parameter .. Thus without
going into the details, the stresses at the surface z = hf2c are given by equa-
tions (4.54) where the bending stress intensity factor now is given by

2 2 2
1\,(1b):5tb)\/c{] n 34+2v+3v° nA ,: 34 6v+ 15y <‘)) In %)

B+ -v32"|G+nd -y
3v? — 1 it 6
+ m 38 +0(A"Ink); A<2 (4.86)

On the other hand, for large values of the parameter A reference [28] gives

kP = g® \/ci +0(A7¥; 1>4 (4.87)
VA
For example, along the crack prolongation and for v = 1/3,
€ 1
i A=<l
@ [1 32 —75/12:’
96, 0) 532
6(b) -
(4.88)
ic. _l_ ol > 4
@nt V4 ’

Since the behavior of the stress intensity factor at the two extremes is
known, one may construct a curve with the proper asymptotes. Such a plot
is given in Figure 4.12. One concludes, therefore, that the general effect of
an elastic foundation is to decrease the stresses in magnitude by a factor
which depends on the type of foundation, the crack length, and the material
properties.

Single Layer Foundation. Following [26], the differential equation governing
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the displacement function is w(X, Y) of a plate resting on single layered
elastic foundation (see Figure 4.13).

1.0
N
0.8 S
N
N
N
\\\
v 0.6 ~<L
> S~
5 ~
b \
—
0.2
0 | 2 B 4 5 6 7 8 9
STRESS INTENSITY FACTOR VS A
Figure 4.12
= TOP VIEW
= SIDE VIEW
Figure 4.13. A Cracked Plate on a Single Layered Foundation
4 %272 *4 * 9w q
Véw — 2r¥*V*w + 6**w + m =D (4.89)
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with the quantities #*, §* and m* as constants defined by*

) E* rH 5
$ = z)dz
¥ (1+v";)D“0l//()
ot = [ e
T —viD |,
J K |
me = (222 4 By dz ) = (4.90)
g g Jo D
and
E
* s
Es = 1 — ¥4
* vs
# = (4.91)

D the flexural rigidity of the plate, y, and y, the specific weights of the plate
and elastic foundation and g the gravitational acceleration.

The problem of a finite crack, of length 2¢, in the plate has been investi-
gated and the results are reported in reference [29]. Thus without going
through the details, the stress intensity factor, in view of the definitions

r=cr&, 0=cox, k=r/d, (4.92)
become

(i) foro <r <1
kP =6, c(12 — Sy {12 +{—=3[v2 -G —-12y+121n2) +

=23 =4y +4In2) + 16v(1l —2y +21In2)] +
, ;2
! 3 _ _ |
+33v+ DL =v) (L —In2 + 2Inr)) (I—v)(3+v)+

F{&EDQ = (= 12y + 12In2) (3 —dy +41n2) — 8v(1 — 2y + 21n 2)]

* It is assumed that no horizontal displacements occur in the elastic foundation and that
the vertical displacement is given by a single function y(z). From reference [26] a typical
function is

sinh [ry(H — z2)]

sinh [r,H]

w(z) =

where r, is a coefficient determining the variation with depth of the displacement.
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4 -1
- H5Cv+ 1)1 - v)(%—ln2+21nr)}(—1_v;T+v)+ }
(4.93)

Notice that 6 does not appear in equation (4.93) for it is negligible. A
plot of this is given in Figure 4.14.
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Figure 4.14. Stress Coefficient Versus r

(if) forr = ké < 1, where k is a real constant

k? + (k* — 1)*
kP = 5,,Jc{l +8(k41— 0 In [kzi—gk“ — 1;5]
(I+v)+ 23y + 1) (1 —v) (2k* — 1)(52
(=GB +v

1
T =006 T v)[V(Z—V)(5—12y+121n2)+(3-4y+4ln2) +

— 8v(1 =2y +21n2) — 2(1 + 3v) (1 — v) (1 — 2 In 2)]k26* +
3k26? 3
T — 332 BI —wE T ylE Y

+ 3k%(In 8)0% +
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(5— 12y + 12In2) + (3 — 4y + 41n2) — 8v(1 — 2y + 21n 2) — 2(1 + 3v)

ko 3 K2+ (k* — 1)}
Iy
G =2 S e e e 1y
(Ut A+ DU =NEK = 1) K* 3K
T+9G+) 7= 31767 T 32— 24
Iné + ...}_1 (4.54)
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Figure 4.15. Stress Coefficient Versus &

A plot is given in Figure 4.15. Furthermore, in the limit as k¥ — 0 one
recovers the results for 2 Winkler and Zimmermann foundation.

4.8 Particular solutions

In general, the actual stress fields will depend upon the contributions of the
particular solutions reflecting the magnitude and distribution of the applied
load. On the other hand, the singular part of the solution, that is the terms
producing infinite elastic stresses at the crack tip, will depend upon the local
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stresses existing along the locus of the crack before it is cut, which of course

are precisely the stresses which must be removed by the particular solutions
described above in order to obtain the stress-free edges as required physically.

9

R

o

Figure 4.16. Pressurized Spherical Cap With Fixed Ends

Clamped Spherical Shell. ~Consider a clamped segment of a shallow spherical
shell of base radius R, and containing at the apex a finite radial crack of
length 2¢ (see Figure 4.16). The shell is subjected to a uniform internal pres-
sure g, with radial extension N, = (¢,/2)R, and because it is clamped we
require that the displacement and slope vanish at R = R,. For this problem
the residual ‘applied bending’ and ‘applied stretching’ loads at the crack -
are:*

7@ = qoR/2h, ¢® =0 and 7 =0 (4.95)

Closed Cylindrical Tank. Consider a shallow cylindrical shell containing a
crack of length 2¢. The shell is subjected to a uniform internal pressure g,
with an axial extension N, = (¢,R/2), M, = 0, far away from crack. For
this problem, if the crack is parallel to the axis of the cylinder, then

5 = (qoR/h), & =0 and 7 =0 (4.96)
If the crack is perpendicular to the axis of the cylinder, then

7 = qoR/2h, @ =0 and 7© =0 (4.97)

In the event that the crack makes an angle « with the axis of the cylinder,

then

* For more details see reference [30].
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7 = (qoR/4h) (3 + cos 2x), 3 = 0, and T = (q,R/4h) sin 2 (4.98)

Infinite Plate. Consider an infinite thin plate containing a crack of length
2c¢. At infinity the plate is subjected to a uniform extensional load ¢, and
in-plane shear load 7, then

59 =0, =0and ¥ =1, (4.99)

Rectangular Strip on a Spring Foundation. Consider a rectangular strip,
infinitely long in the x-direction and of finite width 4 in the y-direction.
Furthermore, let the strip be subjected to a constant moment M, and zero
shear at y = b, and simultaneously subject to a uniform normal loading
qo. Then*

§© = 70 _

and
o 6M, cos (Ab/(/2) sinh (Ab//2) + sin (Ab/\/2) cosh (1b/./2)
77T T W% Ccosh (Ab/\/2) sinh (1b]/2) + sin (1b//2) cos (Ab/./2)
(4.100)
where
2 = % ¢t (4.101)

Plate on a Single Layered Foundation. Consider an infinite elastic plate
which rests on a single-layered elastic foundation and contains a finite,
through the thickness, crack of length 2¢. The plate is subjected to two equal
concentrated lateral static loads of intensity P, with corresponding points
of application (0, L, —/) and (0, —L, — /) (see Figure 4.13). Furthermore, it
will be assumed that L> > ¢. Then**
_ 6D Pyct (1 —v) A"

F(e) _ de® = — 0 —

= Uity h2cZ 2aD(A2 — ﬁ){(xz Tl e

{4 K [A4 (% + P} = 2 K [A-(x* + )]} +
? + vx?
x2 + 12

% {23 Ko[A4(x? + 1] — 22K [A_(x2 + 12)%]}} (4.102)

* For more details see reference [28].
** See reference [29].
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where
| = % AR =r4(rt =54t (4.103)

Now, since we have already assumed that 1 << /, it is easy to see that the
above bending moment (along the crack) is approximately a constant, i.e.,
—Dmy/c?. Alternately, as an engineering approximation, one may think of
the quantity (— Dmy/c?) as an upper bound, or lower bound, or even a mean
value of the precise bending moment along the crack in order to obtain an
estimate of the stresses in the vicinity of the crack.

4.9 Discussion

From the above analysis it becomes evident that in an initially curved sheet
the stresses near the crack tip possess the usual 1/{/r singular behavior which
is characteristic to two-dimensional linear elastic crack problems. Further-
more, the angular distribution around the crack tip is precisely the same as
that of a flat plate and that the initial curvature appears only in the stress
intensity factors and it appears in such a way that in the limit as R - oo
one recovers the flat sheet behavior.
A typical term is of the form

Oshell a; a, b, ¢ b, ¢ ¢
T T R e R ) A 1 P G
Oplate {R1 R, Ry (Rih)* R, (th)z} h
1 1
+ 0 <Rf’ E) (4.104)

Thus the general effect of a positive (negative) initial curvature, in reference
to that of a flat sheet, is to increase (decrease) the stresses in the neighborhood
of the crack point and reduce (increase) its resistance to fracture initiation.
For a cylindrical shell with an axial crack, for example, equation (4.178)
reads

ahonp oy 1

Optie (1 + 0.31727)F°

(4.105)

which correlates flat sheet behavior with that of initially curved specimens.
In a similar manner, the general effect of an elastic foundation is to
decrease the magnitude of the stress intensity factor in the neighborhood of
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the crack tip and as a result prevent further fracture. This decrease clearly
depends on the values of the parameters which characterize the elastic
foundation.
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